1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
|
// Copyright (C) 2016 EDF
// All Rights Reserved
// This code is published under the GNU Lesser General Public License (GNU LGPL)
#ifndef MULTIVARIATEBASISGENERS_H
#define MULTIVARIATEBASISGENERS_H
#include "geners/GenericIO.hh"
#include "StOpt/regression/MultiVariateBasis.h"
#include "StOpt/core/utils/eigenGeners.h"
/** \file MultiVariateBasisGeners.h
* \brief Define non intrusive serialization with random access
* \author Xavier Warin
*/
gs_specialize_template_id_T(StOpt::MultiVariateBasis, 1, 0);
gs_declare_template_external_T(StOpt::MultiVariateBasis);
// The most arcane part is to specialize the behavior of the two
// template classes at the heart of the serialization facility:
// gs::GenericWriter and gs::GenericReader.
//
namespace gs
{
template <class Stream, class State, class A>
struct GenericWriter<Stream, State, StOpt::MultiVariateBasis<A>,
Int2Type<IOTraits<int>::ISEXTERNAL> >
{
inline static bool process(const StOpt::MultiVariateBasis<A> &p_multi, Stream &os,
State *, const bool processClassId)
{
// If necessary, serialize the class id
static const ClassId current(ClassId::makeId<StOpt::MultiVariateBasis<A> >());
const bool status = processClassId ? current.write(os) : true;
// Serialize object data if the class id was successfully
// written out
if (status)
{
write_item(os, p_multi.getNumberOfVariates());
write_item(os, p_multi.getNumberOfFunctions());
Eigen::ArrayXXi tensor = p_multi.getTensorFull().array();
write_item(os, tensor);
write_item(os, p_multi.getTensorSparse());
write_item(os, p_multi.getIsReduced());
write_item(os, p_multi.getCenter());
write_item(os, p_multi.getScale());
}
// Return "true" on success, "false" on failure
return status && !os.fail();
}
};
template <class Stream, class State, class A>
struct GenericReader<Stream, State, StOpt::MultiVariateBasis<A>,
Int2Type<IOTraits<int>::ISEXTERNAL> >
{
inline static bool readIntoPtr(StOpt::MultiVariateBasis<A> *&ptr, Stream &is,
State *st, const bool processClassId)
{
// Make sure that the serialized class id is consistent with
// the current one
static const ClassId current(ClassId::makeId<StOpt::MultiVariateBasis<A> >());
const ClassId &stored = processClassId ? ClassId(is, 1) : st->back();
// Check that the name is consistent. Do not check for the
// consistency of the complete id because we want to be able
// to read different versions of classes A and B.
current.ensureSameName(stored);
std::unique_ptr<int> numberOfVariates = read_item<int>(is);
std::unique_ptr<int> numberOfFunctions = read_item<int>(is);
typedef Eigen::Array< int, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> rowArrayXi;
std::unique_ptr<rowArrayXi > tensorFull = read_item<rowArrayXi>(is);
std::unique_ptr<StOpt::RowSparseMatrix> tensorSparse = read_item<StOpt::RowSparseMatrix>(is);
std::unique_ptr<bool> isReduced = read_item<bool>(is);
std::unique_ptr<Eigen::ArrayXd> center = read_item<Eigen::ArrayXd>(is);
std::unique_ptr<Eigen::ArrayXd> scale = read_item<Eigen::ArrayXd>(is);
if (ptr == 0)
ptr = new StOpt::MultiVariateBasis<A>(*numberOfVariates, *numberOfFunctions, tensorFull->matrix(), *tensorSparse, *isReduced, *center, *scale);
else
*ptr = StOpt::MultiVariateBasis<A>(*numberOfVariates, *numberOfFunctions, tensorFull->matrix(), *tensorSparse, *isReduced, *center, *scale);
return true;
}
inline static bool process(StOpt::MultiVariateBasis<A> &s, Stream &is,
State *st, const bool processClassId)
{
// Simply convert reading by reference into reading by pointer
StOpt::MultiVariateBasis<A> *ps = &s;
return readIntoPtr(ps, is, st, processClassId);
}
};
}
#endif /* MULTIVARIATEBASISGENERS_H */
|