File: SparseGridCubicNoBound.h

package info (click to toggle)
stopt 6.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 9,264 kB
  • sloc: cpp: 75,778; python: 6,012; makefile: 72; sh: 57
file content (675 lines) | stat: -rw-r--r-- 37,304 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
// Copyright (C) 2016 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#ifndef SPARSEGRIDCUBICNOBOUND_H
#define SPARSEGRIDCUBICNOBOUND_H
#include <array>
#include <Eigen/Dense>
#include "StOpt/core/sparse/sparseGridTypes.h"
#include "StOpt/core/sparse/SparseGridHierarDehierarNoBound.h"


/** \file SparseGridCubicNoBound.h
 * \brief Regroup hierarchization and dehierarchization for cubic sparse grids eliminating boundary points
 * \author Xavier Warin
 */

namespace StOpt
{
/// \defgroup  cubicSparseNoBound Cubic  Hierarchization and Deheriarchization without  boundary points
/// \brief Regroup function used in hierarchization and dehierarchization for sparse grids without any points on the boundary and a cubic approximation per mesh
///@{

/// \class  Hierar1DCubicNoBound   SparseGridCubicNoBound.h
/// Hierarchization
class Hierar1DCubicNoBound: public HierarDehierarNoBound
{

protected :

    /// \brief Hierarchization in given dimension in 1D : general cubic
    /// \param p_levelCurrent                 Current level of the point
    /// \param p_positionCurrent              Current position of the point
    /// \param p_iterLevel                    Iteration on level
    /// \param p_idim                         Current dimension
    /// \param p_leftParentNodalValue         Left parent nodal value
    /// \param p_rightParentNodalValue        Right parent nodal value
    /// \param p_parentLinearHierarValue      Linear Hierarchical value of parent
    /// \param p_grandParentLinearHierarValue Linear Hierarchical value of grandparent
    /// \param p_dataSet                      Data structure with all the points
    /// \param p_nodalValues                  Nodal values
    /// \param p_hierarValues                 Hierarchical values
    template< class T, class TT>
    void recursive1DHierarchization(Eigen::ArrayXc &p_levelCurrent,
                                    Eigen::ArrayXui &p_positionCurrent,
                                    const  SparseSet::const_iterator &p_iterLevel,
                                    const unsigned int &p_idim,
                                    const T &p_leftParentNodalValue,
                                    const T &p_rightParentNodalValue,
                                    const T &p_parentLinearHierarValue,
                                    const T &p_grandParentLinearHierarValue,
                                    const SparseSet &p_dataSet,
                                    const TT &p_nodalValues,
                                    TT &p_hierarValues)
    {
        if (p_iterLevel == p_dataSet.end())
            return ;
        SparseLevel::const_iterator iterPosition = p_iterLevel->second.find(p_positionCurrent);
        if (iterPosition == p_iterLevel->second.end())
            return ;
        // position
        int iposPoint = iterPosition->second;
        T valueMidle = DoubleOrArray()(p_nodalValues, iposPoint);
        // hierarchization
        T LinearHierar = valueMidle  - 0.5 * (p_leftParentNodalValue + p_rightParentNodalValue);
        int iBaseType = iNodeToFunc[p_positionCurrent(p_idim) % 4];
        // begin by linear
        DoubleOrArray().affect(p_hierarValues, iposPoint, LinearHierar + weightParent[iBaseType]*p_parentLinearHierarValue + weightGrandParent[iBaseType]*p_grandParentLinearHierarValue);

        char oldLevel = p_levelCurrent(p_idim);
        unsigned int oldPosition = p_positionCurrent(p_idim);
        // child level
        p_levelCurrent(p_idim) += 1;
        SparseSet::const_iterator  iterLevelChild = p_dataSet.find(p_levelCurrent);

        // left
        p_positionCurrent(p_idim) = 2 * oldPosition;
        recursive1DHierarchization<T, TT>(p_levelCurrent, p_positionCurrent,  iterLevelChild, p_idim, p_leftParentNodalValue, valueMidle, LinearHierar, p_parentLinearHierarValue, p_dataSet, p_nodalValues,
                                          p_hierarValues);
        // right
        p_positionCurrent(p_idim) += 1;
        recursive1DHierarchization<T, TT>(p_levelCurrent, p_positionCurrent,  iterLevelChild, p_idim,  valueMidle, p_rightParentNodalValue, LinearHierar, p_parentLinearHierarValue, p_dataSet, p_nodalValues,
                                          p_hierarValues);

        p_positionCurrent(p_idim) = oldPosition;
        p_levelCurrent(p_idim) = oldLevel;
    }

