File: testSparseRegression.py

package info (click to toggle)
stopt 5.5%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 8,772 kB
  • sloc: cpp: 70,373; python: 5,942; makefile: 67; sh: 57
file content (134 lines) | stat: -rw-r--r-- 6,230 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#!/usr/bin/python3

# Copyright (C) 2016 EDF
# All Rights Reserved
# This code is published under the GNU Lesser General Public License (GNU LGPL)
import numpy as np
import unittest
import random

# unit test for Sparse regression 
################################

class testSparseRegression(unittest.TestCase):

    # One dimensional test
    def testSparseRegression1D(self):
        import StOptReg
        nbSimul = 2000000;
        np.random.seed(1000)
        x = np.random.uniform(-1.,1.,size=(1,nbSimul));
        # real function
        toReal = (2+x[0,:]+(1+x[0,:])*(1+x[0,:]))
        # function to regress
        toRegress = toReal + 4*np.random.normal(0.,1,nbSimul)
        # level for sparse grid
        iLevel = 5;
        # weight for anisotropic sparse grids
        weight= np.array([1],dtype=np.int32)
        # Regressor degree 1
        regressor = StOptReg.SparseRegression(False,x,iLevel, weight, 1)
        y = regressor.getAllSimulations(toRegress).transpose()
        # compare to real value
        diff = max(abs(y-toReal))
        self.assertAlmostEqual(diff,0., 1,"Difference between function and its condition expectation estimated greater than tolerance")
        # Regressor degree 2
        regressor = StOptReg.SparseRegression(False,x,iLevel, weight, 2)
        y = regressor.getAllSimulations(toRegress).transpose()
        # compare to real value
        diff = max(abs(y-toReal))
        self.assertAlmostEqual(diff,0., 1,"Difference between function and its condition expectation estimated greater than tolerance")
        # Regressor degree 3
        regressor = StOptReg.SparseRegression(False,x,iLevel, weight, 3)
        y = regressor.getAllSimulations(toRegress).transpose()
        # compare to real value
        diff = max(abs(y-toReal))
        self.assertAlmostEqual(diff,0., 1,"Difference between function and its condition expectation estimated greater than tolerance")
       # get back basis function
        regressedFuntionCoeff= regressor.getCoordBasisFunction(toRegress)
        # get back all values
        ySecond= regressor.getValues(x,regressedFuntionCoeff).transpose()
        diff = max(abs(y-ySecond))
        self.assertAlmostEqual(diff,0., 7,"Difference between function and its condition expectation estimated greater than tolerance")
 
    # two dimensonnal test
    def testSparseRegression2D(self):
        import StOptReg
        np.random.seed(1000)
        nbSimul = 1000000;
        x = np.random.uniform(-1.,1.,size=(2,nbSimul));
        # real function
        toReal = (2+x[0,:]+(1+x[0,:])*(1+x[0,:]))*(2+x[1,:]+(1+x[1,:])*(1+x[1,:]))
        # function to regress
        toRegress = toReal + 4*np.random.normal(0.,1,nbSimul)
        # level for sparse grid
        iLevel = 5;
        # weight for anisotropic sparse grids
        weight= np.array([1,1],dtype=np.int32)
        # Regressor degree 1
        regressor = StOptReg.SparseRegression(False,x,iLevel, weight, 1)
        y = regressor.getAllSimulations(toRegress).transpose()
        # compare to real value
        diff = max(abs(y-toReal))
        self.assertAlmostEqual(diff,0., 0,"Difference between function and its condition expectation estimated greater than tolerance")
        # Regressor degree 2
        regressor = StOptReg.SparseRegression(False,x,iLevel, weight, 2)
        y = regressor.getAllSimulations(toRegress).transpose()
        # compare to real value
        diff = max(abs(y-toReal))
        self.assertAlmostEqual(diff,0., 0,"Difference between function and its condition expectation estimated greater than tolerance")
        # Regressor degree 3
        regressor = StOptReg.SparseRegression(False,x,iLevel, weight, 2)
        y = regressor.getAllSimulations(toRegress).transpose()
        # compare to real value
        diff = max(abs(y-toReal))
        self.assertAlmostEqual(diff,0., 0,"Difference between function and its condition expectation estimated greater than tolerance")
       # get back basis function
        regressedFuntionCoeff= regressor.getCoordBasisFunction(toRegress)
        # get back all values
        ySecond= regressor.getValues(x,regressedFuntionCoeff).transpose()
        diff = max(abs(y-ySecond))
        self.assertAlmostEqual(diff,0., 7,"Difference between function and its condition expectation estimated greater than tolerance")
 
   # test different second member
    def testSecondMember(self):
         import StOptReg
         np.random.seed(1000)
         nbSimul = 100;
         x = np.random.uniform(-1.,1.,size=(1,nbSimul));
         toReal = np.array([((2+x[0,:]+(1+x[0,:])*(1+x[0,:]))).tolist(),((3+x[0,:]+(2+x[0,:])*(2+x[0,:]))).tolist()])
         # function to regress
         toRegress = np.array([(toReal[0,:] + 4*np.random.normal(0.,1,nbSimul)).tolist(),(toReal[1,:] + 4*np.random.normal(0.,1,nbSimul)).tolist()])
         # mesh
         nbMesh = np.array([4],dtype=np.int32)
         # Regressor
         regressor = StOptReg.LocalLinearRegression(False,x,nbMesh)
         y = regressor.getAllSimulationsMultiple(toRegress)
         # check 
         z1 = regressor.getAllSimulations(toRegress[0,:]).transpose()
         z2 = regressor.getAllSimulations(toRegress[1,:]).transpose()
         # compare to real value
         diff = max(abs(y[0,:]-z1[:] ))+max(abs(y[1,:]-z2[:] ))
         self.assertAlmostEqual(diff,0., 7,"Difference between function and its condition expectation estimated greater than tolerance")
 
    # test  date 0
    def testDateZero(self):
        import StOptReg
        nbSimul = 50000;
        np.random.seed(1000)
        x = np.random.uniform(-1.,1.,size=(1,nbSimul));
        # real function
        toReal = (2+x[0,:]+(1+x[0,:])*(1+x[0,:]))
        # function to regress
        toRegress = toReal + 4*np.random.normal(0.,1,nbSimul)
        # level for sparse grid
        iLevel = 5;
        # weight for anisotropic sparse grids
        weight= np.array([1],dtype=np.int32)
        # Regressor degree 1
        regressor = StOptReg.SparseRegression(True,x,iLevel, weight, 1)
        y = regressor.getAllSimulations(toRegress).transpose()
        self.assertAlmostEqual(y[0],toRegress.mean(),8,"Not equality by average")

if __name__ == '__main__': 
    unittest.main()