File: SparseGridQuadBound.h

package info (click to toggle)
stopt 6.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 9,264 kB
  • sloc: cpp: 75,778; python: 6,012; makefile: 72; sh: 57
file content (330 lines) | stat: -rw-r--r-- 16,565 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
// Copyright (C) 2016 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#ifndef SPARSEGRIDQUADBOUND_H
#define SPARSEGRIDQUADBOUND_H
#include <Eigen/Dense>
#include "StOpt/core/sparse/sparseGridTypes.h"
#include "StOpt/core/sparse/SparseGridHierarDehierarBound.h"


/** \file SparseGridQuadBound.h
 * \brief Regroup hierarchization and dehierarchization for quadratic sparse grids
 * \author Xavier Warin
 */
namespace StOpt
{
/// \defgroup quadSparseBound Quadratic Hierarchization and Deheriarchization with boundary points
/// \brief Regroup function used in hierarchization and dehierarchization for sparse grids with  points on the boundary and a quadratic approximation per mesh
///@{

/// \class  Hierar1DQuadBound   SparseGridQuadBound.h
/// Hierarchization
class Hierar1DQuadBound : public HierarDehierarBound
{

protected :

    /// \brief Hierarchization in given dimension in 1D
    /// \param p_levelCurrent                 Current level of the point
    /// \param p_positionCurrent              Current position of the point
    /// \param p_iterLevel                    Iteration on level
    /// \param p_idim                         Current dimension
    /// \param p_leftParentNodalValue         Left parent nodal value
    /// \param p_rightParentNodalValue        Left parent nodal value
    /// \param p_parentLinearHierarValue      Linear hierarchical value of parent
    /// \param p_dataSet                      Data structure with all the points
    /// \param p_nodalValues                  Nodal values
    /// \param p_hierarValues                 Hierarchized values
    template< class T, class TT>
    void recursive1DHierarchization(Eigen::ArrayXc   &p_levelCurrent,
                                    Eigen::ArrayXui &p_positionCurrent,
                                    const  SparseSet::const_iterator &p_iterLevel,
                                    const unsigned int &p_idim,
                                    const T &p_leftParentNodalValue,
                                    const T &p_rightParentNodalValue,
                                    const T &p_parentLinearHierarValue,
                                    const SparseSet &p_dataSet,
                                    const TT &p_nodalValues,
                                    TT &p_hierarValues)
    {
        if (p_iterLevel == p_dataSet.end())
            return ;
        SparseLevel::const_iterator iterPosition = p_iterLevel->second.find(p_positionCurrent);
        if (iterPosition == p_iterLevel->second.end())
            return ;
        // position
        int iposPoint = iterPosition->second;
        T valueMidle =  DoubleOrArray()(p_nodalValues, iposPoint);
        // hierarchization
        T linearHierar = valueMidle  - 0.5 * (p_leftParentNodalValue + p_rightParentNodalValue);
        // quadratic
        DoubleOrArray().affect(p_hierarValues, iposPoint, linearHierar - 0.25 * p_parentLinearHierarValue);
        char oldLevel = p_levelCurrent(p_idim);
        unsigned int oldPosition = p_positionCurrent(p_idim);
        // child level
        p_levelCurrent(p_idim) += 1;
        SparseSet::const_iterator  iterLevelChild = p_dataSet.find(p_levelCurrent);
        // left
        p_positionCurrent(p_idim) = 2 * oldPosition;
        recursive1DHierarchization<T, TT>(p_levelCurrent, p_positionCurrent,   iterLevelChild, p_idim, p_leftParentNodalValue, valueMidle, linearHierar, p_dataSet, p_nodalValues, p_hierarValues);
        // right
        p_positionCurrent(p_idim) += 1;
        recursive1DHierarchization<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim,  valueMidle, p_rightParentNodalValue, linearHierar, p_dataSet, p_nodalValues, p_hierarValues);

        p_positionCurrent(p_idim) = oldPosition;
        p_levelCurrent(p_idim) = oldLevel;
    }


