1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403
|
\documentclass[12pt]{report}
\usepackage{amssymb,amsmath}
\usepackage{mathrsfs}
\usepackage{listings}
%\usepackage{algorithm2e}
\usepackage{algorithm,algpseudocode}
%\usepackage[algostore]{algpseudocode}
\usepackage{graphicx}
\usepackage{float}
\usepackage{ulem}
\usepackage[usenames,dvipsnames,svgnames,table]{xcolor}
\usepackage[dvipsnames,prologue]{pstricks}
\usepackage{hyperref}
\usepackage{subcaption}
\usepackage{rotating}
\usepackage{color}
\usepackage{bbm}
\usepackage{empheq}
%\usepackage{algorithm}
%\usepackage[noend]{algpseudocode}
%\usepackage{algorithm2e}
%\usepackage{algorithmic}
%\usepackage[noend]{algpseudocode}
\newtheorem{Theorem}{Theorem}
\newtheorem{Proposition}{Proposition}
\newtheorem{Remark}{Remark}
\newtheorem{definition}{Definition}
\definecolor{listinggray}{gray}{0.9}
\definecolor{lbcolor}{rgb}{0.9,0.9,0.9}
\definecolor{darkgreen}{rgb}{0,.6,0}
\def\Ac{\mathcal{A}}
\def \E{\mathbb{E}}
\def \R{\mathbb{R}}
\def \M{\mathbb{M}}
\def \S{\mathbb{S}}
\def \W{\mathbb{W}}
\def \V{\mathbb{V}}
\def\Lc{{\cal L}}
\def\x{\times}
\def \Fb{\overline F}
\def\1{{\bf 1}}
\def \I{{\bf I}}
\def \N{\mathbb{N}}
\newcommand{\un}{1\hspace{-1mm}{\rm I}} % 1
\def\Qc{{\mathcal Q}}
\lstdefinestyle{CStyle}
%\lstset
{
backgroundcolor=\color{lbcolor},
tabsize=4,
language=C++,
captionpos=b,
tabsize=3,
frame=lines,
numbers=left,
numberstyle=\tiny,
numbersep=5pt,
breaklines=true,
showstringspaces=false,
basicstyle=\ttfamily\scriptsize,
% identifierstyle=\color{magenta},
keywordstyle=\color[rgb]{0,0,1},
commentstyle=\color{darkgreen},
stringstyle=\color{red}
}
%\lstset{
\lstdefinestyle{PStyle}
{
backgroundcolor=\color{lbcolor},
tabsize=2,
language=Python,
captionpos=b,
tabsize=3,
frame=lines,
numbers=left,
numberstyle=\tiny,
numbersep=5pt,
breaklines=true,
showstringspaces=false,
basicstyle=\ttfamily\scriptsize,
% identifierstyle=\color{magenta},
keywordstyle=\color[rgb]{0,0,1},
commentstyle=\color[rgb]{1,0,0},
stringstyle=\color{red}
}
%\lstset{language=C++}
%\lstset{language=Python}
\renewcommand{\baselinestretch}{1}
\makeatletter
\newcommand{\algmargin}{\the\ALG@thistlm}
\makeatother
% The command \longState is for correctly indenting long texts inside
% the algorithmic environment. Instead of using the command \State,
% the command \longState should be preferred for texts that span over
% multiple lines.
\algnewcommand{\longState}[1]{\State%
\parbox[t]{\dimexpr\linewidth-\algmargin}{\strut #1\strut}}
% The commands \BLUE, \RED, \YELLOW, and \GREY have two parameters:
% one optional and one mandatory. The optional parameter is the width
% of the box. Its default value is relative to the margin of the
% algorithmic environment. This is so for making the box occupy the
% exact space within the algorithm. Outside of the algorithmic
% environment, this value does not make sense and it should be
% set. The second parameter is the content of the box.
\newcommand{\BLUE}[2][\linewidth-(\fboxsep+\fboxrule)*2-\algmargin]
{\fcolorbox{blue}{blue!10}{\parbox{#1}{#2}}}
\newcommand{\RED}[2][\linewidth-(\fboxsep+\fboxrule)*2-\algmargin]
{\fcolorbox{red}{red!10}{\parbox{#1}{#2}}}
\newcommand{\YELLOW}[2][\linewidth-(\fboxsep+\fboxrule)*2-\algmargin]
{\fcolorbox{yellow}{yellow!10}{\parbox{#1}{#2}}}
\newcommand{\GREY}[2][\linewidth-(\fboxsep+\fboxrule)*2-\algmargin]
{\fcolorbox{gray}{gray!10}{\parbox{#1}{#2}}}
%\usepackage[htt]{hyphenat}
% Justifying the text within the \code command. The idea is that it should
% break line to avoid the text within \code to exceed the margin of the
% text. This is done by automatic hyphenation and we try to hide the
% hyphenation character by replacing it with an "empty" one.
\newcommand*\justify{%
\fontdimen2\font=0.4em% interword space
\fontdimen3\font=0.2em% interword stretch
\fontdimen4\font=0.1em% interword shrink
\fontdimen7\font=0.1em% extra space
\hyphenchar\font=200% trying to hide the hyphenation character by choosing
% an "empty" character. If some hyphenation character
% appears in a text within a \code command, this number
% must be replaced by a suitable one. If a hyphen is
% desired, replace this number by 45.
}
\newcommand{\code}[1]{\texttt{\justify#1}}
\newcommand{\centercode}[1]{\begin{center}\code{#1}\end{center}}
\newtheorem{lem}{\protect\lemmaname}[section]
\providecommand{\lemmaname}{Lemma}
\def\Du#1{\Frac{\partial #1}{\partial u}}
\def\Dt#1{\Frac{\partial #1}{\partial t}}
\def\Dv#1{\Frac{\partial #1}{\partial v}}
\def\Dvv#1{\Frac{\partial^2 #1}{\partial v^2}}
\def\Ds#1{\Frac{\partial #1}{\partial s}}
\def\Dx#1{\Frac{\partial #1}{\partial x}}
\def\Dxx#1{\Frac{\partial^2 #1}{\partial x^2}}
\def\Dy#1{\Frac{\partial #1}{\partial y}}
\def\Dyy#1{\Frac{\partial^2 #1}{\partial y^2}}
\def\Dvy#1{\Frac{\partial^2 #1}{\partial v \partial y}}
\def \Sum{\displaystyle\sum}
\def \Prod{\displaystyle\prod}
\def \Int{\displaystyle\int}
\def \Frac{\displaystyle\frac}
\def \Inf{\displaystyle\inf}
\def \Sup{\displaystyle\sup}
\def \Lim{\displaystyle\lim}
\def \Liminf{\displaystyle\liminf}
\def \Limsup{\displaystyle\limsup}
\def \Max{\displaystyle\max}
\def \Min{\displaystyle\min}
\def\argmax{\mbox{\rm arg}\max}
\def\argmin{\mbox{\rm arg}\min}
\def\essinf{{\rm ess}\!\inf\limits}
\def\esssup{{\rm ess}\!\sup\limits}
\def\be{\begin{eqnarray}}
\def\ee{\end{eqnarray}}
\def\b*{\begin{eqnarray*}}
\def\e*{\end{eqnarray*}}
\def\ipN{\frac{i+1}{N}}
\def\iN{\frac{i}{N}}
\def \chg{\color{magenta}}
\def\vp{\varphi}
\def \E{\mathbb{E}}
\def \F{\mathbb{F}}
\def \G{\mathbb{G}}
\def \N{\mathbb{N}}
\def \P{\mathbb{P}}
\def \Q{\mathbb{Q}}
\def \R{\mathbb{R}}
\def \Z{\mathbb{Z}}
\def \Ac{{\cal A}}
\def \Bc{{\cal B}}
\def \Cc{{\cal C}}
\def \Dc{{\cal D}}
\def \Ec{{\cal E}}
\def \Fc{{\cal F}}
\def \Gc{{\cal G}}
\def \Hc{{\cal H}}
\def \Ic{{\cal I}}
\def \Lc{{\cal L}}
\def \Pc{{\cal P}}
\def \Mc{{\cal M}}
\def \Oc{{\cal O}}
\def \Nc{{\cal N}}
\def \Sc{{\cal S}}
\def \Tc{{\cal T}}
\def \Vc{{\cal V}}
\def \Wc{{\cal W}}
\def \Yc{{\cal Y}}
\def \Zc{{\cal Z}}
\def \Xc{{\cal X}}
\def \bP{{\bf P}}
\def \bE{{\bf E}}
\def \eps{\varepsilon}
\def \ep{\hbox{ }\hfill$\Box$}
\def\Dt#1{\Frac{\partial #1}{\partial t}}
\def\Dv#1{\Frac{\partial #1}{\partial v}}
\def\Dvv#1{\Frac{\partial^2 #1}{\partial v^2}}
\def\Dy#1{\Frac{\partial #1}{\partial y}}
\def\Dyy#1{\Frac{\partial^2 #1}{\partial y^2}}
\def\Dvy#1{\Frac{\partial^2 #1}{\partial v \partial y}}
\def\reff#1{{\rm(\ref{#1})}}
\addtolength{\oddsidemargin}{-0.1 \textwidth}
\addtolength{\textwidth}{0.2 \textwidth}
\addtolength{\topmargin}{-0.1 \textheight}
\addtolength{\textheight}{0.2 \textheight}
%\topmargin -0.5cm
%\textheight 22.5cm
%\textwidth 17cm
%\oddsidemargin -0.54cm
%\evensidemargin -0.54cm
\def \Om{\Omega}
\def \bF{{\bf F}}
\def \bG{{\bf G}}
\def \cA{{\cal A}}
\def \cB{{\cal B}}
\def \cF{{\cal F}}
\def \cE{{\cal E}}
\def \cD{{\cal D}}
\def \cG{{\cal G}}
\def \cH{{\cal H}}
\def \cI{{\cal I}}
\def \cJ{{\cal J}}
\def \cL{{\cal L}}
\def \cP{{\cal P}}
\def \cQ{{\cal Q}}
\def \cM{{\cal M}}
\def \cN{{\cal N}}
\def \cT{{\cal T}}
\def \cC{{\cal C}}
\def \cS{{\cal S}}
\def \cV{{\cal V}}
\def \cZ{{\cal Z}}
\def \ind{1\!\!1}
\def \loi {\stackrel{law}{=}}
\def \egal {\stackrel{def}{=}}
\def \benu {\begin{enumerate}}
\def \eenu {\end{enumerate}}
\def\beqs{\begin{eqnarray*}}
\def\enqs{\end{eqnarray*}}
\def\beq{\begin{eqnarray}}
\def\enq{\end{eqnarray}}
\def \dep{\text{dep}}
\def \ind{\text{ind}}
\begin{document}
\vspace{1.5cm}
\author{Hugo Gevret \thanks{EDF R\&D, \texttt{Hugo.Gevret@edf.fr}}
\and Nicolas Langren\'e \thanks{CSIRO Data61, Australia, \texttt{Nicolas.Langrene@csiro.au} }
\and Jerome Lelong \thanks{Ensimag, Laboratoire Jean Kuntzmann, 700 avenue Centrale Domaine Universitaire - 38401 St Martin d'Hères }
\and Rafael D. Lobato \thanks{Department of Computer Science, University of Pisa, Italy, \texttt{Rafael.Lobato@di.unipi.it}}
\and Thomas Ouillon \thanks{EDF R\&D, \texttt{Thomas.Ouillon@edf.fr}}
\and Xavier Warin \thanks{EDF R\&D \& FiME, Laboratoire de Finance des March\'es de l'Energie, ANR PROJECT CAESARS, \texttt{Xavier.Warin@edf.fr}}
\and Aditya Maheshwari \thanks{University of California, Santa Barbara, USA, \texttt{aditya\_maheshwari@umail.ucsb.edu} }}
%\author{Hugo Gevret, Jerome Lelong, Xavier Warin}
\title{STochastic OPTimization library in C++}
\vspace{1cm}\renewcommand{\today}
\maketitle
\tableofcontents
\part{Introduction}
\chapter{General context}
Optimizing while dealing with uncertainties is a shared goal by many sectors in the industry.\\
For example in the banking system:
\begin{itemize}
\item Some options such as American options need, in order to be valuated, to find an optimal exercise strategy to maximize the gain on average.