    /// \brief Hierarchization in given dimension in 1D quadratic
    /// \param p_levelCurrent                  Current level of the point
    /// \param p_positionCurrent               Current position of the point
    /// \param p_iterLevel                     Iteration on level
    /// \param p_idim                          Current dimension
    /// \param p_leftParentNodalValue          Left parent nodal value
    /// \param p_rightParentNodalValue         Right parent nodal value
    /// \param p_parentLinearHierarValue       Linear Hierarchical value of parent
    /// \param p_dataSet                       Data structure with all the points
    /// \param p_nodalValues                   Nodal values
    /// \param p_iNodeNum                      Node number
    /// \param p_hierarValues                  Hierarchical values
    template< class T, class TT>
    void HierarchizationStep3(Eigen::ArrayXc &p_levelCurrent,
                              Eigen::ArrayXui &p_positionCurrent,
                              const  SparseSet::const_iterator &p_iterLevel,
                              const unsigned int &p_idim,
                              const T &p_leftParentNodalValue,
                              const T &p_rightParentNodalValue,
                              const T &p_parentLinearHierarValue,
                              const SparseSet &p_dataSet,
                              const TT &p_nodalValues,
                              const int &p_iNodeNum,
                              TT &p_hierarValues)
    {
        if (p_iterLevel == p_dataSet.end())
            return ;
        // position
        SparseLevel::const_iterator iterPosition = p_iterLevel->second.find(p_positionCurrent);
        if (iterPosition == p_iterLevel->second.end())
            return ;
        int iposPoint = iterPosition->second;
        T valueMidle = DoubleOrArray()(p_nodalValues, iposPoint);
        // hierarchization
        T LinearHierar = valueMidle  - 0.5 * (p_leftParentNodalValue + p_rightParentNodalValue);
        // quadratic
        DoubleOrArray().affect(p_hierarValues, iposPoint, LinearHierar - 0.25 * p_parentLinearHierarValue) ;

        char oldLevel = p_levelCurrent(p_idim);
        unsigned int oldPosition = p_positionCurrent(p_idim);
        // child level
        p_levelCurrent(p_idim) += 1;
        SparseSet::const_iterator  iterLevelChild = p_dataSet.find(p_levelCurrent);

        // modified left and right values
        T leftParentNodalValueLoc = p_leftParentNodalValue;
        T rightParentNodalValueLoc = p_rightParentNodalValue;
        T parentLinearHierarValueLoc = LinearHierar;

        if (oldPosition == 0)
        {
            // First point for the level
            // Only linear estimation of error in hierarchization
            leftParentNodalValueLoc = 2 * valueMidle - p_rightParentNodalValue;
            // LINEAR
            DoubleOrArray().zero(parentLinearHierarValueLoc, p_nodalValues);
            // son is linear quadratic for Left node
            p_positionCurrent(p_idim) = 2 * oldPosition;
            HierarchizationStep3<T, TT>(p_levelCurrent, p_positionCurrent,  iterLevelChild, p_idim, leftParentNodalValueLoc, valueMidle, parentLinearHierarValueLoc,
                                        p_dataSet, p_nodalValues,  2 * p_iNodeNum, p_hierarValues);
            p_positionCurrent(p_idim) += 1;
            HierarchizationStep3<T, TT>(p_levelCurrent, p_positionCurrent,  iterLevelChild,  p_idim, valueMidle, rightParentNodalValueLoc, parentLinearHierarValueLoc,
                                        p_dataSet, p_nodalValues,  2 * p_iNodeNum + 1, p_hierarValues);
        }
        else if (oldPosition == lastNode[oldLevel - 1])
        {
            // Last point for the level
            // Only linear estimation of error in hierarchization
            rightParentNodalValueLoc = 2 * valueMidle - p_leftParentNodalValue;
            // LINEAR
            DoubleOrArray().zero(parentLinearHierarValueLoc, p_nodalValues);
            // son is linear quadratic for Left node
            p_positionCurrent(p_idim) = 2 * oldPosition;
            HierarchizationStep3<T, TT>(p_levelCurrent, p_positionCurrent,   iterLevelChild, p_idim, leftParentNodalValueLoc, valueMidle, parentLinearHierarValueLoc,
                                        p_dataSet, p_nodalValues,  2 * p_iNodeNum, p_hierarValues);
            p_positionCurrent(p_idim) += 1;
            HierarchizationStep3<T, TT>(p_levelCurrent, p_positionCurrent,    iterLevelChild, p_idim, valueMidle, rightParentNodalValueLoc, parentLinearHierarValueLoc,
                                        p_dataSet, p_nodalValues,  2 * p_iNodeNum + 1, p_hierarValues);
        }
        else if ((oldPosition == 1) || (oldPosition == lastNode[oldLevel - 1] - 1))
        {
            // USE QUADRATIC
            p_positionCurrent(p_idim) = 2 * oldPosition;
            HierarchizationStep3<T, TT>(p_levelCurrent, p_positionCurrent,   iterLevelChild, p_idim, leftParentNodalValueLoc, valueMidle, parentLinearHierarValueLoc,
                                        p_dataSet, p_nodalValues,  2 * p_iNodeNum, p_hierarValues);
            p_positionCurrent(p_idim) += 1;
            HierarchizationStep3<T, TT>(p_levelCurrent, p_positionCurrent,    iterLevelChild, p_idim, valueMidle, rightParentNodalValueLoc, parentLinearHierarValueLoc,
                                        p_dataSet, p_nodalValues,  2 * p_iNodeNum + 1, p_hierarValues);
        }
        else
        {
            T grandParentLinearHierarValueLoc = p_parentLinearHierarValue;
            p_positionCurrent(p_idim) = 2 * oldPosition;
            recursive1DHierarchization<T, TT>(p_levelCurrent, p_positionCurrent,  iterLevelChild, p_idim, leftParentNodalValueLoc, valueMidle, parentLinearHierarValueLoc,
                                              grandParentLinearHierarValueLoc, p_dataSet, p_nodalValues,  p_hierarValues);
            p_positionCurrent(p_idim) += 1;
            recursive1DHierarchization<T, TT>(p_levelCurrent, p_positionCurrent,   iterLevelChild, p_idim, valueMidle, rightParentNodalValueLoc, parentLinearHierarValueLoc,
                                              grandParentLinearHierarValueLoc, p_dataSet, p_nodalValues,  p_hierarValues);
        }
        p_positionCurrent(p_idim) = oldPosition;
        p_levelCurrent(p_idim) = oldLevel;
    }