    /// \brief Hierarchization in given dimension in 1D
    /// \param  p_levelCurrent                Current level of the point
    /// \param p_positionCurrent              Current position of the point
    /// \param p_iterLevel                    Iterator  on level
    /// \param p_idim                         Current dimension
    /// \param p_leftParentNodalValue         Left parent nodal value
    /// \param p_rightParentNodalValue        Right parent nodal value
    /// \param p_dataSet                      Data structure with all the points
    /// \param p_nodalValues                  Nodal values
    /// \param p_hierarValues                 Hierarchical values
    template< class T, class TT>
    void hierarchizationFirstLevel(Eigen::ArrayXc   &p_levelCurrent,
                                   Eigen::ArrayXui &p_positionCurrent,
                                   const  SparseSet::const_iterator &p_iterLevel,
                                   const unsigned int &p_idim,
                                   const T &p_leftParentNodalValue,
                                   const T &p_rightParentNodalValue,
                                   const SparseSet &p_dataSet,
                                   const TT &p_nodalValues,
                                   TT &p_hierarValues)
    {
        if (p_iterLevel == p_dataSet.end())
            return ;
        // position
        SparseLevel::const_iterator iterPosition = p_iterLevel->second.find(p_positionCurrent);
        if (iterPosition == p_iterLevel->second.end())
            return ;
        // position
        int iposPoint = iterPosition->second;
        T valueMidle = DoubleOrArray()(p_nodalValues, iposPoint);
        // hierarchization
        T linearHierar = valueMidle  - 0.5 * (p_leftParentNodalValue + p_rightParentNodalValue);
        // quadratic
        DoubleOrArray().affect(p_hierarValues, iposPoint, linearHierar) ;

        char oldLevel = p_levelCurrent(p_idim);
        unsigned int oldPosition = p_positionCurrent(p_idim);

        // child level
        p_levelCurrent(p_idim) += 1;
        SparseSet::const_iterator  iterLevelChild = p_dataSet.find(p_levelCurrent);

        // left
        p_positionCurrent(p_idim) = 0;
        recursive1DHierarchization<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, p_leftParentNodalValue, valueMidle, linearHierar, p_dataSet, p_nodalValues, p_hierarValues);
        // right
        p_positionCurrent(p_idim) = oldPosition;
        recursive1DHierarchization<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim,  valueMidle, p_rightParentNodalValue, linearHierar, p_dataSet, p_nodalValues, p_hierarValues);

        p_positionCurrent(p_idim) = oldPosition;
        p_levelCurrent(p_idim) = oldLevel;
    }

public :

    /// \brief Default constructor
    Hierar1DQuadBound() {}

    /// \brief Hierarchization in given dimension in 1D
    /// \param p_levelCurrent             Current level of the point
    /// \param p_positionCurrent          Current position of the point
    /// \param p_iterLevel                Iterator on current level
    /// \param p_idim                     Current dimension
    /// \param p_dataSet                  Data structure with all the points
    /// \param p_nodalValues              Nodal values values
    /// \param p_hierarValues             Hierarchical values
    template< class T, class TT>
    void operator()(Eigen::ArrayXc   &p_levelCurrent,
                    Eigen::ArrayXui &p_positionCurrent,
                    const  SparseSet::const_iterator &p_iterLevel,
                    const unsigned int &p_idim,
                    const SparseSet   &p_dataSet,
                    const TT &p_nodalValues,
                    TT &p_hierarValues)
    {
        // get back boundary key in the dimension
        T leftValue ;
        T rightValue ;
        Eigen::ArrayXui  leftBound(p_positionCurrent) ;
        leftBound(p_idim) = 0;
        SparseLevel::const_iterator iterLeft = p_iterLevel->second.find(leftBound);
        if (iterLeft != p_iterLevel->second.end())
            leftValue = DoubleOrArray()(p_nodalValues, iterLeft->second);
        Eigen::ArrayXui  rightBound(p_positionCurrent);
        rightBound(p_idim) = 2;
        SparseLevel::const_iterator iterRight = p_iterLevel->second.find(rightBound);
        if (iterRight != p_iterLevel->second.end())
            rightValue = DoubleOrArray()(p_nodalValues, iterRight->second);
        // First Level Hierarchization
        hierarchizationFirstLevel<T, TT>(p_levelCurrent, p_positionCurrent, p_iterLevel, p_idim, leftValue, rightValue, p_dataSet, p_nodalValues, p_hierarValues);
    }
};