\item When dealing with assets management, a fund manager may want to find a strategy to optimize his gains by investing in different assets while trying to satisfy some risk constraints.
\item When dealing with credit risk in the case of option selling, some CVA modelization necessitates to solve some high dimensional problem in order to evaluate the option value.
\end{itemize}
In the energy financial sector, many problems involve stochastic optimization:
\begin{itemize}
\item some options, known as swing options, permit the owner to get some energy at some chosen dates with constraints on volumes. The price paid is either deterministic such as in the electricity market or can be an index which is an average of some commodity prices such as in the gas market.
\item When some batteries are installed on a network, the battery has to be filled in or discharged optimally in order to avoid the use of some expensive thermal units.
\item The optimal management of certain gas storage or certain thermal assets taking into account the prices of raw materials is a goal shared by all asset owners in the sector.
\item Even in regulated energy market, when water is used to generate electricity, a common target consists in finding an optimal water management in order to maximize the profit on average.
\end{itemize}
A goal shared by many industries is the problem of risk management: which financial assets to buy to guarantee a given gain by immunizing a financial portfolio against certain uncertainties.\\
All these problems and many more require:
\begin{itemize}
\item either to resolve certain PDEs when the control must be evaluated continuously,
\item or to calculate a certain conditional expectation in the event that control must be taken on certain discrete dates. The problem is then solved by a
dynamic programming method.
\end{itemize}
The STochastic OPTimization library (StOpt) \\
\url{https://gitlab.com/stochastic-control/StOpt}\\
aims to provide tools to solve certain stochastic optimization problems encountered in finance or in industry.
This library is a toolbox used to facilitate the work of developers whishing to solve certain stochastic optimization problems by
providing a general framework and some objects commonly used in stochastic programming.
Many effective methods are implemented and the toolkit must be flexible enough to use the library at different
levels being either an expert or only whishing to use the general framework. \\
The python interface allows you to use the library at a low level.
The test cases are either in C++ , or in python or in the both language.\\
The user is invited to consult the different test cases proposed in order to have global view of the resolution methods.
All the test cases are described in the last section of the documentation and deal with problems encountered in the banking system or the energy sector.
\begin{itemize}
\item The American options are solved by a part of dynamic programming \ref{part:dynProg} in python or C++ using regression (section \ref{sec::regression}) or using a scenario tree \ref{sec::tree}.\\
Regression are achieved:
\begin{enumerate}
\item either by local polynomials or with base support of the same size (subsection \ref{subsec::localSameSize}) or with an adapted size of the support (subsection \ref{subsec::local}) ,
\item either by global polynomials (section \ref{sec:globPol})
\item either by sparse grid regression (section \ref{sec:sparseGridReg}) useful in high dimension
\item or by kernel regression (section\ref{sec:kernelReg})
\end{enumerate}
In the test, a trinomial tree is developed as an example and the valorisation of an American option for the Black-Scholes model is given using this tree.
\item Gas storage problems are solved
\begin{itemize}
\item either by dynamic programming (part \ref{part:dynProg}) in python or C++ using regression (section \ref{sec::regression}) or tree (section \ref{sec::tree})
and stock interpolation ( chapter \ref{gridChapter}).\\
Regression are achieved:
\begin{enumerate}
\item either by Local polynomials with an adapted size of the support (subsection \ref{subsec::local}) ,
\item either by global polynomials (section \ref{sec:globPol})
\item or kernel regression (section \ref{sec:kernelReg})
\end{enumerate}
As before the trinomial tree developed in tests is used in the tree methods.\\
The interpolation between stock points is either linear or quadratic.
\item either by the SDDP method (chapter \ref{chap:SDDP}) in C++ using both regression and tree methods.
\end{itemize}
\item The swing options are solved by dynamic programming (part \ref{part:dynProg}) in python or C++ using regression with local polynomials with a suitable size of the support (subsection \ref{subsec::local})
\item The optimal management of a lake with stochastic inflows is solved by dynamic programming (part \ref{part:dynProg}) in python or C++ using local polynomials with an adapted support size (subsection \ref{subsec::local})
\item The optimal hedging of an option using a average variance criterion of the hedged portfolio is resolved in C++ by dynamic programming (part \ref{part:dynProg}) using the methodology in chapter \ref{chap:variance}.
\item A certain management of the reservoirs is solved by the SDDP method (chapter \ref{chap:SDDP}) in C++ trying to minimize the cost of the energy supply to satisfy a given demand with the possibility of buying energy at a price that can be stochastic.
\item The continuous optimization of a portfolio made up of a few assets following a Heston model is achieved by solving C++ the corresponding PDE with the Monte Carlo nesting method (part \ref{part:nesting}).
\item Some microgrid problems in the energy sector are solved using the python interface by dynamic programming methods (part \ref{part:dynProg}) using grids with linear interpolation
(subsection \ref{lineargridsection}) to discretize the energy level in the battery and the different regressors using:
\begin{enumerate}
\item either local polynomials with an suitable support size (subsection \ref{subsec::local}) ,
\item either global polynomials (section \ref{sec:globPol})
\item or kernel regression (section \ref{sec:kernelReg})
\end{enumerate}
\end{itemize}
\chapter{General mathematical setting}
In a continuous frame, the controlled state is given by a stochastic differential equation
\begin{equation}
\label{eds}
\left \{
\begin{array}{lll}
dX^{x,t}_s & = & b_a(t,X^{x,t}_s) ds + \sigma_a(s,X^{x,t}_s) dW_s \nonumber \\
X^{x,t}_t &=& x \nonumber
\end{array}
\right .
\end{equation}
where
\begin{itemize}
\item $W_t$ is a $d$-dimensional Brownian motion on a probability space $(\Omega,\Fc,\P)$ endowed with the natural (complete and continuous line) filtration $\F=(\Fc_t)_{t\le T}$ generated by $W$ up to a fixed time horizon $T>0$,
\item $\sigma_{a}$ is a Lipschitz continuous function of $(t,x,a)$ defined on $[0,T] \times \R^d \times \R^n$ and taking values in the set of $d$-dimensional square matrices,
\item $b_{a}$ is a Lipschitz continuous function of $(t,x,a)$ defined on $[0,T]\times \R^d \times \R^n$ and taking values in $\R^d$,
\item $a$ a control adapted to the filtration taking values in $\R^n$.
\end{itemize}
Suppose we want to minimize a cost function $J(t,x,a) = \mathbb{E}[\int_{t}^T f_a(s,X^{x,t}_s) e^{\int_t^s c_a(u,X^{x,t}_u) du } ds + e^{\int_t^T c_a(u,X^{x,t}_u) } g(X^{x,t}_T)]$ compared to the $a$ control. It is well known \cite{fleming2006controlled} that the optimal value $ \hat J(t,x) = \inf_{a} J(T-t,x,a)$ is a viscosity solution of the equation
\begin{eqnarray}
\frac{\partial v}{\partial t}(t,x) & -& \inf_{a \in \mathop{A}} \left( \frac{1}{2} tr(\sigma_a(t,x)\sigma_a(t,x)^T D^2 v(t,x)) + b_a(t,x) D v(t,x) \right. \nonumber \\
& & \left . + c_a(t,x) v(t,x)+ f_a(t,x) \vphantom{\int_t} \right) = 0 \mbox{ in } \R^d \nonumber \\
v(0,x)& = & g(x) \mbox{ in } \R^d
\label{hjb}
\end{eqnarray}
According to certain classical hypotheses on the coefficients \cite{fleming2006controlled}, the previous equation known as the Hamilton Jacobi Bellman equation admits a solution of unique viscosity (\cite{ishii1990viscosity}).\\
Solving the previous equation is quite difficult, especially in dimensions larger than 3 or 4.\\
The library provides tools to solve this equation and simplified versions of it.
\begin{itemize}
\item a first method supposes that $X^{x,t}_s = (X^{x,t}_{1,s},X^{x,t}_{2,s})$ where $X^{x,t}_{1,s}$ is not controlled
\begin{equation}
\label{eds1}
\left \{
\begin{array}{lll}
dX^{x,t}_{1,s} & = & b(t,X^{x,t}_{1,s}) ds + \sigma_(s,X^{x,t}_{1,s})dW_s \\
X^{x,t}_{1,t} &=& x
\end{array}
\right .
\end{equation}
and $X^{x,t}_{2,s}$ has no diffusion term
\begin{equation}
\label{eds2}
\left \{
\begin{array}{lll}
dX^{x,t}_{2,s} & = & b_a(t,X^{x,t}_{2,s}) ds \nonumber \\
X^{x,t}_{2,t} &=& x \nonumber
\end{array}
\right .
\end{equation}
In this case, we can use Monte Carlo methods based on regression to solve the problem. The method is based on the principle of dynamic programming and can be used even if the uncontrolled SDE is controlled by a general Levy process. This method can be used even if the controlled state takes only a few discrete values.\\
A second approach based on dynamic programming uses scenario trees: in this case, the uncertainties evolve on a tree taking only discrete values.
\item The second case is a special case of the previous one when the problem to be solved is linear and the controlled state takes values at continuous intervals. The value function must be convex or concave with respect to the controlled variables.
This method, the SDDP method, is used when the dimension of the controlled state is large, which prevents the use of the dynamic programming method.
As before, the uncertainties can be described either by scenarios or by a scenario tree.
\begin{Remark}
The use of this method requires other assumptions which will be described in the dedicated chapter.
\end{Remark}
\item A third method solves the Monte Carlo problem when a process is controlled but by an uncontrolled process. this is generally the optimization of a portfolio:
\begin{itemize}
\item The value of the portfolio is deterministically controlled and discretized on a network,
\item The evolution of the portfolio is driven by an uncontrolled exogenous process: market prices.