    /// \brief Hierarchization in given dimension in 1D  linear
    /// \param p_levelCurrent                 Current level of the point
    /// \param p_positionCurrent              Current position of the point
    /// \param p_iterLevel                    Iteration on level
    /// \param p_idim                         Current dimension
    /// \param p_leftParentNodalValue         Left parent nodal value
    /// \param p_rightParentNodalValue        Right parent nodal value
    /// \param p_dataSet                      Data structure with all the points
    /// \param p_nodalValues                  Nodal values
    /// \param p_iNodeNum                     Node number
    /// \param p_hierarValues                 Hierarchical values
    template< class T, class TT>
    void HierarchizationStep2(Eigen::ArrayXc &p_levelCurrent,
                              Eigen::ArrayXui &p_positionCurrent,
                              const  SparseSet::const_iterator &p_iterLevel,
                              const unsigned int &p_idim,
                              const T &p_leftParentNodalValue,
                              const T &p_rightParentNodalValue,
                              const SparseSet &p_dataSet,
                              const TT &p_nodalValues,
                              const int &p_iNodeNum,
                              TT &p_hierarValues)
    {
        if (p_iterLevel == p_dataSet.end())
            return ;
        // position
        SparseLevel::const_iterator iterPosition = p_iterLevel->second.find(p_positionCurrent);
        if (iterPosition == p_iterLevel->second.end())
            return ;
        int iposPoint = iterPosition->second;
        T valueMidle = DoubleOrArray()(p_nodalValues, iposPoint);
        // hierarchization
        T LinearHierar = valueMidle  - 0.5 * (p_leftParentNodalValue + p_rightParentNodalValue);
        // cubic
        DoubleOrArray().affect(p_hierarValues, iposPoint, LinearHierar);

        char oldLevel = p_levelCurrent(p_idim);
        unsigned int oldPosition = p_positionCurrent(p_idim);
        // child level
        p_levelCurrent(p_idim) += 1;
        SparseSet::const_iterator  iterLevelChild = p_dataSet.find(p_levelCurrent);

