File: testLocalSameSizeLinearRegression.py

package info (click to toggle)
stopt 5.5%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,772 kB
  • sloc: cpp: 70,373; python: 5,942; makefile: 67; sh: 57
file content (113 lines) | stat: -rw-r--r-- 4,533 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
#!/usr/bin/python3

# Copyright (C) 2016 EDF
# All Rights Reserved
# This code is published under the GNU Lesser General Public License (GNU LGPL)
import numpy as np
import unittest
import random

# unit test for regression 
#########################

class testLocalSameSizeLinearRegression(unittest.TestCase):


    # One dimensional test
    def testRegression1D(self):
        import StOptReg 
        nbSimul = 5000000;
        np.random.seed(1000)
        x = np.random.uniform(-1.,1.,size=(1,nbSimul));
        # real function
        toReal = (2+x[0,:]+(1+x[0,:])*(1+x[0,:]))
        # function to regress
        toRegress = toReal + 4*np.random.normal(0.,1,nbSimul)
        # mesh
        nStep = 20
        lowValue =  np.array([-1.0001],dtype=float)
        step =  np.array([2.0002/nStep],dtype=float)
        nbMesh = np.array([nStep],dtype=np.int32)
        # Regressor
        regressor = StOptReg.LocalSameSizeLinearRegression(False,x,lowValue,step,nbMesh)
        # nb simul
        nbSimul= regressor.getNbSimul()
        # particles
        part = regressor.getParticles()
        # test particules
        y = regressor.getAllSimulations(toRegress).transpose()
        # compare to real value
        diff = max(abs((y-toReal)/y))
        self.assertAlmostEqual(diff,0., 1,"Difference between function and its condition expectation estimated greater than tolerance")


    # two dimensonnal test
    def testRegression2D(self):
        import StOptReg 
        np.random.seed(1000)
        nbSimul = 20000000;
        x = np.random.uniform(-1.,1.,size=(2,nbSimul));
        # real function
        toReal = (2+x[0,:]+(1+x[0,:])*(1+x[0,:]))*(2+x[1,:]+(1+x[1,:])*(1+x[1,:]))
        # function to regress
        toRegress = toReal + 4*np.random.normal(0.,1,nbSimul)
        # mesh
        nStep = 20
        lowValue =  np.array([-1.0001,-1.0001],dtype=float)
        step =  np.array([2.0002/nStep, 2.0002/nStep],dtype=float)
        nbMesh = np.array([nStep,nStep],dtype=np.int32)
        # Regressor
        regressor = StOptReg.LocalSameSizeLinearRegression(False,x,lowValue,step,nbMesh)
        y = regressor.getAllSimulations(toRegress).transpose()
        # particles
        part = regressor.getParticles()
        # compare to real value
        diff = max(abs((y-toReal)/y))
        self.assertAlmostEqual(diff,0., 0,"Difference between function and its condition expectation estimated greater than tolerance")

    # test different second member
    def testSecondMember(self):
         import StOptReg 
         np.random.seed(1000)
         nbSimul = 100;
         x = np.random.uniform(-1.,1.,size=(1,nbSimul));
         toReal = np.array([((2+x[0,:]+(1+x[0,:])*(1+x[0,:]))).tolist(),((3+x[0,:]+(2+x[0,:])*(2+x[0,:]))).tolist()])
         # function to regress
         toRegress = np.array([(toReal[0,:] + 4*np.random.normal(0.,1,nbSimul)).tolist(),(toReal[1,:] + 4*np.random.normal(0.,1,nbSimul)).tolist()])
         # mesh
         nStep =4
         lowValue =  np.array([-1.0001],dtype=float)
         step =  np.array([2.0002/nStep],dtype=float)
         nbMesh = np.array([nStep],dtype=np.int32)
         # Regressor
         regressor = StOptReg.LocalSameSizeLinearRegression(False,x,lowValue, step , nbMesh)
         y = regressor.getAllSimulationsMultiple(toRegress)
         # check 
         z1 = regressor.getAllSimulations(toRegress[0,:]).transpose()
         z2 = regressor.getAllSimulations(toRegress[1,:]).transpose()
         # compare to real value
         diff = max(abs(y[0,:]-z1[:] ))+max(abs(y[1,:]-z2[:] ))
         self.assertAlmostEqual(diff,0., 7,"Difference between function and its condition expectation estimated greater than tolerance")

   # test  date 0
    def testDateZero(self):
        import StOptReg 
        nbSimul = 50000;
        np.random.seed(1000)
        x = np.random.uniform(-1.,1.,size=(1,nbSimul));
        # real function
        toReal = (2+x[0,:]+(1+x[0,:])*(1+x[0,:]))
        # function to regress
        toRegress = toReal + 4*np.random.normal(0.,1,nbSimul)
        # mesh
        nStep =4
        lowValue =  np.array([-1.0001],dtype=float)
        step =  np.array([2.0002/nStep],dtype=float)
        nbMesh = np.array([nStep],dtype=np.int32)
        # Regressor
        regressor = StOptReg.LocalSameSizeLinearRegression(True,x,lowValue,step,nbMesh  )
        y = regressor.getAllSimulations(toRegress).mean()
        self.assertAlmostEqual(y,toRegress.mean(),8,"Not equality by average")

if __name__ == '__main__': 
    unittest.main()