1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
// Copyright (C) 2016, 2017 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#ifndef BASEREGRESSION_H
#define BASEREGRESSION_H
#include <memory>
#include <vector>
#include <iostream>
#include <Eigen/Dense>
#include <Eigen/SVD>
#include "StOpt/core/grids/InterpolatorSpectral.h"
/** \file BaseRegression.h
* \brief Base class to define regressor for stochastic optimization by Monte Carlo
* \author Xavier Warin
*/
namespace StOpt
{
/// \class BaseRegression BaseRegression.h
/// Base class for regression
class BaseRegression
{
protected :
bool m_bZeroDate ; ///< Is the regression date zero ?
bool m_bRotationAndRescale ; ///< do we rescale particles and do a rotation with SVD on data
Eigen::ArrayXd m_meanX ; ///< store scaled factor in each direction (average of particles values in each direction)
Eigen::ArrayXd m_etypX ; ///< store scaled factor in each direction (standard deviation of particles in each direction)
Eigen::MatrixXd m_svdMatrix ; ///< svd matrix transposed used to transform particles
Eigen::ArrayXd m_sing ; ///< singular values associated to SVD
Eigen::ArrayXXd m_particles; ///< Particles used to regress: first dimension : dimension of the problem , second dimension : the number of particles. These particles are rescaled and a rotation with SVD is achieved to avoid degeneracy in case of high correlations
// rotation for data and rescaling
void preProcessData();
public :
/// \brief Default constructor
BaseRegression();
/// \brief Default destructor
virtual ~BaseRegression() {}
/// \brief Default constructor
BaseRegression(const bool &p_bRotationAndRescale);
/// \brief Constructor storing the particles
/// \param p_bZeroDate first date is 0?
/// \param p_particles particles used for the meshes.
/// First dimension : dimension of the problem,
/// second dimension : the number of particles
/// \param p_bRotationAndRescale do we rescale particle
BaseRegression(const bool &p_bZeroDate, const Eigen::ArrayXXd &p_particles, const bool &p_bRotationAndRescale);
/// \brief Constructor used in simulation, no rotation
/// \param p_bZeroDate first date is 0?
/// \param p_bRotationAndRescale do we rescale particle
BaseRegression(const bool &p_bZeroDate, const bool &p_bRotationAndRescale);
/// \brief Last constructor used in simulation
/// \param p_bZeroDate first date is 0?
/// \param p_meanX scaled factor in each direction (average of particles values in each direction)
/// \param p_etypX scaled factor in each direction (standard deviation of particles in each direction)
/// \param p_svdMatrix svd matrix transposed used to transform particles
/// \param p_bRotationAndRescale do we rescale particle
BaseRegression(const bool &p_bZeroDate, const Eigen::ArrayXd &p_meanX, const Eigen::ArrayXd &p_etypX, const Eigen::MatrixXd &p_svdMatrix, const bool &p_bRotationAndRescale);
/// \brief Copy constructor
/// \param p_object object to copy
BaseRegression(const BaseRegression &p_object);
/// \brief update the particles used in regression and construct the matrices
/// \param p_bZeroDate first date is 0?
/// \param p_particles particles used for the meshes.
/// Firs dimension : dimension of the problem,
/// second dimension : the number of particles
void updateSimulationsBase(const bool &p_bZeroDate, const Eigen::ArrayXXd &p_particles);
/// \brief Get some local accessors
///@{
virtual inline Eigen::ArrayXXd getParticles() const
{
return m_particles ;
}
/// \brief Get bRotationAndRescale
virtual inline bool getBRotationAndRescale() const
{
return m_bRotationAndRescale ;
}
/// \brief Get average of simulation per dimension
virtual inline Eigen::ArrayXd getMeanX() const
{
return m_meanX;
}
/// \brief get standard deviation per dimension
virtual inline Eigen::ArrayXd getEtypX() const
{
return m_etypX;
}
/// \brief get back the SVD matrix used for rescaling particles
virtual inline Eigen::MatrixXd getSvdMatrix() const
{
return m_svdMatrix;
}
/// \brief get back singular values
virtual inline Eigen::ArrayXd getSing() const
{
return m_sing;
}
/// \brief Get dimension of the problem
virtual inline int getDimension() const
{
return m_particles.rows();
}
/// \brief Get the number of simulations
virtual inline int getNbSimul()const
{
return m_particles.cols() ;
}
/// \brief get back particle by its number
/// \param p_iPart particle number
/// \return the particle (if no particle, send back an empty array)
virtual Eigen::ArrayXd getParticle(const int &p_iPart) const;
/// \brief get the number of basis functions
virtual int getNumberOfFunction() const = 0 ;
///@}
/// \brief Constructor storing the particles
/// \brief update the particles used in regression and construct the matrices
/// \param p_bZeroDate first date is 0?