        // modified left and right values
        T leftParentNodalValueLoc = p_leftParentNodalValue;
        T rightParentNodalValueLoc = p_rightParentNodalValue;
        T parentLinearHierarValueLoc = LinearHierar;
        if (oldPosition == 0)
        {
            // LINEAR
            DoubleOrArray().zero(parentLinearHierarValueLoc, p_nodalValues);
            // cubic  on the boundary not used. Use linear
            leftParentNodalValueLoc = 2 * valueMidle - p_rightParentNodalValue;
            // still linear on left for son
            p_positionCurrent(p_idim) = 2 * oldPosition;
            HierarchizationStep3<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild,  p_idim, leftParentNodalValueLoc, valueMidle, parentLinearHierarValueLoc,
                                        p_dataSet, p_nodalValues,  2 * p_iNodeNum, p_hierarValues);
            // quadratic on right for son
            p_positionCurrent(p_idim) += 1;
            HierarchizationStep3<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, valueMidle, rightParentNodalValueLoc, parentLinearHierarValueLoc,
                                        p_dataSet, p_nodalValues,  2 * p_iNodeNum + 1, p_hierarValues);

        }
        else if (oldPosition == lastNode[oldLevel - 1])
        {
            // LINEAR
            DoubleOrArray().zero(parentLinearHierarValueLoc, p_nodalValues);
            // quadratic left
            p_positionCurrent(p_idim) = 2 * oldPosition;
            HierarchizationStep3<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, leftParentNodalValueLoc, valueMidle, parentLinearHierarValueLoc,
                                        p_dataSet, p_nodalValues,  2 * p_iNodeNum, p_hierarValues);
            // cubic  on the boundary not used. Use linear
            rightParentNodalValueLoc = 2 * valueMidle - p_leftParentNodalValue;
            // linear for right
            p_positionCurrent(p_idim) += 1;
            HierarchizationStep3<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, valueMidle, rightParentNodalValueLoc, parentLinearHierarValueLoc,
                                        p_dataSet, p_nodalValues,  2 * p_iNodeNum + 1, p_hierarValues);
        }
        else
        {
            abort();
        }
        p_positionCurrent(p_idim) = oldPosition;
        p_levelCurrent(p_idim) = oldLevel;
    }

    /// \brief Hierarchization in given dimension in 1D (first step  : subtract constant value)
    /// \param p_levelCurrent                 Current level of the point
    /// \param p_positionCurrent              Current position of the point
    /// \param p_iterLevel                    Iteration on level
    /// \param p_idim                         Current dimension
    /// \param p_dataSet                      Data structure with all the points
    /// \param p_nodalValues                  Nodal values
    /// \param p_hierarValues                 Hierarchical values
    template< class T, class TT>
    void HierarchizationStep1(Eigen::ArrayXc &p_levelCurrent,
                              Eigen::ArrayXui &p_positionCurrent,
                              const  SparseSet::const_iterator &p_iterLevel,
                              const unsigned int &p_idim,
                              const SparseSet &p_dataSet,
                              const TT &p_nodalValues,
                              TT &p_hierarValues)
    {
        if (p_iterLevel == p_dataSet.end())
            return ;
        // position
        SparseLevel::const_iterator iterPosition = p_iterLevel->second.find(p_positionCurrent);
        if (iterPosition == p_iterLevel->second.end())
            return ;
        int iposPoint = iterPosition->second;
        T valueMidle = DoubleOrArray()(p_nodalValues, iposPoint);
        // hierarchization
        DoubleOrArray().affect(p_hierarValues, iposPoint, valueMidle) ;

        char oldLevel = p_levelCurrent(p_idim);
        unsigned int oldPosition = p_positionCurrent(p_idim);
        // child level
        p_levelCurrent(p_idim) += 1;
        SparseSet::const_iterator  iterLevelChild = p_dataSet.find(p_levelCurrent);

        // modified left and right values
        T leftParentNodalValueLoc = valueMidle;
        T rightParentNodalValueLoc = valueMidle;
        // left
        p_positionCurrent(p_idim) = 2 * oldPosition;
        HierarchizationStep2<T, TT>(p_levelCurrent, p_positionCurrent,  iterLevelChild,  p_idim, leftParentNodalValueLoc, valueMidle,
                                    p_dataSet, p_nodalValues, 0, p_hierarValues);
        // right
        p_positionCurrent(p_idim) += 1;
        HierarchizationStep2<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild,  p_idim, valueMidle, rightParentNodalValueLoc,
                                    p_dataSet, p_nodalValues, 1, p_hierarValues);

        p_positionCurrent(p_idim) = oldPosition;
        p_levelCurrent(p_idim) = oldLevel;
    }

public :