\end{itemize}
\item In the fourth method, we will assume that the state takes continuous values, we will solve equation \reff{hjb} using semi-Lagrangian methods discretizing the Brownian motion with two values and using some interpolations on grids.
\item Finally, we present a general pure Monte Carlo method based on automatic differentiation and randomization of the time step to solve general non-linear equations and which can be used to solve certain control problems.
\end{itemize}
In what follows, we assume that a temporal discretization is given for the resolution of the optimization problem. We assume that the step discretization is constant and equal to $h$ such that $t_i= i h$.
First, we describe some useful tools developed in the library for stochastic control.
Then, we explain how to solve certain optimization problems using these developed tools.\\
\begin{Remark}
In the library, we rely a lot on the
\href{http://eigen.tuxfamily.org}{Eigen library}: \code{ArrayXd}which represents a double vector, \code{ArrayXXd} for a double matrix and \code{ArrayXi} for a vector of integer.
\end{Remark}
\part{Useful tools for stochastic control}
\chapter{The grids and their interpolators}
\label{gridChapter}
In this chapter we develop the tools used to interpolate a discretized function on a given grid.
A grid is a set of point in $\R^d$ defining meshes which can be used to interpolate a function on an open set in $\R^d$.
These tools are used to interpolate a given function, for example at certain stock points, when it comes to storage.
These are also useful for semi-Lagrangian methods, which require efficient interpolation methods.
In StOpt four types of grids are currently available:
\begin{itemize}
\item the first and second are grids used to interpolate a function linearly on a grid;
\item the third type of grid, starting from a regular grid, makes it possible to interpolate on a grid at Gauss - Lobatto points on each mesh;
\item the last grid allows to interpolate a function in high dimension using the sparse gridmethod. The approximation is linear, quadratic,
or cubic in each direction.
\end{itemize}
Each type of grid is associated with iterators.
An iterator on a grid makes it possible to iterate on all the points of the grids. All iterators derive from abstract class \href{run:../StOpt/StOpt/core/grids/GridIterator.h}{\code{GridIterator}}
\lstinputlisting[style=CStyle]{../StOpt/StOpt/core/grids/GridIterator.h}
All iterators share some common characteristics:
\begin{itemize}
\item the \code{getCount} method provides the number associated with the current grid point,
\item the \code{next} method allows you to go to the next point, while the \code{nextInc} method allows you to go to the point\code{p\_incr},
\item the \code{isValid} method checks that we are still on a grid point,
\item the \code{getNbPointRelative} allows to get the number of points on which a given iterator can iterate,
\item the \code{getRelativePosition} retrieves the number of points already iterated by the iterator.
\end{itemize}
In addition, we can go directly to a given point: this functionality is useful for "mpi'' when some calculations on the grid are distributed on some processors and threads. This possibility is given by the method \code{jumpToAndInc}. \\
Using a grid \code{regGrid} the following source code makes it possible to iterate over the points of the grids and obtain coordinates.
For each coordinate, a function $f$ is used to fill an array of values.
As mentioned earlier, each type of grid has its own grid iterator which can be obtained by the \code{getGridIterator} method.
\begin{lstlisting}[style=CStyle]
ArrayXd data(regGrid.getNbPoints()); // create an array to store the values of the function f
shared_ptr<GridIterator> iterRegGrid = regGrid.getGridIterator();
while (iterRegGrid->isValid())
{
ArrayXd pointCoord = iterRegGrid->getCoordinate(); // store the coordinates of the point
data(iterRegGrid->getCount()) = f(pointCoord); // the value is stored in data at place iterRegGrid->getCount()
iterRegGrid->next(); // go to next point
}
\end{lstlisting}
It is also possible to ``skip'' certain points and repeat for the "p'' points afterwards. This possibility is useful for multithreaded tasks on points.\\
For each type of grid, an interpolator is provided to interpolate a given function on a grid. Note that the interpolator is created {\bf for a given point} where we want to interpolate.
All interpolators (which are not spectral interpolators) derive from
\code{Interpolator} whose source code is given below.
\lstinputlisting[style=CStyle]{../StOpt/StOpt/core/grids/Interpolator.h}
All interpolators provide a constructor specifying the point where the interpolation is carried out and the two functions \code{apply} and \code{applyVec} interpolating either a function (and returning a value)
or
an array of functions returning an array of interpolated values.\\
All grid classes derive from an abstract class \code{SpaceGrid} below allowing to retrieve an iterator associated with the points of the grid (with possible jumps) and
to create an interpolator associated with the grid.
\lstinputlisting[style=CStyle]{../StOpt/StOpt/core/grids/SpaceGrid.h}
All the grids objects, interpolators and iterators on grids point are in
\centercode{StOpt/core/grids}
Grid objects are mapped to python, giving the possibility of retrieving the iterators and interpolators associated with a grid. Examples of Python can be found
in \centercode{test/python/unit/grids}
\section{Linear grids}
\subsection{Definition and C++ API}
\label{lineargridsection}
Two kinds of grids are developed:
\begin{itemize}
\item the first one is the \href{run:../StOpt/StOpt/core/grids/GeneralSpaceGrid.h}{\code{GeneralSpaceGrid}} with Constructor
\begin{lstlisting}[style=CStyle]
GeneralSpaceGrid(const std::vector<shared_ptr<Eigen::ArrayXd> > &p_meshPerDimension)
\end{lstlisting}
where \code{std::vector<shared\_ptr<Eigen::ArrayXd>>} is a vector of (pointer to) arrays defining the grid points in each dimension.
In this case the grid is not regular and the mesh varies in space (see figure \ref{genGrid}).
\begin{figure}[h]
\centerline{
\includegraphics[width=4cm]{generalGrid.png}}
\caption{2D general grid}
\label{genGrid}
\end{figure}
\item the second one is the \href{run:../StOpt/StOpt/core/grids/RegularSpaceGrid.h}{\code{RegularSpaceGrid}} with Constructor
\begin{lstlisting} [style=CStyle]
RegularSpaceGrid(const Eigen::ArrayXd &p_lowValues, const Eigen::ArrayXd &p_step, const Eigen::ArrayXi &p_nbStep)
\end{lstlisting}
The \code{p\_lowValues} corresponds to the bottom of the grid, \code{p\_step} the size of each mesh, \code{p\_nbStep} the number of steps in each direction (see figure \ref{regGrid})
\begin{figure}[h]
\centerline{
\includegraphics[width=7cm]{regularGrid.png}}
\caption{2D regular grid}
\label{regGrid}
\end{figure}
\end{itemize}
For each grid, a linear interpolator can be generated by calling the \code{createInterpolator} method or by directly creating the interpolator:
\begin{lstlisting}[style=CStyle]
/** \brief Constructor
* \param p_grid is the grid used to interpolate
* \param p_point is the coordinates of the points used for interpolation
*/
LinearInterpolator( const FullGrid * p_grid , const Eigen::ArrayXd &p_point):
\end{lstlisting}
Its construction from a grid (\code{regLin}) and from an array \code{data} containing the values of the function at the points of the grid is given below (taking an example above for fill in the table \code{data})
\begin{lstlisting}[style=CStyle]
ArrayXd data(regGrid.getNbPoints()); // create an array to store the values of the function f
shared_ptr<GridIterator> iterRegGrid = regGrid.getGridIterator();
while (iterRegGrid->isValid())
{
ArrayXd pointCoord = iterRegGrid->getCoordinate(); // store the coordinate of the point
data(iterRegGrid->getCount()) = f(pointCoord); // the value is stored in the data at location iterRegGrid->getCount()
iterRegGrid->next(); // go to next point
}
// point where to interpolate
ArrayXd point = ArrayXd::Constant(nDim, 1. / 3.);
// create the interpolator
LinearInterpolator regLin(®Grid, point);
// get back the interpolated value
double interpReg = regLin.apply(data);
\end{lstlisting}
Let $I_{1,\Delta X}$ be the linear interpolator where the mesh is $\Delta x = (\Delta x^1, \dots, \Delta x^d)$. We obtain for a function $f$ in $C^{k+1}(\R^d)$ with $k \le 1$
\begin{eqnarray}
|| f - I_{1,\Delta x} f ||_{\infty} \le c \sum_{i=1}^d \Delta x^{k+1}_i \sup_{x \in [-1,1]^d} |\frac{\partial^{k+1} f}{\partial x_i^{k+1}}|
\label{InterpRegulier}
\end{eqnarray}
In particular if $f$ is only Lipschitz
\begin{eqnarray*}
|| f - I_{1,\Delta x} f ||_{\infty} \le K \sup_{i} \Delta x_i.
\end{eqnarray*}
\subsection{The python API}
The python API allows you to use grids with a syntax similar to the C++ API. Here, we give an example with a regular grid
\lstinputlisting[style=PStyle]{../StOpt/test/python/unit/grids/testRegularGrids.py}
A similar example can be given for a general grid with linear interpolation
\lstinputlisting[style=PStyle]{../StOpt/test/python/unit/grids/testGrids.py}
\section{Legendre grids}
\label{legendregridsection}
With linear interpolation, to obtain a precise solution, it is necessary to refine the mesh so that $\Delta x$ goes to zero.
Another approach consists in trying to fit a polynomial on each mesh using a high degree interpolator.
\subsection{Approximation of a function in 1 dimension}
From now on, by resizing we assume that we want to interpolate a function $f$ on $[-1,1]$. All the following results can be extended by tensorization in dimension greater than 1.
$\mathop{P_N}$ is the set of polynomials of total degree less than or equal to $N$.
The minmax approximation of $f$ of degree $N$ is the polynomial $P^*_N(f)$ such that:
$$
|| f - P^*_N(f)||_\infty = \min_{p \in {\mathop P_N}} || f -p||_{\infty}
$$
We call $I^X_N$ interpolator from $f$ on a grid of $N+1$ points of $[-1,1]$ $X= (x_0, \dots, x_N)$, the unique polynomial of degree $N$ such that
$$ I^X_N(f)(x_i) = f(x_i), 0 \le i \le N$$
This polynomial can be expressed in terms of the Lagrange polynomial $l^X_i, 0 \le i \le N$ associated with the grid ($l^X_i$ is the unique polynomial
of degree $N$ taking a value equal to 1 at the point $i$ and $0$ at the other interpolation points).
$$
I^X_N(f)(x) = \sum_{i=0}^N f(x_i) l^X_i(x)
$$
The interpolation error can be expressed in terms of interpolation points:
$$
|| I^X_N(f)(x) - f ||_\infty \le (1 + \lambda_N(X)) || f- P_N^{*}(f) ||_\infty
$$
where $\lambda_N(X)$ is the Lebesgue constant associated with the Lagrange quadrature on the grid:
$$
\lambda_N(X) = \max_{x \in[-1,1]} \sum_{i=0}^N | l_i^X(x) |.
$$
We have the following bound
$$
|| I^X_N(f)(x)||_\infty \le \lambda_N(X) sup_{x_i \in X} |f(x_i)| \le \lambda_N(X) || f ||_\infty
$$
and the Erd\"os theorem states that
$$
\lambda_N(X) > \frac{2}{\Pi} log(N+1)-C
$$
It is well--known that the use of a uniform grid $X_u$ is not optimal, because like $N \longrightarrow \infty$, the Lebesgue constant satisfies
$$
\lambda_N(X_u) \simeq \frac{2^{N+1}}{e N \ln N}
$$
and the quadrature error in $L_\infty$ increases a lot with $N$. Its use brings some oscillations giving the Runge effect.
