| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 
 | #! /usr/bin/env python
import math
from numpy import *
def i4_bit_hi1 ( n ):
#*****************************************************************************80
#
## I4_BIT_HI1 returns the position of the high 1 bit base 2 in an integer.
#
#  Example:
#
#       N    Binary     BIT
#    ----    --------  ----
#       0           0     0
#       1           1     1
#       2          10     2
#       3          11     2 
#       4         100     3
#       5         101     3
#       6         110     3
#       7         111     3
#       8        1000     4
#       9        1001     4
#      10        1010     4
#      11        1011     4
#      12        1100     4
#      13        1101     4
#      14        1110     4
#      15        1111     4
#      16       10000     5
#      17       10001     5
#    1023  1111111111    10
#    1024 10000000000    11
#    1025 10000000001    11
#
#  Licensing:
#
#    This code is distributed under the MIT license.
#
#  Modified:
#
#    22 February 2011
#
#  Author:
#
#    Original MATLAB version by John Burkardt.
#    PYTHON version by Corrado Chisari
#
#  Parameters:
#
#    Input, integer N, the integer to be measured.
#    N should be nonnegative.  If N is nonpositive, the value will always be 0.
#
#    Output, integer BIT, the number of bits base 2.
#
  i = int ( n )
  bit = 0
  while ( True ):
    if ( i <= 0 ):
      break
    bit += 1
    i = ( i // 2 )
  return bit
def i4_bit_lo0 ( n ):
#*****************************************************************************80
#
## I4_BIT_LO0 returns the position of the low 0 bit base 2 in an integer.
#
#  Example:
#
#       N    Binary     BIT
#    ----    --------  ----
#       0           0     1
#       1           1     2
#       2          10     1
#       3          11     3 
#       4         100     1
#       5         101     2
#       6         110     1
#       7         111     4
#       8        1000     1
#       9        1001     2
#      10        1010     1
#      11        1011     3
#      12        1100     1
#      13        1101     2
#      14        1110     1
#      15        1111     5
#      16       10000     1
#      17       10001     2
#    1023  1111111111     1
#    1024 10000000000     1
#    1025 10000000001     1
#
#  Licensing:
#
#    This code is distributed under the MIT license.
#
#  Modified:
#
#    22 February 2011
#
#  Author:
#
#    Original MATLAB version by John Burkardt.
#    Python version by Corrado Chisari
#
#  Parameters:
#
#    Input, integer N, the integer to be measured.
#    N should be nonnegative.
#
#    Output, integer BIT, the position of the low 1 bit.
#
  bit = 0
  i = int ( n )
  while ( 1 ):
    bit = bit + 1
    i2 = ( i // 2 )
    if ( i == 2 * i2 ):
      break
    i = i2
  return bit
	
def i4_sobol_generate ( m, n, skip ):
#*****************************************************************************80
#
## I4_SOBOL_GENERATE generates a Sobol dataset.
#
#  Licensing:
#
#    This code is distributed under the MIT license.
#
#  Modified:
#
#    22 February 2011
#
#  Author:
#
#    Original MATLAB version by John Burkardt.
#    PYTHON version by Corrado Chisari
#
#  Parameters:
#
#    Input, integer M, the spatial dimension.
#
#    Input, integer N, the number of points to generate.
#
#    Input, integer SKIP, the number of initial points to skip.
#
#    Output, real R(M,N), the points.
#
	r=zeros((m,n))
	for j in range (1, n+1):
		seed = skip + j - 2
		[ r[0:m,j-1], seed ] = i4_sobol ( m, seed )
	return r
def i4_sobol ( dim_num, seed ):
