1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
// Copyright (C) 2016 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#ifndef SPARSEGRIDNOBOUND_H
#define SPARSEGRIDNOBOUND_H
#include <iostream>
#include <functional>
#include <Eigen/Dense>
#include "StOpt/core/sparse/sparseGridTypes.h"
#include "StOpt/core/sparse/sparseGridUtils.h"
#include "StOpt/core/sparse/sparseGridCommon.h"
/** \file sparseGridNoBound.h
* \brief Regroup some functions use in sparse grid when no boundary points are present
* \author Xavier Warin
*/
namespace StOpt
{
/// \brief Recursive construction for Data structure
/// \param p_levelCurrent Current index of levels of the point
/// \param p_positionCurrent Current position of the point ,at the given level
/// \param p_iterDataStructureCurrent iterator in the data structure
/// \param p_idim Current dimension
/// \param p_dataSet Data structure with all the points
/// \param p_ipoint Point number
void recursiveSparseConstructionNoBound(Eigen::ArrayXc &p_levelCurrent,
Eigen::ArrayXui &p_positionCurrent,
SparseSet::iterator &p_iterDataStructureCurrent,
const unsigned short int &p_idim,
SparseSet &p_dataSet,
size_t &p_ipoint);
/// \brief Initial construction for Data structure
/// The level \f$ (l_i)_{i=1,NDIM} \f$ kept satisfies
/// \f$ \sum_{i=1}^{NDIM} l_i \alpha_i \le \f$ levelMax \f$ + NDIM -1 \f$
/// \param p_levelMax Max level for the sparse grid
/// \param p_alpha weight used for anisotropic sparse grids
/// \param p_dataSet Data structure with all the points
/// \param p_ipoint Point number
void initialSparseConstructionNoBound(const unsigned int &p_levelMax,
const Eigen::ArrayXd &p_alpha,
SparseSet &p_dataSet,
size_t &p_ipoint);
/// \brief Initial construction for Data structure
/// The level \f$ (l_i)_{i=1,NDIM} \f$ kept satisfies
/// \f$ l_i \alpha_i \le \f$ levelMax
/// \param p_levelMax Max level for the full grid
/// \param p_alpha weight used for anisotropic full grids
/// \param p_dataSet Data structure with all the points
/// \param p_ipoint Point number
void initialFullConstructionNoBound(const unsigned int &p_levelMax,
const Eigen::ArrayXd &p_alpha,
SparseSet &p_dataSet,
size_t &p_ipoint);
/// \brief Explore dimension for hierarchization dehierarchization iterating from root in a given direction (1D call) when no boundary points
/// \param p_levelCurrent Current level of the point
/// \param p_positionCurrent Current position of the point
/// \param p_iterLevel Iterator on current level
/// \param p_idim Current dimension where Hierarchization is achieved
/// \param p_vecOtherDim Vector of dimensions different from p_idim
/// \param p_idimRemain Number of dim to explore
/// \param p_dataSet Data structure with all the points
/// \param p_source function value to transform (either Hierarchized or Dehierarchized)
/// \param p_output result
template< class HierDehier, class T, class TT>
void recursiveExploration1DNoBound(Eigen::ArrayXc &p_levelCurrent,
Eigen::ArrayXui &p_positionCurrent,
const SparseSet::const_iterator &p_iterLevel,
const unsigned int &p_idim,
const SparseSet &p_dataSet,
const Eigen::ArrayXui &p_vecOtherDim,
const unsigned int &p_idimRemain,
const TT &p_source,
TT &p_output)
{
if (p_iterLevel == p_dataSet.end())
return ;
// achieve 1D Hierarchization for the current node and given direction
HierDehier().template operator()<T, TT>(p_levelCurrent, p_positionCurrent, p_iterLevel, p_idim, p_dataSet, p_source, p_output);
// recursive if current is not a leaf
for (size_t idd = 0 ; idd < p_idimRemain; ++idd)
{
// dimension to dive into