On Figures~\ref{fig::rungeEffect1}, \ref{fig::rungeEffect2}, \ref{fig::rungeEffect3}, \ref{fig::rungeEffect4}, we trace the function Runge $\frac{1}{1 + 25 x^2}$ against its interpolation with polynomial with equidistant interpolation.
\begin{figure}[h]
\centering
\begin{subfigure}[b]{0.4\textwidth}
\includegraphics[width=6cm]{RungeDeg3.png}
\caption{}\label{fig::rungeEffect1}
\end{subfigure}
\qquad
\begin{subfigure}[b]{0.4\textwidth}
\includegraphics[width=6cm]{RungeDeg4.png}
\caption{}\label{fig::rungeEffect2}
\end{subfigure}
\qquad
\begin{subfigure}[b]{0.4\textwidth}
\includegraphics[width=6cm]{RungeDeg8.png}
\caption{}\label{fig::rungeEffect3}
\end{subfigure}
\qquad
\begin{subfigure}[b]{0.4\textwidth}
\includegraphics[width=6cm]{RungeDeg18.png}
\caption{}\label{fig::rungeEffect4}
\end{subfigure}
\caption{Runge function $\frac{1}{1 + 25 x^2}$ and its polynomial interpolations at degrees 3, 4, 8, and 18.}
\label{fig::rungeEffect}
\end{figure}
We therefore wish to have a quadrature with a "optimal'' Lebesgue constant. For example Gauss--Chebyshev interpolation points (corresponding to the $0$ of the polynomial
$T_{N+1}(x)= \cos ((N+1) \arccos(x))$ give a Lebesgue constant $\lambda_N(X_{GC})$ equal to
$$
\lambda_N(X_{GC}) \simeq \frac{2}{\Pi} \ln(N+1)
$$
For our problem, we want to interpolate a function on meshes with great precision on the mesh while respecting the continuity of the function between the meshes. In order to
ensure this continuity we want the extreme points of the resized mesh $[-1,-1]$ (therefore $-1$, $1$) to be on the interpolation grid.
This leads to the Gauss--Lobatto--Chebyshev interpolation grid.\\
In the library we choose to use the Gauss--Lobatto--Legendre interpolation grids which are as efficient as the Gauss--Lobatto--Chebyshev grids (in term of Lebesgue constant) but less costly in calculation due to the absence of trigonometric function.
We recall that the Legendre polynomial satisfies the recurrence
\begin{eqnarray*}
(N+1) L_{N+1}(x) = (2N+1) x L_N(x) - N L_{N-1}(x)
\end{eqnarray*}
with $L_0 =1$, $L_1(x)=x$.\\
These polynomials are orthogonal with the scalar product $(f,g) = \int_{-1}^1 f(x)g(x) dx$.
We are interested in the derivatives of these polynomials $L^{'}_N$ which satisfy the recurrence
\begin{eqnarray}
N L^{'}_{N+1}(x) = (2N+1) x L^{'}_N(x) -(N+1) L^{'}_{N-1}(x) \nonumber
\end{eqnarray}
These polynomials are orthogonal with the scalar product $(f,g) = \int_{-1}^1 f(x)g(x)(1-x^2) dx$.
The Gauss--Lobatto--Legendre grids points for a grid with $N+1$ points are $\eta_1 = -1, \eta_{N+1} =1$ and the $\eta_i$ $(i=2,\dots,N)$ zeros of $L^{'}_{N}$.
The $\eta_i$ $(i=2,\dots,N)$ are eigenvalues of the matrix $P$
\begin{eqnarray*}
P &=& \left ( \begin{array}{ccccc}
0 & \gamma_1 & \dots& 0 & 0 \\
\gamma_1 & 0 & \dots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \dots & 0 & \gamma_{N-2} \\
0 & 0 & \dots & \gamma_{N-2} & 0
\end{array}
\right), \nonumber \\
\gamma_n & = & \frac{1}{2} \sqrt{\frac{n(n+2)}{(n+\frac{1}{2})(n+\frac{3}{2})}} , 1 \le n \le N-2 , \nonumber
\end{eqnarray*}
The interpolation $I_{N}(f)$ is expressed in terms of Legendre polynomials by
\begin{eqnarray*}
I_{N}(f) & =& \sum_{k=0}^{N} \tilde f_k L_k(x) , \nonumber \\
\tilde f_k & = & \frac{1}{\gamma_k} \sum_{i=0}^{N} \rho_i f(\eta_i) L_k( \eta_i) , \nonumber \\
\gamma_k & = & \sum_{i=0}^{N} L_k(\eta_i)^2 \rho_i,
\end{eqnarray*}
and the weights satisfy
\begin{eqnarray*}
\rho_{i} & = & \frac{2.}{(M+1)M L_{M}^2(\eta_i)} , 1 \le i \le N+1.
\end{eqnarray*}
More details can be found in \cite{azaiez1993methodes}. In the figure \ref{fig:gllRunge}, we give the interpolation obtained with the Gauss--Lobatto--Legendre quadrature with two degrees of approximation.
\begin{figure}[h]
\centering
\begin{subfigure}[b]{0.3\textwidth}
\includegraphics[width=6cm]{GLL6.png}
\end{subfigure}
\qquad
\begin{subfigure}[b]{0.3\textwidth}
\includegraphics[width=6cm]{GLL10.png}
\end{subfigure}
\caption{Interpolation with Gauss--Legendre--Lobatto grids}
\label{fig:gllRunge}
\end{figure}
\begin{itemize}
\item
When the function is not regular we introduce a weaker notion than the notion of derivative. We denote $w( f, \delta )$ The modulus of continuityon $[-1,1]$ of a function
$f$ as
\begin{eqnarray}
w(f, \delta)= \sup_{ \begin{array}{c}
x_1,x_2 \in [-1,1] \\
| x_1- x_2| < \delta
\end{array}
}
| f(x_1)- f(x_2)| \nonumber
\end{eqnarray}
The modulus of continuity makes it possible to express the best approximation of a function by a polynomial with the Jackson theorem:
\begin{Theorem}
For a continuous function $f$ on $[-1,1]$
\begin{eqnarray*}
|| f - P_N^*(f) ||_{\infty} \le K w(f, \frac{1}{N})
\end{eqnarray*}
\end{Theorem}
and we deduce that for an interpolation grid$X$
\begin{eqnarray*}
|| I^{X}_N(f)(x) - f ||_\infty & \le & M(N) \\
M(N) & \simeq & K w(f, \frac{1}{N}) \lambda_N(X)
\end{eqnarray*}
a function is Dini--Lipschitz continues if $ w(f, \delta) log(\delta) \longrightarrow 0$ as $\delta \longrightarrow 0$. It is clear that the functions of Lipschitz are Dini--Lipschitz continuously
because $w(f, \delta) log(\delta) \le K log(\delta) \delta$.
\item
When the solution is more regular, we can express the interpolation error as a function of its derivatives and we obtain the following Cauchy theorem for an interpolation grid $X$ (see \cite{quarteroni2000methodes})
\begin{Theorem}
If $f$ is $C^{N+1}$, and $X$ an interpolation grid with $N+1$ points, the interpolation error checks
\begin{eqnarray}
E(x) &=& f(x) - I_N^X(f)(x) = \frac{f^{N+1}(\eta)}{(N+1)!} W_{N+1}^X(x)
\end{eqnarray}
where $\eta \in [-1,1]$ and $W_{N+1}^X(x)$ is the nodal polynomial of degree $N+1$ (the polynomial with the monomial of the highest degree with coefficient 1 being zero at all points $N+1$ of $X$)
\end{Theorem}
If we partition a domain $I =[a,b]$ into a few meshes of size $h$ and we use a Lagrange interpolator for the function $f \in C^{k+1}$ , $k \le N$
we obtain
\begin{eqnarray*}
|| f - I^X_{N,\Delta x} f ||_{\infty} \le c h^{k+1} || f^{(k+1)} ||_\infty
\end{eqnarray*}
\end{itemize}
\subsection{Extension in dimension $d$}
In the dimension $d$, we denote $P_{N}^*$ the best multivariate polynomial approximation of $f$ of total degree less than $N$ on $[-1,1]^d$.
On a $d$ multidimensional grid $X =X_{N}^d$, we define the multivariate interpolator as the composition of one-dimensional interpolator
$ I^{X}_{N}(f)(x) = I^{X_{N},1}_{N} \times I^{X_{N},2}_{N} \dots \times I^{X_{N},d}_{N} (f)(x)$ where $ I^{X_{N},i}_{N}$ represents for the interpolator in dimension $i$.
We get the following interpolation error
\begin{eqnarray*}
|| I^{X}_{N}(f) - f ||_\infty \le (1 + \lambda_{N}(X_{N}))^d || f- P_{N}^*(f) ||_\infty, \nonumber
\end{eqnarray*}
The error associated with the min max approximation is given by Feinerman and Newman \cite{feinerman1974polynomial}, Soardi \cite{soardi1984serie}
\begin{eqnarray*}
|| f - P_{N}^*(f)||_\infty & \le & (1+ \frac{\pi^2}{4} \sqrt{d}) w(f,\frac{1}{N+2}) \nonumber
\end{eqnarray*}
We deduce that if $f$ is only Lipschitz
\[
\boxed{
|| I^{X}_{N}(f)(x) - f ||_\infty \le C \sqrt{d} \frac{(1+\lambda_N(X))^d}{N+2}
}
\]
If the function is regular (in $C^{k+1}([-1,1]^d)$, $k < N$) we get
\begin{eqnarray*}
|| f - P_{N}^*(f)||_\infty & \le & \frac{C_k}{N^k} \sum_{i=1}^d \sup_{x \in [-1,1]^d} |\frac{\partial^{k+1} f}{\partial x_i^{k+1}}| \nonumber
\end{eqnarray*}
If we partition the domain $I =[a_1,b_1] \times \dots \times [a_d,b_d] $ in meshes of size $ \Delta x = (\Delta x_1,\Delta x_2,\dots,\Delta x_d)$ and use a Lagrange interpolation on each mesh we obtain
\begin{eqnarray*}
\boxed{
|| f - I^X_{N,\Delta x} f ||_{\infty} \le c \frac{(1+\lambda_N(X))^d}{N^k} \sum_{i=1}^d \Delta x^{k+1}_i \sup_{x \in [-1,1]^d} |\frac{\partial^{k+1} f}{\partial x_i^{k+1}}|
}
\end{eqnarray*}
On figure \ref{GLLpoints2D} we give the Gauss--Legendre--Lobatto points in 2D for $2\times 2$ meshes and a polynomial of degree $8$ in each direction
\begin{figure}[h]
\centerline{
\includegraphics[width=7cm]{GLLPoint2D.png}}
\caption{Gauss--Legendre--Lobatto points on $2 \times 2 $ meshes.}
\label{GLLpoints2D}
\end{figure}
\subsection{Truncature}
In order to avoid oscillations during the interpolation, a truncation is used on each mesh so that the modified interpolator $\hat I^X_{N,\Delta x}$ checks:
\beq
\hat I^X_{N,\Delta x} f (x) = \min_{x_i \in M} f(x_i) \wedge I^X_{N,\Delta x} f (x) \vee \max_{x_i \in M} f(x_i)
\enq
where the $x_i$ are the interpolation points on the mesh $M$ containing the point $x$.