#*****************************************************************************80
#
## I4_SOBOL generates a new quasirandom Sobol vector with each call.
#
#  Discussion:
#
#    The routine adapts the ideas of Antonov and Saleev.
#
#  Licensing:
#
#    This code is distributed under the MIT license.
#
#  Modified:
#
#    22 February 2011
#
#  Author:
#
#    Original FORTRAN77 version by Bennett Fox.
#    MATLAB version by John Burkardt.
#    PYTHON version by Corrado Chisari
#
#  Reference:
#
#    Antonov, Saleev,
#    USSR Computational Mathematics and Mathematical Physics,
#    olume 19, 1980, pages 252 - 256.
#
#    Paul Bratley, Bennett Fox,
#    Algorithm 659:
#    Implementing Sobol's Quasirandom Sequence Generator,
#    ACM Transactions on Mathematical Software,
#    Volume 14, Number 1, pages 88-100, 1988.
#
#    Bennett Fox,
#    Algorithm 647:
#    Implementation and Relative Efficiency of Quasirandom 
#    Sequence Generators,
#    ACM Transactions on Mathematical Software,
#    Volume 12, Number 4, pages 362-376, 1986.
#
#    Ilya Sobol,
#    USSR Computational Mathematics and Mathematical Physics,
#    Volume 16, pages 236-242, 1977.
#
#    Ilya Sobol, Levitan, 
#    The Production of Points Uniformly Distributed in a Multidimensional 
#    Cube (in Russian),
#    Preprint IPM Akad. Nauk SSSR, 
#    Number 40, Moscow 1976.
#
#  Parameters:
#
#    Input, integer DIM_NUM, the number of spatial dimensions.
#    DIM_NUM must satisfy 1 <= DIM_NUM <= 40.
#
#    Input/output, integer SEED, the "seed" for the sequence.
#    This is essentially the index in the sequence of the quasirandom
#    value to be generated.	On output, SEED has been set to the
#    appropriate next value, usually simply SEED+1.
#    If SEED is less than 0 on input, it is treated as though it were 0.
#    An input value of 0 requests the first (0-th) element of the sequence.
#
#    Output, real QUASI(DIM_NUM), the next quasirandom vector.
#
	global atmost
	global dim_max
	global dim_num_save
	global initialized
	global lastq
	global log_max
	global maxcol
	global poly
	global recipd
	global seed_save
	global v
	if ( not 'initialized' in globals().keys() ):
		initialized = 0
		dim_num_save = -1
	if ( not initialized or dim_num != dim_num_save ):
		initialized = 1
		dim_max = 40
		dim_num_save = -1
		log_max = 30
		seed_save = -1
#
#	Initialize (part of) V.
#
		v = zeros((dim_max,log_max))
		v[0:40,0] = transpose([ \
			1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
			1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
			1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
			1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ])
		v[2:40,1] = transpose([ \
			1, 3, 1, 3, 1, 3, 3, 1, \
			3, 1, 3, 1, 3, 1, 1, 3, 1, 3, \
			1, 3, 1, 3, 3, 1, 3, 1, 3, 1, \
			3, 1, 1, 3, 1, 3, 1, 3, 1, 3 ])
		v[3:40,2] = transpose([ \
			7, 5, 1, 3, 3, 7, 5, \
			5, 7, 7, 1, 3, 3, 7, 5, 1, 1, \
			5, 3, 3, 1, 7, 5, 1, 3, 3, 7, \
			5, 1, 1, 5, 7, 7, 5, 1, 3, 3 ])
		v[5:40,3] = transpose([ \
			1, 7, 9,13,11, \
			1, 3, 7, 9, 5,13,13,11, 3,15, \
			5, 3,15, 7, 9,13, 9, 1,11, 7, \
			5,15, 1,15,11, 5, 3, 1, 7, 9 ])
	
		v[7:40,4] = transpose([ \
			9, 3,27, \
			15,29,21,23,19,11,25, 7,13,17, \
			1,25,29, 3,31,11, 5,23,27,19, \
			21, 5, 1,17,13, 7,15, 9,31, 9 ])
		v[13:40,5] = transpose([ \
							37,33, 7, 5,11,39,63, \
		 27,17,15,23,29, 3,21,13,31,25, \
			9,49,33,19,29,11,19,27,15,25 ])
		v[19:40,6] = transpose([ \
			13, \
			33,115, 41, 79, 17, 29,119, 75, 73,105, \
			7, 59, 65, 21,	3,113, 61, 89, 45,107 ])
		v[37:40,7] = transpose([ \
			7, 23, 39 ])