    // default
    Hierar1DCubicNoBound() {}

    // operator for 1D Hierarchization
    /// \brief Hierarchization in given dimension in 1D
    /// \param p_levelCurrent                Current index of the point
    /// \param p_positionCurrent             Current level of the point
    /// \param p_iterLevel                     Iterator on current level
    /// \param p_idim                             Current dimension
    /// \param p_dataSet                   Data structure with all the points
    /// \param p_nodalValues      Nodal values
    /// \param p_hierarValues     Hierarchical values
    template< class T, class TT>
    void operator()(Eigen::ArrayXc &p_levelCurrent,
                    Eigen::ArrayXui &p_positionCurrent,
                    const  SparseSet::const_iterator &p_iterLevel,
                    const unsigned int &p_idim,
                    const SparseSet &p_dataSet,
                    const TT &p_nodalValues,
                    TT &p_hierarValues)
    {
        // left and right value
        HierarchizationStep1<T, TT>(p_levelCurrent, p_positionCurrent, p_iterLevel, p_idim, p_dataSet, p_nodalValues, p_hierarValues);

    }
};

/// \class Dehierar1DCubicNoBound SparseGridCubicNoBound.h
///  Dehierarchization for cubic without bound
class Dehierar1DCubicNoBound: public HierarDehierarNoBound
{
protected :

    /// \brief Dehierarchization 1D in given dimension (modified bound) (cubic so available after two level)
    /// \param p_levelCurrent                Current index of the point
    /// \param p_positionCurrent             Current level of the point
    /// \param p_iterLevel                     Iterator on current level
    /// \param p_idim                             Current dimension
    /// \param p_leftParentHierarValue          Left parent nodal value
    /// \param p_rightParentHierarValue         Right parent nodal value
    /// \param p_linearHierarParent             Linear hierarchical value of parent
    /// \param p_linearHierarGrandParent        Linear Hierarchical value of parent
    /// \param p_dataSet                    Data structure with all the points
    /// \param p_hierarValues                    Hierarchical values
    /// \param p_nodalValues                     Nodal values
    template< class T, class TT>
    void recursive1DDehierarchization(Eigen::ArrayXc &p_levelCurrent,
                                      Eigen::ArrayXui &p_positionCurrent,
                                      const  SparseSet::const_iterator &p_iterLevel,
                                      const unsigned int &p_idim,
                                      const T &p_leftParentHierarValue,
                                      const T &p_rightParentHierarValue,
                                      const T &p_linearHierarParent,
                                      const T &p_linearHierarGrandParent,
                                      const SparseSet &p_dataSet,
                                      const TT &p_hierarValues,
                                      TT &p_nodalValues)
    {
        if (p_iterLevel == p_dataSet.end())
            return ;
        // position
        SparseLevel::const_iterator iterPosition = p_iterLevel->second.find(p_positionCurrent);
        if (iterPosition == p_iterLevel->second.end())
            return ;
        // position
        int iposPoint = iterPosition->second;
        T valueMidle = DoubleOrArray()(p_hierarValues, iposPoint);

        // do dehierarchization
        // calculation linear hierarchical coefficient
        int iBaseType = iNodeToFunc[p_positionCurrent(p_idim) % 4];
        T LinearHierarchical = valueMidle - (weightParent[iBaseType] * p_linearHierarParent + weightGrandParent[iBaseType] * p_linearHierarGrandParent);
        valueMidle = LinearHierarchical + 0.5 * (p_leftParentHierarValue + p_rightParentHierarValue);
        DoubleOrArray().affect(p_nodalValues, iposPoint, valueMidle);

        char oldLevel = p_levelCurrent(p_idim);
        unsigned int oldPosition = p_positionCurrent(p_idim);
        // child level
        p_levelCurrent(p_idim) += 1;
        SparseSet::const_iterator  iterLevelChild = p_dataSet.find(p_levelCurrent);

        // left
        p_positionCurrent(p_idim) = 2 * oldPosition;
        recursive1DDehierarchization<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, p_leftParentHierarValue, valueMidle, LinearHierarchical, p_linearHierarParent,
                                            p_dataSet, p_hierarValues, p_nodalValues);
        // right
        p_positionCurrent(p_idim) += 1;
        recursive1DDehierarchization<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild,  p_idim, valueMidle, p_rightParentHierarValue, LinearHierarchical, p_linearHierarParent,
                                            p_dataSet, p_hierarValues, p_nodalValues);

        p_positionCurrent(p_idim) = oldPosition;
        p_levelCurrent(p_idim) = oldLevel;
    }