For all the characteristics of this modified operator, we can see \cite{warin2016some}.
\subsection{The C++ API}
The grid using Gauss--Legendre--Lobatto points can be created using this constructor:
\begin{lstlisting}[style=CStyle]
RegularLegendreGrid(const Eigen::ArrayXd &p_lowValues, const Eigen::ArrayXd &p_step, const Eigen::ArrayXi &p_nbStep, const Eigen::ArrayXi & p_poly);
\end{lstlisting}
The \code{p\_lowValues} corresponds to the bottom of the grid, \code{p\_step} the size of each mesh, \code{p\_nbStep} the number of steps in each direction (see figure \ref{regGrid}).
On each mesh the polynomial approximation in each dimension is specified by the table \code{p\_poly}.\\
\begin{Remark}
If we take a polynomial of degree 1 in each direction this interpolator is equivalent to the linear interpolator. It’s sort of less
efficient than the linear interpolator on a Regular grid described in the section above.
\end{Remark}
We illustrate the use of the grid, its iterator and its interpolator used to draw the figures \ref{fig:gllRunge}.
\begin{lstlisting}[style=CStyle]
ArrayXd lowValues = ArrayXd::Constant(1,-1.); // corner point
ArrayXd step= ArrayXd::Constant(1,2.); // mesh size
ArrayXi nbStep = ArrayXi::Constant(1,1); // number of meshes in each direction
ArrayXi nPol = ArrayXi::Constant(1,p_nPol); // polynomial approximation
// regular Legendre
RegularLegendreGrid regGrid(lowValues, step, nbStep, nPol);
// Data table to store values on the grid points
ArrayXd data(regGrid.getNbPoints());
shared_ptr<GridIterator> iterRegGrid = regGrid.getGridIterator();
while (iterRegGrid->isValid())
{
ArrayXd pointCoord = iterRegGrid->getCoordinate();
data(iterRegGrid->getCount()) = 1./(1.+25*pointCoord(0)*pointCoord(0)); // runge storage function
iterRegGrid->next();
}
// point
ArrayXd point(1);
int nbp = 1000;
double dx = 2./nbp;
for (int ip =0; ip<= nbp; ++ip)
{
point(0)= -1+ ip* dx;
// create interpolator
shared_ptr<Interpolator> interp = regGrid.createInterpolator( point);
double interpReg = interp->apply(data); // interpolated value
}
\end{lstlisting}
The operator defined above is more efficient when we interpolate several functions at the same point. Its is
the case for example for the valuation of a storage with regression where one wishes to interpolate all the simulations at the same level of stock.
In some cases it is more practical to build an interpolator acting on a global function.
This is the case when you have only one function
and you want to interpolate at several points for this function.
In this specific case an interpolator deriving from the class \code{InterpolatorSpectral} can be constructed:
\lstinputlisting[style=CStyle]{../StOpt/StOpt/core/grids/InterpolatorSpectral.h}
Its constructor is given by:
\begin{lstlisting}[style=CStyle]
/** \brief Constructor taking values on the grid
* \param p_grid is the grid used to interpolate
* \param p_values Value of the function at the points of the grid.
*/
LegendreInterpolatorSpectral(const shared_ptr< RegularLegendreGrid> &p_grid , const Eigen::ArrayXd &p_values) ;
\end{lstlisting}
This class has a member allowing to interpolate at a given point:
\begin{lstlisting}[style=CStyle]
/** \brief interpolate
* \param p_point coordinates of the point for interpolation
* \return interpolated value
*/
inline double apply(const Eigen::ArrayXd &p_point) const
\end{lstlisting}
We give an example of using this class, by interpolating a function $f$ function in dimension 2.
\begin{lstlisting}[style=CStyle]
ArrayXd lowValues = ArrayXd::Constant(2,1.); // bottom of the domain
ArrayXd step = ArrayXd::Constant(2,1.); // mesh size
ArrayXi nbStep = ArrayXi::Constant(2,5); // number of meshes in each direction
ArrayXi nPol = ArrayXi::Constant(2,2) ; // polynomial of degree 2 in each direction
// regular
shared_ptr<RegularLegendreGrid> regGrid(new RegularLegendreGrid(lowValues, step, nbStep, nPol));
ArrayXd data(regGrid->getNbPoints()); // Data table
shared_ptr<GridIterator> iterRegGrid = regGrid->getGridIterator(); // iterator on the grid points
while (iterRegGrid->isValid())
{
ArrayXd pointCoord = iterRegGrid->getCoordinate();
data(iterRegGrid->getCount()) = f(pointCoord);
iterRegGrid->next();
}
// spectral interpolator
LegendreInterpolatorSpectral interpolator(regGrid,data);
// interpolation point
ArrayXd pointCoord(2, 5.2);
// interpolated value
double vInterp = interpolator.apply(pointCoord);
\end{lstlisting}
\subsection{The python API}
Here is an example using Legendre grids:
\lstinputlisting[style=PStyle]{../StOpt/test/python/unit/grids/testLegendreGrid.py}
\section{Sparse grids}
\label{sec::Sparse}
A representation of a function of dimension $d$ for $d$ small (less than 4) is obtained by tensorization in the preceding methods of interpolation.
When the function is smooth and its cross derivatives are bounded, the function can be represented using the sparse grid methods.
This method makes it possible to represent the function with much less points than the traditional one without losing too much by interpolating.
The sparse grid method was used for the first time by assuming that the function $f$ to be represented is zero at the boundary $\Gamma$ of the domain.
This assumption is important because it makes it possible to limit the explosion of the number of points to the dimension of the problem.
In many application this assumption is not realistic or it is impossible to work on $f - f_{|\Gamma}$.
In this library we will assume that the function is not zero at the borderand provide grid object, iterators and interpolators to interpolate certain functions
depicted on the sparse grid.
However, for the sake of clarity of presentation, we will start with the case of a function disappearing on the border.
\subsection{The sparse linear grid method}
\label{linearSection}
We recall some classic results on sparse grids which can be found in \cite{pfluger2010spatially}.
We first assume that the function we are interpolating is zero at the border.
By a change of coordinates a hyper-cube domain can be changed to a domain $\omega = [0,1]^d$.
By Introducing the hat function $\phi^{(L)}(x)= \max(1-|x|,0)$ (where $(L)$ means linear), we obtain the followingl one-dimensional local hat function by translation and dilation
$$\phi_{l,i}^{(L)}(x) = \phi^{(L)}(2^l x-i)$$
according to the level $l$ and the index $i$, $0< i< 2^l$.
The grid points used for the interpolation are noted $x_{l,i}=2^{-l}i$.
In the dimension $d$, we introduce the basis functions
$$ \phi_{\underline l, \underline i}^{(L)}(x) = \prod_{j=1}^d \phi_{l_j,i_j}^{(L)}(x_j)$$
via a tensorial approach for a point $ \underline x = (x_1, \dots, x_d)$, a multi-level $ \underline l := (l_1, \dots, l_d)$ and a multi-index $\underline i := (i_1, \dots , i_d).$
The grid points used for interpolation are noted $x_{\underline l,\underline i} := (x_{l_1,i_1}, \dots, x_{l_d,i_d})$.\\
We then present the index set $$B_{\underline l} := \left \{ \underline i: 1 \le i_j \le 2^{l_j}-1, i_j \mbox{ odd }, 1 \le j \le d \right\}$$
and the hierarchical base space.
\begin{eqnarray*}
W_{\underline l}^{(L)}&:=& span\left \{ \phi^{(L)}_{\underline l, \underline i}(\underline x): \underline i \in B_{\underline l} \right\}
\end{eqnarray*}
A representation of the space $W_{\underline l}^{(L)}$ is given in dimension 1 on the figure \ref{figWFunction1D}.
\begin{figure}[h]
\centering
\includegraphics[width=5cm]{WSpace1S.png}
\caption{One dimensional $W^{(L)}$ spaces: $W_1^{(L)}$, $W_2^{(L)}$, $W_3^{(L)}$, $W_4^{(L)}$ and the nodal representation $W^{(L,N)}_4$ }
\label{figWFunction1D}
\end{figure}
The sparse mesh space is defined as follows:
\begin{eqnarray}
V_n &=& \underset{|\underline l|_1 \le n+d-1}{\oplus} W_{\underline l}^{(L)}
\label{classSparse}
\end{eqnarray}
\begin{Remark}
The conventional full grid space is defined as $V_n^F = \underset{|\underline l|_\infty \le n}{\oplus} W_{\underline l}^{(L)}$.
\end{Remark}
At hierarchical increment space $W_{\underline l}^{(L)}$ corresponds to a nodal function space $W_{\underline l}^{(L,N)}$ such that
\begin{eqnarray*}
W_{\underline l}^{(L,N)} &:=& span\left \{ \phi^{(L)}_{\underline l, \underline i}(\underline x): \underline i \in B^N_{\underline l} \right\}
\end{eqnarray*}
with $$B^N_{\underline l} := \left \{ \underline i: 1 \le i_j \le 2^{l_j}-1, 1 \le j \le d \right\}.$$
In the figure \ref{figWFunction1D} the one-dimensional nodal base $W_4^{(L,N)}$ is generated by $W_4^{(L)}$ and the dotted base function.
The space $V_n$ can be represented as the space spawn by the $W^{(L,N)}_{\underline l}$ such that $|\underline l|_1= n+d-1$:
\begin{eqnarray}
V_n &=& span\left \{ \phi^{(L)}_{\underline l, \underline i}(\underline x): \underline i \in B_{\underline l}^N , |\underline l|_1 = n+d-1 \right \}
\label{classNodl}
\end{eqnarray}
A function $f$ is interpolated on the hierarchical basis like
\begin{eqnarray*}
I^{(L)}(f) &=& \sum_{|\underline l|_1 \le n+d-1, \underline i \in B_{\underline l}} \alpha_{\underline l, \underline i}^{(L)} \phi^{(L)}_{\underline l, \underline i}
\label{basisRecons}
\end{eqnarray*}
where $\alpha_{\underline l, \underline i}^{(L)}$ are called the surplus (we give on the figure \ref{figWSurplus1D} a representation of these coefficients).
\begin{figure}[h]
\centering
\includegraphics[width=6cm]{figWSurplus1D.png}
\caption{Example of hierarchical coefficients}
\label{figWSurplus1D}
\end{figure}
These surpluses associated with a function $f$ are calculated in the one-dimensional case for a node $m = x_{l,i}$ as the difference of the value of the function at the node and the linear representation of the calculated function with neighboring nodes. For example in figure \ref{figFatherTree}, the hierarchical value is given by the relation:
\begin{eqnarray*}
\alpha^{(L)}(m) := \alpha_{l, i}^{(L)} = f(m) -0.5 (f(e(m)) + f(w(m)))
\end{eqnarray*}
where $e(m)$ is the east neighbor of $m$ and $w(m)$ the west one.