/// \class  Dehierar1DQuadBound   SparseGridQuadBound.h
/// Dehierarchization
class Dehierar1DQuadBound: public HierarDehierarBound
{

protected :

    /// \brief Dehierarchization 1D in given dimension (modified bound)
    /// \param p_levelCurrent             Current level of the point
    /// \param p_positionCurrent          Current  position of the point
    /// \param p_iterLevel                Iterator on current level
    /// \param p_idim                     Current dimension
    /// \param p_leftParentHierarValue    Left parent nodal value
    /// \param p_rightParentHierarValue   Right parent nodal value
    /// \param p_linearHierarParent         Linear hierarchical value of parent
    /// \param p_dataSet                  Data structure with all the points
    /// \param p_hierarValues             Hierarchical values
    /// \param p_nodalValues              Nodal values
    template< class T, class TT>
    void recursive1DDehierarchization(Eigen::ArrayXc   &p_levelCurrent,
                                      Eigen::ArrayXui &p_positionCurrent,
                                      const  SparseSet::const_iterator &p_iterLevel,
                                      const unsigned int &p_idim,
                                      const T &p_leftParentHierarValue,
                                      const T &p_rightParentHierarValue,
                                      const T &p_linearHierarParent,
                                      const SparseSet &p_dataSet,
                                      const TT &p_hierarValues,
                                      TT &p_nodalValues)
    {
        if (p_iterLevel == p_dataSet.end())
            return ;
        // position
        SparseLevel::const_iterator iterPosition = p_iterLevel->second.find(p_positionCurrent);
        if (iterPosition == p_iterLevel->second.end())
            return ;
        // position
        int iposPoint = iterPosition->second;
        T valueMidle = DoubleOrArray()(p_hierarValues, iposPoint);

        // do dehierarchization
        // calculation linear hierarchical coefficient
        T linearHierarchical = valueMidle + 0.25 * p_linearHierarParent;
        valueMidle = linearHierarchical + 0.5 * (p_leftParentHierarValue + p_rightParentHierarValue);
        DoubleOrArray().affect(p_nodalValues, iposPoint, valueMidle);

        char oldLevel = p_levelCurrent(p_idim);
        unsigned int oldPosition = p_positionCurrent(p_idim);
        // child level
        p_levelCurrent(p_idim) += 1;
        SparseSet::const_iterator  iterLevelChild = p_dataSet.find(p_levelCurrent);

        // left
        p_positionCurrent(p_idim) = 2 * oldPosition;
        recursive1DDehierarchization<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, p_leftParentHierarValue, valueMidle, linearHierarchical, p_dataSet, p_hierarValues, p_nodalValues);
        // right
        p_positionCurrent(p_idim) += 1;
        recursive1DDehierarchization<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim,  valueMidle, p_rightParentHierarValue,  linearHierarchical, p_dataSet, p_hierarValues, p_nodalValues);

        p_positionCurrent(p_idim) = oldPosition;
        p_levelCurrent(p_idim) = oldLevel;
    }