#
#	Set POLY.
#
		poly= [ \
			1,	 3,	 7,	11,	13,	19,	25,	37,	59,	47, \
			61,	55,	41,	67,	97,	91, 109, 103, 115, 131, \
			193, 137, 145, 143, 241, 157, 185, 167, 229, 171, \
			213, 191, 253, 203, 211, 239, 247, 285, 369, 299 ]
		atmost = 2**log_max - 1
#
#	Find the number of bits in ATMOST.
#
		maxcol = i4_bit_hi1 ( atmost )
#
#	Initialize row 1 of V.
#
		v[0,0:maxcol] = 1
#
#	Things to do only if the dimension changed.
#
	if ( dim_num != dim_num_save ):
#
#	Check parameters.
#
		if ( dim_num < 1 or dim_max < dim_num ):
			print('I4_SOBOL - Fatal error!') 
			print('	The spatial dimension DIM_NUM should satisfy:') 
			print('		1 <= DIM_NUM <= %d'%dim_max)
			print('	But this input value is DIM_NUM = %d'%dim_num)
			return
		dim_num_save = dim_num
#
#	Initialize the remaining rows of V.
#
		for i in range(2 , dim_num+1):
#
#	The bits of the integer POLY(I) gives the form of polynomial I.
#
#	Find the degree of polynomial I from binary encoding.
#
			j = poly[i-1]
			m = 0
			while ( 1 ):
				j = math.floor ( j / 2. )
				if ( j <= 0 ):
					break
				m = m + 1
#
#	Expand this bit pattern to separate components of the logical array INCLUD.
#
			j = poly[i-1]
			includ=zeros(m)
			for k in range(m, 0, -1):
				j2 = math.floor ( j / 2. )
				includ[k-1] =  (j != 2 * j2 )
				j = j2
#
#	Calculate the remaining elements of row I as explained
#	in Bratley and Fox, section 2.
#
			for j in range( m+1, maxcol+1 ):
				newv = v[i-1,j-m-1]
				l = 1
				for k in range(1, m+1):
					l = 2 * l
					if ( includ[k-1] ):
						newv = bitwise_xor ( int(newv), int(l * v[i-1,j-k-1]) )
				v[i-1,j-1] = newv
#
#	Multiply columns of V by appropriate power of 2.
#
		l = 1
		for j in range( maxcol-1, 0, -1):
			l = 2 * l
			v[0:dim_num,j-1] = v[0:dim_num,j-1] * l
#
#	RECIPD is 1/(common denominator of the elements in V).
#
		recipd = 1.0 / ( 2 * l )
		lastq=zeros(dim_num)
	seed = int(math.floor ( seed ))
	if ( seed < 0 ):
		seed = 0
	if ( seed == 0 ):
		l = 1
		lastq=zeros(dim_num)
	elif ( seed == seed_save + 1 ):
#
#	Find the position of the right-hand zero in SEED.
#
		l = i4_bit_lo0 ( seed )
	elif ( seed <= seed_save ):
		seed_save = 0
		l = 1
		lastq=zeros(dim_num)
		for seed_temp in range( int(seed_save), int(seed)):
			l = i4_bit_lo0 ( seed_temp )
			for i in range(1 , dim_num+1):
				lastq[i-1] = bitwise_xor ( int(lastq[i-1]), int(v[i-1,l-1]) )
		l = i4_bit_lo0 ( seed )
	elif ( seed_save + 1 < seed ):
		for seed_temp in range( int(seed_save + 1), int(seed) ):
			l = i4_bit_lo0 ( seed_temp )
			for i in range(1, dim_num+1):
				lastq[i-1] = bitwise_xor ( int(lastq[i-1]), int(v[i-1,l-1]) )
		l = i4_bit_lo0 ( seed )
#
#	Check that the user is not calling too many times!
#
	if ( maxcol < l ):
		print('I4_SOBOL - Fatal error!')
		print('	Too many calls!')