The procedure is generalized in dimension $d$ by successive hierarchy in all directions.
\begin{figure}[h]
\centering
\includegraphics[width=6cm]{figFatherTree.png}
\caption{Node involved in the linear, quadratic and cubic representation of a function at the node $m$ and $n$}
\label{figFatherTree}
\end{figure}
On figure \ref{figureSubSpace2D}, we give a representation of the subspace $W$ for $\underline l \le 3$ in dimension 2.\\
\begin{figure}[h]
\centering
\includegraphics[width=6cm]{figureSubSpace2D.png}
\caption{The two-dimensional subspace $W_{\underline l}^{(L)}$ up to $l=3$ in each dimension. Additional hierarchical functions corresponding to an approximation
on the complete grid are indicated by dotted lines.}
\label{figureSubSpace2D}
\end{figure}
In order to deal with functions non-zero at the boundary, two more basis are added to the first level as shown on figure \ref{figWFunction1DBound}.
\begin{figure}[h]
\centering
\includegraphics[width=5cm]{WSpace1SBound.png}
\includegraphics[width=5cm]{WSpace1SBoundMod.png}
\caption{One dimensional $W^{(L)}$ spaces with linear functions with ``exact'' boundary (left) and ``modified'' boundary (right): $W_1^{(L)}$, $W_2^{(L)}$, $W_3^{(L)}$, $W_4^{(L)}$ }
\label{figWFunction1DBound}
\end{figure}
This approach leads to many more points than the one without the border. As indicated in \cite{pfluger2010spatially} for n =5, in dimension 8 have almost 2.8 million points in this approximation but only 6401 inside the domain.
On the figure \ref{fig2DBound} we give the points of the grids including boundary points in dimension 2 and 3 for a level $5$ of the sparse grid.
\begin{figure}[h]
\centering
\begin{subfigure}[b]{0.3\textwidth}
\includegraphics[width=6cm]{SparseBound2D.png}
\end{subfigure}
\qquad
\begin{subfigure}[b]{0.3\textwidth}
\includegraphics[width=6cm]{SparseBound3D.png}
\end{subfigure}
\caption{Sparse grid in dimension 2 and 3 with boundary points}
\label{fig2DBound}
\end{figure}
If the boundary conditions are not important (infinite truncated domain in finance for example) the hat functions near the borders are modified by extrapolation (see figure \ref{figWFunction1DBound}) as explained in \cite{pfluger2010spatially}.
At level 1, we have only one degree of freedom assuming that the function is constant on the domain. At all the other levels, we extrapolate linearly towards the boundary the basis functions left and right, the other functions remaining unchanged. So the new function base in 1D $\tilde \phi$ becomes
\begin{equation}
\begin{array}{ccc}
\tilde \phi_{l,i}^{(L)}(x) &=& \left \{ \begin{array}{cc}
1 & \mbox{ if } l=1 \mbox{ and } i =1 \\
\left \{ \begin{array}{cc}
2 -2^l x & \mbox{ if } x \in [0,2^{-l+1}] \\
0 & \mbox{ else}
\end{array} \right \} & \mbox{ if } l > 1 \mbox{ and } i=1 \\
\left \{ \begin{array}{cc}
2^l (x-1) +2 & \mbox{ if } x \in [1-2^{-l+1},1] \\
0 & \mbox{ else }
\end{array} \right \} & \mbox{ if } l > 1 \mbox{ and } i= 2^l-1 \\
\phi_{l,i}^{(L)}(x) & \mbox{ otherwise }
\end{array}
\right. \nonumber
\end{array}
\end{equation}
On the figure \ref{fig2DNoBound} we give the grid points by eliminating the boundary points in dimension 2 and 3 for a level $5$ of the sparse grid.
\begin{figure}[h]
\centering
\begin{subfigure}[b]{0.3\textwidth}
\includegraphics[width=6cm]{SparseNoBound2D.png}
\end{subfigure}
\qquad
\begin{subfigure}[b]{0.3\textwidth}
\includegraphics[width=6cm]{SparseNoBound3D.png}
\end{subfigure}
\caption{Sparse grid in dimensions 2 and 3 without boundary points}
\label{fig2DNoBound}
\end{figure}
The interpolation error associated with the linear operator $I^1 := I^{(L)}$ is related to the regularity of the crossed derivatives of the function \cite{bungartz1992dunne,bungartz1996concepts,bungartz1997multigrid}.
If $f$ is zero at the boundary and admits derivatives such as $ || \frac{\partial^{2d} u}{\partial x_1^{2} \dots \partial x_d^{2}}||_{\infty} < \infty$ then
\begin{eqnarray}
|| f - I^1(f)||_\infty = O(N^{-2} log(N)^{d-1}),
\label{ErrorInterpLin}
\end{eqnarray}
with $N$ the number of points per dimension.
\section{High order sparse grid methods}
\label{highOrderSection}
Changing the interpolator allows us to obtain a higher convergence rate mainly in the region where the solution is smooth.
By following \cite{bungartz1996concepts} and \cite{bungartz1997multigrid}, it is possible to obtain higher order interpolators.
Using a quadratic interpolator, the reconstruction on the nodal base gives a quadratic function
on the support of the hat function previously defined and a continuous function of the whole domain.
The polynomial quadratic base is defined on $[2^{-l}(i-1),2^{-l}(i+1)]$ by $$\phi_{ l, i}^{(Q)}(x) = \phi^{(Q)}(2^l x-i)$$ with
$\phi^{(Q)}(x)= 1- x^2$. \\
The hierarchical surplus (coefficient on the basis) in a dimension is the difference between the value function at the node and the quadratic representation of the function using nodes available at the previous level. With the notation of figure \ref{figFatherTree}
\begin{eqnarray*}
\alpha(m)^{(Q)} & =& f(m) -(\frac{3}{8} f(w(m))+\frac{3}{4} f(e(m)) - \frac{1}{8} f(ee(m))) \\
&= & \alpha(m)^{(L)}(m) -\frac{1}{4}\alpha(m)^{(L)}(e(m))\\
&= & \alpha(m)^{(L)}(m) -\frac{1}{4}\alpha(m)^{(L)}(df(m))
\end{eqnarray*}
where $df(m)$ is the direct father of the node $m$ in the tree structure.\\
Once again, the quadratic surplus of dimension $d$ is obtained by successive hierarchization in the different dimensions.\\
In order to take into account the boundary conditions, two linear functions $1-x$ and $x$ are added at the first level (see figure \ref{figWFunction1DQuadBound}).\\
A version with modified boundary conditions can be derived for example by using linear interpolation at the boundary so that
\begin{equation}
\begin{array}{ccc}
\tilde \phi_{l,i}^{(Q)}(x) &=& \left \{ \begin{array}{cc}
\tilde \phi_{l,i}^{(L)} & \mbox{ if } i=1 \mbox{ or } i = 2^l-1 , \\
\phi_{l,i}^{(Q)}(x) & \mbox{ otherwise }
\end{array}
\right. \nonumber
\end{array}
\end{equation}
\begin{figure}[h]
\centering
\includegraphics[width=5cm]{WSpace1SQuadBound.png}
\includegraphics[width=5cm]{WSpace1DQuadBoundMod.png}
\caption{One dimensional $W^{(Q)}$ spaces with quadratic with ``exact'' boundary (left) and ``modified'' boundary (right): $W_1^{(Q)}$, $W_2^{(Q)}$, $W_3^{(Q)}$, $W_4^{(Q)}$ }
\label{figWFunction1DQuadBound}
\end{figure}
In the case of the cubic representation, on figure \ref{figFatherTree} we need 4 points to define a function basis. In order to keep the same data structure, we use a cubic function base at node $m$ with value 1 at this node and 0 at the node $e(m)$, $w(m)$ and $ee(m)$ and we keep only the basic function between $w(m)$ and $e(m)$ \cite{bungartz1996concepts}. \\
Note that there are two basic types of function depending on the position in the tree. The basic functions are given on $[2^{-l+1}i,2^{-l+1}(i+1)]$ by
\begin{eqnarray*}
\phi_{ l, 2i+1}^{(C)}(x) & = & \phi^{(C),1}(2^l x-(2i+1)) , \mbox{ if } i \mbox{ even } \\
& = & \phi^{(C),2}(2^l x-(2i+1)) , \mbox{ if } i \mbox{ odd }
\end{eqnarray*}
with $\phi^{(C),1}(x) = \frac{(x^2-1)(x-3)}{3}$, $\phi^{(C),2}(x) = \frac{(1-x^2)(x+3)}{3}$.\\
The surplus coefficient can be defined as above as the difference between the value function at the node and the cubic representation of the function at the parent node. Due to the two basis functions involved there are two types of cubic coefficient.
\begin{itemize}
\item
For a node $m = x_{l,8i+1}$ or $m = x_{l,8i+7}$ , $\alpha^{(C)}(m) = \alpha^{(C,1)}(m)$, with $$\alpha^{(C,1)}(m) = \alpha^{(Q)}(m) - \frac{1}{8} \alpha^{(Q)}(df(m))$$
\item
For a node $m = x_{l,8i+3}$ or $m = x_{l,8i+5}$ , $\alpha^{(C)}(m) = \alpha^{(C,2)}(m)$, with $$\alpha^{(C,2)}(m) = \alpha^{(Q)}(m) + \frac{1}{8} \alpha^{(Q)}(df(m))$$
\end{itemize}
Note that a cubic representation is not available for $l=1$ so a quadratic approximation is used.
As before, the boundary conditions are treated by adding two linear basis functions at the first level and a modified version is available. We choose the following basis functions as defined in figure \ref{figWFunction1DCubicBound}:
\begin{equation}
\begin{array}{ccc}
\tilde \phi_{l,i}^{(C)}(x) &=& \left \{ \begin{array}{cc}
\tilde \phi_{l,i}^{(Q)} & \mbox{ if } i \in \{ 1, 3, 2^{l}-3, 2^l-1 \} , \\
\phi_{l,i}^{(C)}(x) & \mbox{ otherwise }
\end{array}
\right. \nonumber
\end{array}
\end{equation}
\begin{figure}[h]
\centering
\includegraphics[width=5cm]{WSpace1DCubicB.png}
\includegraphics[width=5cm]{WSpace1DCubicBMod.png}
\caption{One dimensional $W^{(C)}$ spaces with cubic and ``exact'' boundary (left) and ``modified'' boundary (right): $W_1^{(C)}$, $W_2^{(C)}$, $W_3^{(C)}$, $W_4^{(C)}$ }
\label{figWFunction1DCubicBound}
\end{figure}
According to \cite{bungartz1992dunne,bungartz1996concepts,bungartz1997multigrid}, if the function $f$ is zero at the boundary and admits derivatives such as
$\sup_{\alpha_i \in \{2,\dots,p+1\}} \left \{ || \frac{\partial^{\alpha_1+ \dots +\alpha_d} u}{\partial x_1^{\alpha_1} \dots \partial x_d^{\alpha_d}}||_{\infty} \right \} < \infty$
then the interpolation error can be generalized for $I^2:= I^{(Q)}$, $I^3 := I^{(C)}$ by:
\begin{eqnarray*}
|| f - I^p(f)||_\infty = O(N^{-(p+1)} log(N)^{d-1}), \quad p=2,3
\end{eqnarray*}
with $N$ the number of points per dimension.