/// \param p_particles particles used for the meshes.
/// First dimension : dimension of the problem,
/// second dimension : the number of particles
virtual void updateSimulations(const bool &p_bZeroDate, const Eigen::ArrayXXd &p_particles) = 0 ;
/// \brief conditional expectation basis function coefficient calculation
/// \param p_fToRegress function to regress associated to each simulation used in optimization
/// \return regression coordinates on the basis (size : number of meshes multiplied by the dimension plus one)
/// @{
virtual Eigen::ArrayXd getCoordBasisFunction(const Eigen::ArrayXd &p_fToRegress) const = 0;
///@}
/// \brief conditional expectation basis function coefficient calculation for multiple functions to regress
/// \param p_fToRegress function to regress associated to each simulation used in optimization (size : number of functions to regress \times the number of Monte Carlo simulations)
/// \return regression coordinates on the basis (size : number of function to regress \times number of meshes multiplied by the dimension plus one)
/// @{
virtual Eigen::ArrayXXd getCoordBasisFunctionMultiple(const Eigen::ArrayXXd &p_fToRegress) const = 0 ;
///@}
/// \brief conditional expectation calculation
/// \param p_fToRegress simulations to regress used in optimization
/// \return regressed value function
/// @{
virtual Eigen::ArrayXd getAllSimulations(const Eigen::ArrayXd &p_fToRegress) const = 0;
virtual Eigen::ArrayXXd getAllSimulationsMultiple(const Eigen::ArrayXXd &p_fToRegress) const = 0;
///@}
/// \brief Use basis functions to reconstruct the solution
/// \param p_basisCoefficients basis coefficients
///@{
virtual Eigen::ArrayXd reconstruction(const Eigen::ArrayXd &p_basisCoefficients) const = 0 ;
virtual Eigen::ArrayXXd reconstructionMultiple(const Eigen::ArrayXXd &p_basisCoefficients) const = 0;
/// @}
/// \brief use basis function to reconstruct a given simulation
/// \param p_isim simulation number
/// \param p_basisCoefficients basis coefficients to reconstruct a given conditional expectation
virtual double reconstructionASim(const int &p_isim, const Eigen::ArrayXd &p_basisCoefficients) const = 0 ;
/// \brief conditional expectation reconstruction
/// \param p_coordinates coordinates to interpolate (uncertainty sample)
/// \param p_coordBasisFunction regression coordinates on the basis (size: number of meshes multiplied by the dimension plus one)
/// \return regressed value function reconstructed for each simulation
virtual double getValue(const Eigen::ArrayXd &p_coordinates,
const Eigen::ArrayXd &p_coordBasisFunction) const = 0;
/// \brief conditional expectation reconstruction for a lot of simulations
/// \param p_coordinates coordinates to interpolate (uncertainty sample) size uncertainty dimension by number of samples
/// \param p_coordBasisFunction regression coordinates on the basis (size: number of meshes multiplied by the dimension plus one)
/// \return regressed value function reconstructed for each simulation
Eigen::ArrayXd getValues(const Eigen::ArrayXXd &p_coordinates,
const Eigen::ArrayXd &p_coordBasisFunction) const
{
Eigen::ArrayXd valRet(p_coordinates.cols());
for (int is = 0; is < p_coordinates.cols(); ++is)
valRet(is) = getValue(p_coordinates.col(is), p_coordBasisFunction);
return valRet;
}
/// \brief permits to reconstruct a function with basis functions coefficients values given on a grid
/// \param p_coordinates coordinates (uncertainty sample)
/// \param p_ptOfStock grid point
/// \param p_interpFuncBasis spectral interpolator to interpolate the basis functions coefficients used in regression on the grid (given for each basis function)
virtual double getAValue(const Eigen::ArrayXd &p_coordinates, const Eigen::ArrayXd &p_ptOfStock,
const std::vector< std::shared_ptr<InterpolatorSpectral> > &p_interpFuncBasis) const = 0;
/// \brief is the regression date zero
inline bool getBZeroDate() const
{
return m_bZeroDate;
}
/// \brief Clone the regressor
virtual std::shared_ptr<BaseRegression> clone() const = 0 ;
};
}
#endif
|