int idimDive = p_vecOtherDim(idd);
unsigned int oldPosition = p_positionCurrent(idimDive);
char oldLevel = p_levelCurrent(idimDive);
// child level
p_levelCurrent(idimDive) = oldLevel + 1 ;
const typename SparseSet::const_iterator iterLevelChild = p_dataSet.find(p_levelCurrent);
// left
p_positionCurrent(idimDive) = 2 * oldPosition;
// recursive (de)hierarchization from this point
recursiveExploration1DNoBound<HierDehier, T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, p_dataSet, p_vecOtherDim, idd + 1, p_source, p_output);
// right
p_positionCurrent(idimDive) = 2 * oldPosition + 1;
// recursive (de)hierarchization from this point
recursiveExploration1DNoBound<HierDehier, T, TT>(p_levelCurrent, p_positionCurrent, iterLevelChild, p_idim, p_dataSet, p_vecOtherDim, idd + 1, p_source, p_output);
p_levelCurrent(idimDive) = oldLevel;
p_positionCurrent(idimDive) = oldPosition;
}
}
/// \brief global hierarchization or dehierarchization when no boundary points
/// \param p_dataSet Data structure with all the points
/// \param p_idim dimension of the problem
/// \param p_output values changed from nodal to hierarchical or vice versa
template< class HierDehier, class T, class TT >
void ExplorationNoBound(const SparseSet &p_dataSet, const int &p_idim, TT &p_output)
{
// get root
Eigen::ArrayXc rootLevel(p_idim) ;
Eigen::ArrayXui rootPosition(p_idim);
HierDehier().get_root(rootLevel, rootPosition);
SparseSet::const_iterator iterRoot = p_dataSet.find(rootLevel);
Eigen::ArrayXui vecOtherDim(p_idim);
for (unsigned int id = 0 ; id < static_cast<unsigned int>(p_idim); ++id)
{
int ipos = 0 ;
for (unsigned short idd = 0 ; idd < static_cast<unsigned short>(p_idim); ++idd)
if (idd != id)
vecOtherDim(ipos++) = idd ;
recursiveExploration1DNoBound<HierDehier, T, TT> (rootLevel, rootPosition, iterRoot, id, p_dataSet, vecOtherDim, p_idim - 1, p_output, p_output) ;
}
}
/// \brief Create basis function that can be used in interpolation
/// During interpolations, it permits to avoid to check the level and the position to decide which function to use
/// \param p_levelMax level max associated to the sparse grid
/// \param p_weight anisotropy of the sparse grid
/// \param p_degree degree of the sparse grid
/// \param p_functionScal for each position, for the level used, defines the basis function
void createBasisFunctionNoBound(const int &p_levelMax, const Eigen::ArrayXd &p_weight, const int &p_degree, std::vector< std::vector< std::function< double(const double &) > > > &p_functionScal);
/// \brief Evaluation of a function by interpolation (generic for Linear, Quadratic and Cubic) (without boundary points)
/// We suppose here that the son have been calculated for each node (to accelerate resolution)
/// Templates are here to define interpolation functions
/// \param p_iPoint Point number
/// \param p_xMiddle Position in [0,1] of current node in each dimension
/// \param p_dx Semi mesh size
/// \param p_x evaluation point
/// \param p_idimMin minimal dimension search (to avoid to go twice at same node)
/// \param p_funcVal Function basis values at current node for all dimensions
/// \param p_son Son array (first dimension is the node number, second is the dimension , 0 in array corresponds to left, 1 to right)
/// \param p_hierarValues Array of Hierarchical values
template< class basisFunctionCenter, class basisFunctionLeft, class basisFunctionRight, class T, class TT >
T recursiveEvaluationWithSonNoBound(const int &p_iPoint,
Eigen::ArrayXd &p_xMiddle,
Eigen::ArrayXd &p_dx,
const Eigen::ArrayXd &p_x,