    /// \brief Dehierarchization 1D in given dimension (modified bound, step 2 quadratic)
    /// \param p_levelCurrent                Current index of the point
    /// \param p_positionCurrent             Current level of the point
    /// \param p_iterLevel                   Iterator on current level
    /// \param p_idim                        Current dimension
    /// \param p_leftParentHierarValue         Left parent nodal value
    /// \param p_rightParentHierarValue        Right parent nodal value
    /// \param p_linearHierarParent            Linear hierarchical value of parent
    /// \param p_dataSet                     Data structure with all the points
    /// \param p_hierarValues                Hierarchical values
    /// \param p_iNodeNum                    Node number
    /// \param p_nodalValues                Nodal values
    template< class T, class TT>
    void dehierarchizationStep3(Eigen::ArrayXc &p_levelCurrent,
                                Eigen::ArrayXui &p_positionCurrent,
                                const  SparseSet::const_iterator &p_iterLevel,
                                const unsigned int &p_idim,
                                const T &p_leftParentHierarValue,
                                const T &p_rightParentHierarValue,
                                const T &p_linearHierarParent,
                                const SparseSet &p_dataSet,
                                const TT &p_hierarValues,
                                const int &p_iNodeNum,
                                TT &p_nodalValues)
    {
        if (p_iterLevel == p_dataSet.end())
            return ;
        // position
        SparseLevel::const_iterator iterPosition = p_iterLevel->second.find(p_positionCurrent);
        if (iterPosition == p_iterLevel->second.end())
            return ;
        int iposPoint = iterPosition->second;
        T valueMidle = DoubleOrArray()(p_hierarValues, iposPoint);

        // do dehierarchization
        // calculation linear hierarchical coefficient
        T LinearHierarchical = valueMidle + 0.25 * p_linearHierarParent;
        valueMidle = LinearHierarchical + 0.5 * (p_leftParentHierarValue + p_rightParentHierarValue);
        DoubleOrArray().affect(p_nodalValues, iposPoint, valueMidle);

        char oldLevel = p_levelCurrent(p_idim);
        unsigned int oldPosition = p_positionCurrent(p_idim);
        // child level
        p_levelCurrent(p_idim) += 1;
        SparseSet::const_iterator  iterLevelChild = p_dataSet.find(p_levelCurrent);

        // modified left and right values
        T leftParentHierarValueLoc = p_leftParentHierarValue;
        T rightParentHierarValueLoc = p_rightParentHierarValue;
        T LinearHierarchicalLoc = LinearHierarchical;
        if (oldPosition == 0)
        {
            // extrapolation use linear
            leftParentHierarValueLoc = 2 * valueMidle - p_rightParentHierarValue;
            DoubleOrArray().zero(LinearHierarchicalLoc, p_nodalValues);
            p_positionCurrent(p_idim) = 2 * oldPosition;
            dehierarchizationStep3<T, TT>(p_levelCurrent, p_positionCurrent,  iterLevelChild, p_idim, leftParentHierarValueLoc, valueMidle, LinearHierarchicalLoc,
                                          p_dataSet, p_hierarValues, 2 * p_iNodeNum, p_nodalValues);
            p_positionCurrent(p_idim) += 1;
            dehierarchizationStep3<T, TT>(p_levelCurrent, p_positionCurrent,  iterLevelChild, p_idim, valueMidle, rightParentHierarValueLoc, LinearHierarchicalLoc,
                                          p_dataSet, p_hierarValues, 2 * p_iNodeNum + 1, p_nodalValues);
        }
        else if (oldPosition == lastNode[oldLevel - 1])
        {
            // linear extrapolation and not cubic
            rightParentHierarValueLoc = 2 * valueMidle - p_leftParentHierarValue;
            DoubleOrArray().zero(LinearHierarchicalLoc, p_nodalValues);
            p_positionCurrent(p_idim) = 2 * oldPosition;
            dehierarchizationStep3<T, TT>(p_levelCurrent, p_positionCurrent,  iterLevelChild, p_idim, leftParentHierarValueLoc, valueMidle, LinearHierarchicalLoc,
                                          p_dataSet, p_hierarValues, 2 * p_iNodeNum, p_nodalValues);
            p_positionCurrent(p_idim) += 1;
            dehierarchizationStep3<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, valueMidle, rightParentHierarValueLoc, LinearHierarchicalLoc,
                                          p_dataSet, p_hierarValues, 2 * p_iNodeNum + 1, p_nodalValues);
        }
        else if ((oldPosition == 1) || (oldPosition == lastNode[oldLevel - 1] - 1))
        {
            p_positionCurrent(p_idim) = 2 * oldPosition;
            dehierarchizationStep3<T, TT>(p_levelCurrent, p_positionCurrent,  iterLevelChild, p_idim, leftParentHierarValueLoc, valueMidle, LinearHierarchicalLoc, p_dataSet, p_hierarValues, 2 * p_iNodeNum, p_nodalValues);
            p_positionCurrent(p_idim) += 1;
            dehierarchizationStep3<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, valueMidle, rightParentHierarValueLoc, LinearHierarchicalLoc, p_dataSet, p_hierarValues, 2 * p_iNodeNum + 1, p_nodalValues);
        }
        else
        {
            T GrandLinearHierarchicalLoc = p_linearHierarParent;
            p_positionCurrent(p_idim) = 2 * oldPosition;
            recursive1DDehierarchization<T, TT>(p_levelCurrent, p_positionCurrent,  iterLevelChild, p_idim, leftParentHierarValueLoc, valueMidle, LinearHierarchicalLoc,
                                                GrandLinearHierarchicalLoc, p_dataSet, p_hierarValues, p_nodalValues);
            p_positionCurrent(p_idim) += 1;
            recursive1DDehierarchization<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, valueMidle, rightParentHierarValueLoc, LinearHierarchicalLoc,
                                                GrandLinearHierarchicalLoc, p_dataSet, p_hierarValues, p_nodalValues);
        }
        p_positionCurrent(p_idim) = oldPosition;
        p_levelCurrent(p_idim) = oldLevel;
    }