\section{Anisotropy}
In many situations, there is no point in refining as much in each direction. For example, when we process multidimensional storage, we expect the mesh to be the same
order in each direction.
When the different storages have very different sizes, we want to further refine the storage with the largest capacity.
In order to treat this anisotropy, an extension of the sparse grids can be obtained by defining the weight $w$ in each direction.
The definition \ref{classSparse} is replaced by:
\begin{eqnarray}
V_n = \underset{ \sum_{i=1}^d l_i w(i) \le n+d-1}{\oplus} W_{\underline l}^{(L)}
\label{anisotropicSparse}
\end{eqnarray}
\section{Adaptation}
When the solution is not smooth, typically Lipschitz, there is no hope of obtaining convergence results for the classical rare grids (see above the interpolation error linked to crossed derivatives of the function).
The classic sparse grids must therefore be adapted so that the solution is refined near the singularities.
In all adaptation methods, the hierarchical surplus $\alpha_{\underline l, \underline i}$ is used to obtain an estimate of the local error. These coefficients give an estimate of the regularity of the value of the function at the discrete points by representing the second derivative of the discrete mixture of the function.
There are mainly two types of adaptation used:
\begin{itemize}
\item the first performs a local adaptation and only adds points locally \cite{bungartz2004sparse,griebel1998adaptive,griebel2005sparse,ma2009adaptive},
\item the second performs the adaptation at the level of the hierarchical space $W_{\underline l}$ (anisotropic sparse grid).
This approach detects the important dimensions that need to be refined and refines all the points of that dimension \cite{gerstner2003dimension}. This refinement is also achieved in areas where the solution can be smooth. A more local version has been developed in \cite{jakeman2011local}.
\end{itemize}
In the current version of the library, only the dimension adaptation is available. Details of the algorithm can be linked in \cite{gerstner2003dimension}.
After a first initialization with a first initialization with a space
\begin{eqnarray}
V_n = \underset{ \sum_{i=1}^d l_i \le n+d-1}{\oplus} W_{\underline l}^{(L)}
\end{eqnarray}
An active level set $\cal{A}$ is created grouping all the levels $\underline{l}$ so that $\sum_{i=1}^d l_i = n+d-1$.
All the other levels are grouped into a set $\cal{O}$.
At each level $\underline{l}$ in $\cal{A}$ an error is estimated $e_{\underline{l}}$ and with any local error $e_{\underline{l}}$ a global error $E$ is calculated.
Then the refinement algorithm~\ref{dimRef} is used by noting $\mathbf{e}_k$ the canonical basis in the dimension $k$.
\begin{algorithm}[h]
\caption{Dimension refinement for a given tolerance $\eta$}
\label{dimRef}
\begin{algorithmic}[1]
\While{ $ E > \eta$}
\State select $\underline{l}$ with the highest local error $e_{\underline{l}}$
\State $\cal{A} = \cal{A} \setminus$ $\{ \underline l \}$
\State $\cal{O} = \cal{O} $ $\cup $ $ \{ \underline{l} \}$
\For{ $k=1$ to $d$}
\State $\underline{m} = \underline{l} + \mathbf{e}_k$
\If{ $ \underline{m} - \mathbf{e}_q \in \cal{O}$ for $q \in [1,d]$}
\State $\cal{A} = \cal{A} $ $\cup $ $ \{ \underline{m} \}$
\State Hierarchize all points belonging to $\underline{m}$
\State calculate $e_{\underline{m}}$
\State update $E$
\EndIf
\EndFor
\EndWhile
\end{algorithmic}
\end{algorithm}
Sometimes, using sparse grids during time iterations, it can be interesting to enlarge the meshes. A similar algorithm~\ref{dimCoars} can be used to eliminate the levels
with a very small local error.
\begin{algorithm}[h]
\caption{Dimension coarsening for a given tolerance $\eta$}
\label{dimCoars}
\begin{algorithmic}
\State $\cal{B}$ all elements of $\cal{A}$ with a local error below $\eta$
\While{ $\cal{B} $ non nonempty}
\State select $\underline{l} \in \cal{B}$ with the lowest local error $e_{\underline{l}}$
\For{ $k=1$ to $d$}
\State $\underline{m} = \underline{l} - \mathbf{e}_k$
\If{ $m_k >0$}
\If{ $ \underline{m} + \mathbf{e}_q \in \cal{B}$ for $q \in [1,d]$}
\State $\cal{A} = \cal{A} $ $\setminus $ $ \{ \underline{m} + \mathbf{e}_q, q \in [1,d] \}$
\State $\cal{B} = \cal{B} $ $\setminus $ $ \{ \underline{m} + \mathbf{e}_q, q \in [1,d] \}$
\State $\cal{A} = \cal{A} $ $\cup $ $ \{ \underline{m} \}$
\State Add $\underline{m}$ to $\cal{B}$ if local error below $\eta$
\State $\cal{O} = \cal{O}$ $ \setminus$ $ \{ \underline{m} \}$
\State Break
\EndIf
\EndIf
\EndFor
\If{$\underline{l} \in \cal{B}$}
\State $\cal{B} = \cal{B} $ $\setminus $ $ \{ \underline{l} \}$
\EndIf
\EndWhile
\end{algorithmic}
\end{algorithm}
\newpage
\section{C++ API}
The construction of the sparse grid, including the boundary points is carried out by the following constructor
\begin{lstlisting}[style=CStyle]
SparseSpaceGridBound(const Eigen::ArrayXd &p_lowValues, const Eigen::ArrayXd &p_sizeDomain, const int &p_levelMax, const Eigen::ArrayXd &p_weight,
const size_t &p_degree)
\end{lstlisting}
with
\begin{itemize}
\item \code{p\_lowValues} corresponds to the bottom of the grid,
\item \code{p\_sizeDomain} corresponds to the size of the resolution domain in each dimension,
\item \code{p\_levelMax} is the level of the sparse grids, the $n$ in the equation \ref{anisotropicSparse},
\item \code{p\_weight} the weight of anisotropic sparse grids, the equation $w$ \ref{anisotropicSparse},
\item \code{p\_degree} is equal to 1 (linear interpolator), or 2 (quadratic interpolator) or 3 (for cubic interpolator),
\end{itemize}
With the same notations the construction eliminating boundary points is carried out by the following constructor
\begin{lstlisting}[style=CStyle]
SparseSpaceGridNoBound(const Eigen::ArrayXd &p_lowValues, const Eigen::ArrayXd &p_sizeDomain, const int &p_levelMax, const Eigen::ArrayXd &p_weight,
const size_t &p_degree)
\end{lstlisting}
The data structure of type \code{SparseSet} to store the sparse grid is defined by a map with keys an array A storing a multiple level and values a map with keys an array B storing the multi index associated with a point (A,B) and values the number of points (A,B):
\begin{lstlisting}[style=CStyle]
#define SparseSet std::map< Eigen::Array<char,Eigen::Dynamic,1 > , std::map< Eigen::Array<unsigned int,Eigen::Dynamic,1> , size_t, OrderTinyVector< unsigned int > > ,OrderTinyVector< char> >
\end{lstlisting}
It is sometimes convenient to retrieve this data structure from the \code{SparseGrid} object: this is done by the following method:
\begin{lstlisting}[style=CStyle]
std::shared_ptr<SparseSet> getDataSet() const ;
\end{lstlisting}
The two preceding classes have two specific member functions for hierarchizing (see the section above) the known value function at the points of the grid for the entire grid.
\begin{itemize}
\item the first work on a single function:
\begin{lstlisting}[style=CStyle]
/// \brief Hierarchize a function defined on the grid
/// \param p_toHierarchize function to hierarchize
void toHierarchize( Eigen::ArrayXd & p_toHierarchize );
\end{lstlisting}
\item the second work on a matrix, allowing to hierarchize several functions in a single call (each row corresponds to a function representation)
\begin{lstlisting}[style=CStyle]
/// \brief Hierarchize a set of functions defined on the grid
/// \param p_toHierarchize function to hierarchize
void toHierarchizeVec( Eigen::ArrayXXd & p_toHierarchize )
\end{lstlisting}
\end{itemize}
The two classes have two specific member functions to hierarchize point by point a value function at given points in the sparse grid:
\begin{itemize}
\item the first work on a single function:
\begin{lstlisting}[style=CStyle]
/// \brief Hierarchize certain points defined on sparse grids
/// Hierarchization is carried out point by point
/// \param p_nodalValues function to hierarchize
/// \param p_sparsePoints vector of sparse points to hierarchize (all points must belong to the structure of the dataset)
/// \param p_hierarchized array of all hierarchical values (it is updated)
virtual void toHierarchizePByP(const Eigen::ArrayXd &p_nodalValues, const std::vector<SparsePoint> &p_sparsePoints, Eigen::ArrayXd &p_hierarchized) const
\end{lstlisting}
\item the second work on a matrix, allowing to hierarchize several functions in a single call (each row corresponds to a function representation)
\begin{lstlisting}[style=CStyle]
/// \brief Hierarchize certain points defined on the sparse grids for a set of functions
/// The hierarchy is carried out point by point
/// \param p_nodalValues functions to hierarchize (the row corresponds to the function number)
/// \param p_sparsePoints vector of sparse points to hierarchize (all points must belong to the structure of the dataset)
/// \param p_hierarchized array of all hierarchized values (it is updated)
virtual void toHierarchizePByPVec(const Eigen::ArrayXXd &p_nodalValues, const std::vector<SparsePoint> &p_sparsePoints, Eigen::ArrayXXd &p_hierarchized) const
\end{lstlisting}
\end{itemize}
The \code{SparsePoint} object is only a "typedef'':
\begin{lstlisting}[style=CStyle]
#define SparsePoint std::pair< Eigen::Array<char, Eigen::Dynamic, 1> , Eigen::Array<unsigned int, Eigen::Dynamic, 1> >
\end{lstlisting}
where the first array allows to store the multi-level associated with the point and the second the associated multi-index .\\
It is finally possible to hierarchize all the points associated with a multi level. As before, two methods are available:
\begin{itemize}
\item a first makes it possible to hierarchize all the points associated with a given level. The hierarchical values are updated with these new values.
\begin{lstlisting}[style=CStyle]
/// \brief Hierarchize all points defined at a given level of the sparse grids
/// Hierarchization is carried out point by point
/// \param p_nodalValues function to hierarchize
/// \param p_iterLevel iterator on the level of the point to hierarchize
/// \param p_hierarchized array of all hierarchized values (it is updated)
virtual void toHierarchizePByPLevel(const Eigen::ArrayXd &p_nodalValues, const SparseSet::const_iterator &p_iterLevel, Eigen::ArrayXd &p_hierarchized) const
\end{lstlisting}
\item the second permits to hierarchize different functions together
\begin{lstlisting}[style=CStyle]
/// \brief Hierarchize all points defined on a given level of the sparse grids for a set of functions
/// Hierarchization is performed point by point
/// \param p_nodalValues function to hierarchize (the row corresponds to the function number)
/// \param p_iterLevel iterator on the level of the point to hierarchize
/// \param p_hierarchized array of all hierarchized values (it is updated)
virtual void toHierarchizePByPLevelVec(const Eigen::ArrayXXd &p_nodalValues, const SparseSet::const_iterator &p_iterLevel, Eigen::ArrayXXd &p_hierarchized) const
\end{lstlisting}
\end{itemize}
In the following example, sparse grids with boundary points is constructed. The values of a function $f$ at each coordinates are stored in an array \code{valuesFunction}, storing the functions $2$ to be interpolated.
