File: testBinaryArchive.py

package info (click to toggle)
stopt 5.5%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,772 kB
  • sloc: cpp: 70,373; python: 5,942; makefile: 67; sh: 57
file content (138 lines) | stat: -rw-r--r-- 5,172 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#!/usr/bin/python3

# Copyright (C) 2016 EDF
# All Rights Reserved
# This code is published under the GNU Lesser General Public License (GNU LGPL)
import numpy as np
import unittest
import random
import StOptGrids
import StOptReg
import StOptGeners


# unit test for dumping binary archive of regressed value and Read then
######################################################################

class testBinaryArchiveStOpt(unittest.TestCase):

      
      def testSimpleStorageAndLectureRecGrid(self):
        
        # low value for the mesh
        lowValues =np.array([1.,2.,3.],dtype=np.float64)
        # size of the mesh
        step = np.array([0.7,2.3,1.9],dtype=np.float64)
        # number of step
        nbStep = np.array([4,5,6], dtype=np.int32)
        # degree of the polynomial in each direction
        degree =  np.array([2,1,3], dtype=np.int32)
        # create the Legendre grid
        grid = StOptGrids.RegularLegendreGrid(lowValues,step,nbStep,degree )


        # simulate the perburbed values
        ################################
        nbSimul =40000
        np.random.seed(1000)
        x = np.random.uniform(-1.,1.,size=(1,nbSimul));
        # mesh
        nbMesh = np.array([16],dtype=np.int32)
        # Create the regressor
        #####################
        regressor = StOptReg.LocalLinearRegression(False,x,nbMesh)
        
        # regressed values same values for each point of the grid
        #########################################################
        toReal = (2+x[0,:]+(1+x[0,:])*(1+x[0,:]))
        # function to regress
        toRegress = toReal + 4*np.random.normal(0.,1,nbSimul)
        # create a matrix (number of stock points by number of simulations)
        toRegressMult = np.zeros(shape=(len(toRegress),grid.getNbPoints()))
        for i in range(toRegressMult.shape[1]):
           toRegressMult[:,i] = toRegress        
        # into a list  : two times to test 2 regimes
        listToReg = []
        listToReg.append(toRegressMult)
        listToReg.append(toRegressMult)
    

        # Create the binary archive to dump
        ###################################
        archiveToWrite = StOptGeners.BinaryFileArchive("MyArchive","w")
        # step 1
        archiveToWrite.dumpGridAndRegressedValue("toStore", 1,listToReg, regressor,grid)
        # step 3
        archiveToWrite.dumpGridAndRegressedValue("toStore", 3,listToReg, regressor,grid)


        # Read the regressed values
        ###########################
        archiveToRead =  StOptGeners.BinaryFileArchive("MyArchive","r")
        contValues = archiveToRead.readGridAndRegressedValue(3,"toStore")


        # list of 2 continuation values
        ##############################
        stockPoint = np.array([1.5,3.,5.])
        uncertainty = np.array([0.])
        value =contValues[0].getValue(stockPoint,uncertainty)
      

      # non regular grid
      def testSimpleStorageAndLectureNonRegular(self):
        
        # create the Legendre grid
        grid = StOptGrids.GeneralSpaceGrid([[ 1., 1.7, 2.4, 3.1, 3.8 ],
                                            [2., 4.3, 6.6, 8.9, 11.2, 15.],
                                            [3., 4.9, 5.8, 7.7, 10.,20.]])

        # simulate the perburbed values
        ################################
        nbSimul =40000
        np.random.seed(1000)
        x = np.random.uniform(-1.,1.,size=(1,nbSimul));
        # mesh
        nbMesh = np.array([16],dtype=np.int32)
        # Create the regressor
        #####################
        regressor = StOptReg.LocalLinearRegression(False,x,nbMesh)
        
        # regressed values same values for each point of the grid
        #########################################################
        toReal = (2+x[0,:]+(1+x[0,:])*(1+x[0,:]))
        # function to regress
        toRegress = toReal + 4*np.random.normal(0.,1,nbSimul)
        # create a matrix (number of stock points by number of simulations)
        toRegressMult = np.zeros(shape=(len(toRegress),grid.getNbPoints()))
        for i in range(toRegressMult.shape[1]):
           toRegressMult[:,i] = toRegress        
        # into a list  : two times to test 2 regimes
        listToReg = []
        listToReg.append(toRegressMult)
        listToReg.append(toRegressMult)
    

        # Create the binary archive to dump
        ###################################
        archiveToWrite = StOptGeners.BinaryFileArchive("MyArchive","w")
        # step 1
        archiveToWrite.dumpGridAndRegressedValue("toStore", 1,listToReg, regressor,grid)
        # step 3
        archiveToWrite.dumpGridAndRegressedValue("toStore", 3,listToReg, regressor,grid)


        # Read the regressed values
        ###########################
        archiveToRead =  StOptGeners.BinaryFileArchive("MyArchive","r")
        contValues = archiveToRead.readGridAndRegressedValue(3,"toStore")


        # list of 2 continuation values
        ##############################
        stockPoint = np.array([1.5,3.,5.])
        uncertainty = np.array([0.])
        value =contValues[0].getValue(stockPoint,uncertainty)
        
if __name__ == '__main__': 
    unittest.main()