    /// \brief Dehierarchization 1D in given dimension (modified bound, step 2 quadratic)
    /// \param p_levelCurrent                 Current level of the point
    /// \param p_positionCurrent              Current position of the point
    /// \param p_iterLevel                          Iteration on level
    /// \param p_idim                             Current dimension
    /// \param p_leftParentHierarValue          Left parent nodal value
    /// \param p_rightParentHierarValue         Right parent nodal value
    /// \param p_dataSet                   Data structure with all the points
    /// \param p_hierarValues     Hierarchical values
    /// \param p_iNodeNum           Node number
    /// \param p_nodalValues      Nodal values
    template< class T, class TT>
    void dehierarchizationStep2(Eigen::ArrayXc &p_levelCurrent,
                                Eigen::ArrayXui &p_positionCurrent,
                                const  SparseSet::const_iterator &p_iterLevel,
                                const unsigned int &p_idim,
                                const T &p_leftParentHierarValue,
                                const T &p_rightParentHierarValue,
                                const SparseSet   &p_dataSet,
                                const TT &p_hierarValues,
                                const int &p_iNodeNum,
                                TT &p_nodalValues)
    {
        if (p_iterLevel == p_dataSet.end())
            return ;
        // position
        SparseLevel::const_iterator iterPosition = p_iterLevel->second.find(p_positionCurrent);
        if (iterPosition == p_iterLevel->second.end())
            return ;
        int iposPoint = iterPosition->second;
        T valueMidle = DoubleOrArray()(p_hierarValues, iposPoint);
        // do dehierarchization
        // calculation linear hierarchical coefficient
        T LinearHierarchical = valueMidle ;
        valueMidle = LinearHierarchical + 0.5 * (p_leftParentHierarValue + p_rightParentHierarValue);
        DoubleOrArray().affect(p_nodalValues, iposPoint, valueMidle);


        char oldLevel = p_levelCurrent(p_idim);
        unsigned int oldPosition = p_positionCurrent(p_idim);
        // child level
        p_levelCurrent(p_idim) += 1;
        SparseSet::const_iterator  iterLevelChild = p_dataSet.find(p_levelCurrent);

        // modified left and right values
        T leftParentHierarValueLoc = p_leftParentHierarValue;
        T rightParentHierarValueLoc = p_rightParentHierarValue;
        T LinearHierarchicalLoc = LinearHierarchical;
        if (oldPosition == 0)
        {
            // extrapolation use linear
            leftParentHierarValueLoc = 2 * valueMidle - p_rightParentHierarValue;
            DoubleOrArray().zero(LinearHierarchicalLoc, p_nodalValues);
            p_positionCurrent(p_idim) = 2 * oldPosition;
            dehierarchizationStep3<T, TT>(p_levelCurrent, p_positionCurrent,  iterLevelChild, p_idim, leftParentHierarValueLoc, valueMidle, LinearHierarchicalLoc,
                                          p_dataSet, p_hierarValues, 2 * p_iNodeNum, p_nodalValues);
            p_positionCurrent(p_idim) += 1;
            dehierarchizationStep3<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild,  p_idim, valueMidle, rightParentHierarValueLoc, LinearHierarchicalLoc,
                                          p_dataSet, p_hierarValues, 2 * p_iNodeNum + 1, p_nodalValues);
        }
        else if (oldPosition == lastNode[oldLevel - 1])
        {
            // linear extrapolation and not cubic
            rightParentHierarValueLoc = 2 * valueMidle - p_leftParentHierarValue;
            DoubleOrArray().zero(LinearHierarchicalLoc, p_nodalValues);
            p_positionCurrent(p_idim) = 2 * oldPosition;
            dehierarchizationStep3<T, TT>(p_levelCurrent, p_positionCurrent,  iterLevelChild,  p_idim, leftParentHierarValueLoc, valueMidle, LinearHierarchicalLoc,
                                          p_dataSet, p_hierarValues, 2 * p_iNodeNum, p_nodalValues);
            p_positionCurrent(p_idim) += 1;
            dehierarchizationStep3<T, TT>(p_levelCurrent, p_positionCurrent,  iterLevelChild, p_idim, valueMidle, rightParentHierarValueLoc, LinearHierarchicalLoc,
                                          p_dataSet, p_hierarValues, 2 * p_iNodeNum + 1, p_nodalValues);
        }
        else
        {
            abort();
        }
        p_positionCurrent(p_idim) = oldPosition;
        p_levelCurrent(p_idim) = oldLevel;
    }