    /// \brief Dehierarchization 1D in given dimension
    /// \param  p_levelCurrent              Current index of the point
    /// \param p_positionCurrent            Current level of the point
    /// \param p_iterLevel                  Iteration on level
    /// \param p_idim                       Current dimension
    /// \param p_leftParentHierarValue      Left parent nodal value
    /// \param p_rightParentHierarValue     Right parent nodal value
    /// \param p_dataSet                    Data structure with all the points
    /// \param p_hierarValues               Hierarchical values
    /// \param p_nodalValues                Nodal values
    template< class T, class TT>
    void dehierarchizationFirstLevel(Eigen::ArrayXc   &p_levelCurrent,
                                     Eigen::ArrayXui &p_positionCurrent,
                                     const  SparseSet::const_iterator &p_iterLevel,
                                     const unsigned int &p_idim,
                                     const T &p_leftParentHierarValue,
                                     const T &p_rightParentHierarValue,
                                     const SparseSet &p_dataSet,
                                     const TT &p_hierarValues,
                                     TT &p_nodalValues)
    {
        if (p_iterLevel == p_dataSet.end())
            return ;
        // position
        SparseLevel::const_iterator iterPosition = p_iterLevel->second.find(p_positionCurrent);
        if (iterPosition == p_iterLevel->second.end())
            return ;
        // position
        int iposPoint = iterPosition->second;
        T valueMidle =  DoubleOrArray()(p_hierarValues, iposPoint);
        // do dehierarchization
        T linearHierarchical = valueMidle ;
        valueMidle = linearHierarchical + 0.5 * (p_leftParentHierarValue + p_rightParentHierarValue);
        DoubleOrArray().affect(p_nodalValues, iposPoint, valueMidle);

        char oldLevel = p_levelCurrent(p_idim);
        unsigned int oldPosition = p_positionCurrent(p_idim);

        // child level
        p_levelCurrent(p_idim) += 1;
        SparseSet::const_iterator  iterLevelChild = p_dataSet.find(p_levelCurrent);

        // left
        p_positionCurrent(p_idim) = 0;
        recursive1DDehierarchization<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, p_leftParentHierarValue, valueMidle, linearHierarchical, p_dataSet, p_hierarValues, p_nodalValues);
        // right
        p_positionCurrent(p_idim) = 1;
        recursive1DDehierarchization<T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim,  valueMidle, p_rightParentHierarValue, linearHierarchical, p_dataSet, p_hierarValues, p_nodalValues);

        p_positionCurrent(p_idim) = oldPosition;
        p_levelCurrent(p_idim) = oldLevel;
    }

public :

    /// \brief default constructor
    Dehierar1DQuadBound() {}

    /// \brief Dehierarchization 1D in given dimension
    /// \param  p_levelCurrent             Current  level of the point
    /// \param p_positionCurrent           Current  position of the point
    /// \param p_iterLevel                 Iterator on current level
    /// \param p_idim                      Current dimension
    /// \param p_dataSet                   Data structure with all the points
    /// \param p_hierarValues              Hierarchical values
    /// \param p_nodalValues               Nodal values
    template< class T, class TT>
    void operator()(Eigen::ArrayXc   &p_levelCurrent,
                    Eigen::ArrayXui &p_positionCurrent,
                    const  SparseSet::const_iterator &p_iterLevel,
                    const unsigned int &p_idim,
                    const SparseSet &p_dataSet,
                    const TT &p_hierarValues,
                    TT &p_nodalValues)
    {
        // get back boundary key in the dimension
        T leftValue ;
        T rightValue ;
        Eigen::ArrayXui  leftBound(p_positionCurrent) ;
        leftBound(p_idim) = 0;
        SparseLevel::const_iterator iterLeft = p_iterLevel->second.find(leftBound);
        if (iterLeft != p_iterLevel->second.end())
            leftValue = DoubleOrArray()(p_hierarValues, iterLeft->second);
        Eigen::ArrayXui  rightBound(p_positionCurrent);
        rightBound(p_idim) = 2;
        SparseLevel::const_iterator iterRight = p_iterLevel->second.find(rightBound);
        if (iterRight != p_iterLevel->second.end())
            rightValue = DoubleOrArray()(p_hierarValues, iterRight->second);
        dehierarchizationFirstLevel<T, TT>(p_levelCurrent, p_positionCurrent, p_iterLevel,  p_idim, leftValue, rightValue, p_dataSet, p_hierarValues, p_nodalValues);
    }

};
///@}
}
#endif /* SPARSEGRIDQUADNONOUND.H */