const unsigned short int &p_idimMin,
Eigen::ArrayXd &p_funcVal,
const Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, Eigen::Dynamic > &p_son,
const TT &p_hierarValues)
{
T res = DoubleOrArray()(p_hierarValues, p_iPoint) * p_funcVal.prod();
// iterate on dimension
for (int idim = 0 ; idim < p_idimMin ; ++idim)
{
// utilitarian
double olfFuncVal = p_funcVal(idim);
double oldXMiddle = p_xMiddle(idim);
double oldDx = p_dx(idim);
double dxModified = 0.5 * p_dx(idim) ;
p_dx(idim) = dxModified;
// semi size mesh
if (p_x(idim) <= p_xMiddle(idim))
{
if (p_son(p_iPoint, idim)[0] >= 0)
{
// go left
p_xMiddle(idim) -= dxModified;
// first case if boundary left
if (almostEqual<double>(oldXMiddle, oldDx, 10))
p_funcVal(idim) = 2 * LinearHatValue(0., 1. / oldDx)(p_x(idim));
else if (almostEqual<double>(oldXMiddle, 1 - oldDx, 10))
// Level 3 (starting from 1)
p_funcVal(idim) = basisFunctionCenter(p_xMiddle(idim), 1. / dxModified)(p_x(idim));
else
// level > 3)
p_funcVal(idim) = basisFunctionLeft(p_xMiddle(idim), 1. / dxModified)(p_x(idim));
// add contribution
res += recursiveEvaluationWithSonNoBound< basisFunctionCenter, basisFunctionLeft, basisFunctionRight, T, TT >(p_son(p_iPoint, idim)[0], p_xMiddle, p_dx,
p_x, idim + 1, p_funcVal, p_son, p_hierarValues);
}
}
else
{
if (p_son(p_iPoint, idim)[1] >= 0)
{
// go right
p_xMiddle(idim) += dxModified;
if (almostEqual<double>(oldXMiddle, 1 - oldDx, 10))
p_funcVal(idim) = 2 * LinearHatValue(1., 1. / oldDx)(p_x(idim));
else if (almostEqual<double>(oldXMiddle, oldDx, 10))
p_funcVal(idim) = basisFunctionCenter(p_xMiddle(idim), 1. / dxModified)(p_x(idim));
else
p_funcVal(idim) = basisFunctionRight(p_xMiddle(idim), 1. / dxModified)(p_x(idim));
// add contribution
res += recursiveEvaluationWithSonNoBound< basisFunctionCenter, basisFunctionLeft, basisFunctionRight, T, TT>(p_son(p_iPoint, idim)[1], p_xMiddle, p_dx, p_x,
idim + 1, p_funcVal, p_son, p_hierarValues);
}
}
p_funcVal(idim) = olfFuncVal;
p_xMiddle(idim) = oldXMiddle;
p_dx(idim) = oldDx;
}
return res ;
}
/// \brief Generic evaluation with bounds
/// \param p_x evaluation point coordinates
/// \param p_iBase Number of the base point of the structure
/// \param p_son Son array (first dimension is the node number, second is the dimension , 0 in array corresponds to left, 1 to right)
/// \param p_hierarValues Array of Hierarchical values
template< class basisFunctionCenter, class basisFunctionLeft, class basisFunctionRight, class T, class TT >
T globalEvaluationWithSonNoBound(const Eigen::ArrayXd &p_x,
const int &p_iBase,
const Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, Eigen::Dynamic > &p_son,
const TT &p_hierarValues)
{
Eigen::ArrayXd dx = Eigen::ArrayXd::Constant(p_x.size(), 0.5);
Eigen::ArrayXd xMiddle = Eigen::ArrayXd::Constant(p_x.size(), 0.5);
Eigen::ArrayXd funcVal = Eigen::ArrayXd::Constant(p_x.size(), 1.);
return recursiveEvaluationWithSonNoBound< basisFunctionCenter, basisFunctionLeft, basisFunctionRight, T, TT >
(p_iBase, xMiddle, dx, p_x, p_x.size(), funcVal, p_son, p_hierarValues) ;
}
/// \brief Pre calculate the son of the point in all dimension
/// \param p_dataSet Data structure
/// \param p_idim Dimension of the problem
/// \param p_nbPoint Number of points in data structure
/// \param p_son Son array (nb points,NDIM,Left/Right)
/// \return Base point value
int sonEvaluationNoBound(const SparseSet &p_dataSet, const int &p_idim,
const int &p_nbPoint,
Eigen::Array< std::array<int, 2 >, Eigen::Dynamic, Eigen::Dynamic > &p_son);
///@}
}
#endif /* SPARSEGRIDNOBOUND.H */
|