    /// \brief Dehierarchization 1D in given dimension (modified bound, step 1 linear)
    /// \param p_levelCurrent                 Current level of the point
    /// \param p_positionCurrent              Current position of the point
    /// \param p_iterLevel                    iterator to locate the current level
    /// \param p_idim                         Current dimension
    /// \param p_dataSet                      Data structure with all the points
    /// \param p_hierarValues                 Hierarchical values
    /// \param p_nodalValues                  Nodal values
    template< class T, class TT>
    void dehierarchizationStep1(Eigen::ArrayXc &p_levelCurrent,
                                Eigen::ArrayXui &p_positionCurrent,
                                const  SparseSet::const_iterator &p_iterLevel,
                                const unsigned int &p_idim,
                                const SparseSet &p_dataSet,
                                const TT &p_hierarValues,
                                TT &p_nodalValues)
    {
        if (p_iterLevel == p_dataSet.end())
            return ;
        // position
        SparseLevel::const_iterator iterPosition = p_iterLevel->second.find(p_positionCurrent);
        if (iterPosition == p_iterLevel->second.end())
            return ;
        int iposPoint = iterPosition->second;
        T valueMidle =  DoubleOrArray()(p_hierarValues, iposPoint);
        // do dehierarchization
        DoubleOrArray().affect(p_nodalValues, iposPoint, valueMidle);
        // modified left and right values
        T leftParentHierarValueLoc = valueMidle;
        T rightParentHierarValueLoc = valueMidle;

        char oldLevel = p_levelCurrent(p_idim);
        unsigned int oldPosition = p_positionCurrent(p_idim);
        // child level
        p_levelCurrent(p_idim) += 1;
        SparseSet::const_iterator  iterLevelChild = p_dataSet.find(p_levelCurrent);

        // left
        p_positionCurrent(p_idim) = 2 * oldPosition;
        dehierarchizationStep2<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild,  p_idim, leftParentHierarValueLoc, valueMidle, p_dataSet, p_hierarValues, 0, p_nodalValues);
        // right
        p_positionCurrent(p_idim) += 1;
        dehierarchizationStep2<T, TT>(p_levelCurrent, p_positionCurrent,  iterLevelChild, p_idim, valueMidle, rightParentHierarValueLoc,
                                      p_dataSet, p_hierarValues, 1, p_nodalValues);

        p_positionCurrent(p_idim) = oldPosition;
        p_levelCurrent(p_idim) = oldLevel;
    }

public :

    Dehierar1DCubicNoBound() {}

    /// \brief Dehierarchization 1D in given dimension
    /// \param p_levelCurrent                 Current level of the point
    /// \param p_positionCurrent              Current position of the point
    /// \param p_iterLevel                          Iteration on level
    /// \param p_idim                             Current dimension
    /// \param p_dataSet                   Data structure with all the points
    /// \param p_hierarValues     Hierarchical values
    /// \param p_nodalValues      Nodal values
    template< class T, class TT>
    void operator()(Eigen::ArrayXc &p_levelCurrent,
                    Eigen::ArrayXui &p_positionCurrent,
                    const SparseSet::const_iterator &p_iterLevel,
                    const unsigned int &p_idim,
                    const SparseSet &p_dataSet,
                    const TT &p_hierarValues,
                    TT &p_nodalValues)
    {
        dehierarchizationStep1<T, TT>(p_levelCurrent, p_positionCurrent, p_iterLevel, p_idim,  p_dataSet, p_hierarValues, p_nodalValues);
    }
};
///@}


}
#endif /* SPARSEGRIDCUBICNONOUND_H */