		print('	MAXCOL = %d\n'%maxcol)
		print('	L =			%d\n'%l)
		return
#
#	Calculate the new components of QUASI.
#
	quasi=zeros(dim_num)
	for i in range( 1, dim_num+1):
		quasi[i-1] = lastq[i-1] * recipd
		lastq[i-1] = bitwise_xor ( int(lastq[i-1]), int(v[i-1,l-1]) )
	seed_save = seed
	seed = seed + 1
	return [ quasi, seed ]
def i4_uniform ( a, b, seed ):
#*****************************************************************************80
#
## I4_UNIFORM returns a scaled pseudorandom I4.
#
#  Discussion:
#
#    The pseudorandom number will be scaled to be uniformly distributed
#    between A and B.
#
#  Licensing:
#
#    This code is distributed under the MIT license.
#
#  Modified:
#
#    22 February 2011
#
#  Author:
#
#    Original MATLAB version by John Burkardt.
#    PYTHON version by Corrado Chisari
#
#  Reference:
#
#    Paul Bratley, Bennett Fox, Linus Schrage,
#    A Guide to Simulation,
#    Springer Verlag, pages 201-202, 1983.
#
#    Pierre L'Ecuyer,
#    Random Number Generation,
#    in Handbook of Simulation,
#    edited by Jerry Banks,
#    Wiley Interscience, page 95, 1998.
#
#    Bennett Fox,
#    Algorithm 647:
#    Implementation and Relative Efficiency of Quasirandom
#    Sequence Generators,
#    ACM Transactions on Mathematical Software,
#    Volume 12, Number 4, pages 362-376, 1986.
#
#    Peter Lewis, Allen Goodman, James Miller
#    A Pseudo-Random Number Generator for the System/360,
#    IBM Systems Journal,
#    Volume 8, pages 136-143, 1969.
#
#  Parameters:
#
#    Input, integer A, B, the minimum and maximum acceptable values.
#
#    Input, integer SEED, a seed for the random number generator.
#
#    Output, integer C, the randomly chosen integer.
#
#    Output, integer SEED, the updated seed.
#
	if ( seed == 0 ):
		print('I4_UNIFORM - Fatal error!')
		print('	Input SEED = 0!')
	seed = math.floor ( seed )
	a = round ( a )
	b = round ( b )
	seed = mod ( seed, 2147483647 )
	if ( seed < 0 ) :
		seed = seed + 2147483647
	k = math.floor ( seed / 127773 )
	seed = 16807 * ( seed - k * 127773 ) - k * 2836
	if ( seed < 0 ):
		seed = seed + 2147483647
	r = seed * 4.656612875E-10
#
#	Scale R to lie between A-0.5 and B+0.5.
#
	r = ( 1.0 - r ) * ( min ( a, b ) - 0.5 ) + r * ( max ( a, b ) + 0.5 )
#
#	Use rounding to convert R to an integer between A and B.
#
	value = round ( r )
	value = max ( value, min ( a, b ) )
	value = min ( value, max ( a, b ) )
	c = value
	return [ int(c), int(seed) ]
def prime_ge ( n ):
#*****************************************************************************80
#
## PRIME_GE returns the smallest prime greater than or equal to N.
#
#  Example:
#
#      N    PRIME_GE
#
#    -10     2
#      1     2
#      2     2
#      3     3
#      4     5
#      5     5
#      6     7
#      7     7
#      8    11
#      9    11
#     10    11
#
#  Licensing:
#
#    This code is distributed under the MIT license.
#
#  Modified:
#
#    22 February 2011
#
#  Author:
#
#    Original MATLAB version by John Burkardt.
#    PYTHON version by Corrado Chisari
#
#  Parameters:
#
#    Input, integer N, the number to be bounded.
#
#    Output, integer P, the smallest prime number that is greater
#    than or equal to N.	
#
	p = max ( math.ceil ( n ), 2 )
	while ( not isprime ( p ) ):
		p = p + 1
	return p
def isprime(n):
#*****************************************************************************80
#
## IS_PRIME returns True if N is a prime number, False otherwise
#
#  Licensing:
#
#    This code is distributed under the MIT license.
#
#  Modified:
#
#    22 February 2011
#
#  Author:
#
#    Corrado Chisari
#
#  Parameters:
#
#    Input, integer N, the number to be checked.
#
#    Output, boolean value, True or False
#
	if n!=int(n) or n<1:
		return False
	p=2
	while p<n:
		if n%p==0:
			return False
		p+=1
	return True
	
 |