The $2$ global functions are hierarchized (see the section above) in the array \code{hierarValues}, and then the interpolation can be performed using these hierarchized values.
\begin{lstlisting}[style=CStyle]
ArrayXd lowValues = ArrayXd::Zero(5); // bottom of the grid
ArrayXd sizeDomain = ArrayXd::Constant(5,1.); // size of the grid
ArrayXd weight = ArrayXd::Constant(5,1.); // weights
int degree =1 ; // linear interpolator
bool bPrepInterp = true; // precalculate neighbors of nodes
level = 4 ; // level of the sparse grid
// sparse grid generation
SparseSpaceGridBound sparseGrid(lowValues, sizeDomain, level, weight, degree, bPrepInterp);
// grid iterators
shared_ptr<GridIterator > iterGrid = sparseGrid.getGridIterator();
ArrayXXd valuesFunction(1,sparseGrid.getNbPoints());
while (iterGrid->isValid())
{
ArrayXd pointCoord = iterGrid->getCoordinate();
valuesFunction(0,iterGrid->getCount()) = f(pointCoord) ;
valuesFunction(1,iterGrid->getCount()) = f(pointCoord)+1 ;
iterGrid->next();
}
// Hierarchize
ArrayXXd hieraValues =valuesFunction;
sparseGrid.toHierarchizeVec(hieraValues);
// interpolate
ArrayXd pointCoord = ArrayXd::Constant(5,0.66);
shared_ptr<Interpolator > interpolator = sparseGrid.createInterpolator(pointCoord);
ArrayXd interVal = interpolator->applyVec(hieraValues);
\end{lstlisting}
\begin{Remark}
The Point-by-point hierarchization on the global grid could have been calculated as below
\begin{lstlisting}[style=CStyle]
std::vector<SparsePoint> sparsePoints(sparseGrid.getNbPoints());
std::shared_ptr<SparseSet> dataSet = sparseGrid.getDataSet();
// iterate on points
for (typename SparseSet::const_iterator iterLevel = dataSet->begin(); iterLevel != dataSet->end(); ++iterLevel)
for (typename SparseLevel::const_iterator iterPosition = iterLevel->second.begin(); iterPosition != iterLevel->second.end(); ++iterPosition)
{
sparsePoints[iterPosition->second] = make_pair(iterLevel->first, iterPosition->first);
}
ArrayXXd hieraValues = sparseGrid.toHierarchizePByPVec(valuesFunction, sparsePoints);
\end{lstlisting}
\end{Remark}
In some cases, it is more convenient to build an interpolator acting on a global function. This is the case when you have only one function
and you want to interpolate at several points for this function.
In this specific case an interpolator deriving from the class \code{InterpolatorSpectral} (similarly to Legendre grid interpolators) can be constructed:
\begin{lstlisting}[style=CStyle]
/** \brief Constructor taking in values on the grid
* \param p_grid is the sparse grid used to interpolate
* \param p_values Function values on the sparse grid
*/
SparseInterpolatorSpectral(const shared_ptr< SparseSpaceGrid> &p_grid , const Eigen::ArrayXd &p_values)
\end{lstlisting}
This class has a member to interpolate at a given point:
\begin{lstlisting}[style=CStyle]
/** \brief interpolate
* \param p_point coordinates of the point for interpolation
* \return interpolated value
*/
inline double apply(const Eigen::ArrayXd &p_point) const
\end{lstlisting}
See the \ref{legendregridsection} section for an example (similar but with Legendre grids) to use this object.\\
Sometimes, we want to iterate on points on a given level. In the example below , for each level an iterator over all points belonging to a given level is retrieved and the values of a function $f$ at each point are calculated and stored.
\begin{lstlisting}[style=CStyle]
// sparse grid generation
SparseSpaceGridNoBound sparseGrid(lowValues, sizeDomain, p_level, p_weight, p_degree, bPrepInterp);
// test iterator on each level
ArrayXd valuesFunctionTest(sparseGrid.getNbPoints());
std::shared_ptr<SparseSet> dataSet = sparseGrid.getDataSet();
for (SparseSet::const_iterator iterLevel = dataSet->begin(); iterLevel != dataSet->end(); ++iterLevel)
{
// get back iterator on this level
shared_ptr<SparseGridIterator> iterGridLevel = sparseGrid.getLevelGridIterator(iterLevel);
while(iterGridLevel->isValid())
{
Eigen::ArrayXd pointCoord = iterGridLevel->getCoordinate();
valuesFunctionTest(iterGridLevel->getCount()) = f(pointCoord);
iterGridLevel->next();
}
}
\end{lstlisting}
Finally, adaptation can be realized with two member functions:
\begin{itemize}
\item A first one permits to refine adding points where the error is important. Note that a function is provided to calculate from hierarchical values the error at each level of the sparse grid and that a second one is provided to get a global error from the error calculated at each level.
This makes it possible to specialize the refining depending, for example, whether the calculation is achieved for integration or interpolation purpose.
\begin{lstlisting}[style=CStyle]
/// \brief Dimension adaptation nest
/// \param p_precision precision required for adaptation
/// \param p_fInterpol function to interpolate
/// \param p_phi function for the error on a given level in the m_dataSet structure
/// \param p_phiMult from an error defined at different levels, return a global error at the different levels
/// \param p_valuesFunction an array storing the nodal values
/// \param p_hierarValues an array storing hierarchized values (updated)
void refine(const double &p_precision, const std::function<double(const Eigen::ArrayXd &p_x)> &p_fInterpol,
const std::function< double(const SparseSet::const_iterator &, const Eigen::ArrayXd &)> &p_phi,
const std::function< double(const std::vector< double> &) > &p_phiMult,
Eigen::ArrayXd &p_valuesFunction,
Eigen::ArrayXd &p_hierarValues);
\end{lstlisting}
with
\begin{itemize}
\item \code{p\_precision} the $\eta$ tolerance in the algorithm,
\item \code{p\_fInterpol} the function permitting to calculate the nodal values,
\item \code{p\_phi} function permitting to calculate $e_{\underline l}$ the local error for a given $\underline l$,
\item \code{p\_phiMult} a function taking as argument all the $e_{\underline l}$ (local errors) and giving back the global error $E$,
\item \code{p\_valuesFunction} an array storing the nodal values (updated during refinement)
\item \code{p\_hierarValues} an array storing the hierarchized values (updated during refinement)
\end{itemize}
\item A second one enlarges the mesh, eliminating the point where the error is too small
\begin{lstlisting}[style=CStyle]
/// \brief Dimension adaptation coarsening: modify the structure of the data by trying to delete al thel levels with local error
/// below a local precision
/// \param p_precision Precision under which coarsening will be realized
/// \param p_phi function for the error on a given level in the m_dataSet structure
/// \param p_valuesFunction an array storing the nodal values (modified on the new structure)
/// \param p_hierarValues Hierarchical values on a data structure (modified on the new structure)
void coarsen(const double &p_precision, const std::function< double(const SparseSet::const_iterator &, const Eigen::ArrayXd &)> &p_phi,
Eigen::ArrayXd &p_valuesFunction,
Eigen::ArrayXd &p_hierarValues);
\end{lstlisting}
with arguments similar to the previous function.
\end{itemize}
\section{Python API}
Here is an example of the python API used for interpolation with Sparse grids with boundary points and without boundary points.
Adaptation and coarsening is available with an error calculated for interpolation only.
\lstinputlisting[style=PStyle]{../StOpt/test/python/unit/grids/testSparseGrids.py}
\chapter{Introducing regression resolution}
\label{sec::regression}
Suppose the the stochastic differential equation in the optimization problem is not controlled:
$$ d X^{x,t} = b(t,X^{x,t}_s) ds + \sigma_(s,X^{x,t}_s) dW_s $$
This case is for example encountered during the valuation of American options in finance, when an arbitration is carried out between the pay-off and the expected future gain if it is not exercised right now.
In order to estimate this conditional expectation (according of Markov state), first suppose that a set of $N$ Monte Carlo Simulation is available at dates $t_i$ for a process $X_t := X^{0,x}_t$ where $x$ is the initial state at date $t=0$ and that we want to estimate $ f(x) := \E[ g(t+h,X_{t+h})~|~ X_t =x]$ for a given $x$ and a given function $g$. This function $f$ is located in the infinite dimensional space of the functions $L_2$.
In order to approximate it, we try to find it in a finite dimensional space.
By choosing a set of basis functions $\psi_k$ for $k=1$ to $M$, the conditional expectation can be approximated by
\begin{equation}
f(x) \simeq \sum_{k=1}^M \alpha_k \psi_k(X_t)
\label{regressed}
\end{equation}
where $(\hat \alpha^{t_i,N}_k)_{k\le M}$ minimizes
\begin{equation}
\sum_{\ell=1}^N \left| g(X_{t+h}^l)- \sum_{k=1}^M \alpha_k \psi_k(X_t^l) \right|^2
\end{equation}
over $(\alpha_k)_{k\le M} \in \R^M$.
We have to solve a quadratic optimization problem of the form
\begin{equation}\label{reg}
\min_{\alpha \in \R^M} \| A \alpha - B \|^2
\end{equation}
Classically the previous equation is reduced to the normal equation
\begin{equation}
\label{eq: normal eq}
A'A \alpha = A' B\;,
\end{equation}
which is solved by a Cholesky-type approach when the matrix $A'A$ is defined otherwise the solution with the standard $L_2$ minimum can be calculated using the pseudo-inverse of $A'A$.\\
When the different components of $X^{x,t}$ are strongly correlated it can be convenient to rotate the dataset on its main components using the PCA method.
Rotating the dataset before performing a regression has been recommended in \cite{wand1994fast} and \cite{scott2015multivariate} for example.
The right-hand side of Figure \ref{fig:evaluation grid}
illustrates the new evaluation grid obtained on the same dataset.
We can observe better coverage and fewer empty areas when using local regression that we will detail in this section.
\begin{figure}[h]
\begin{centering}
\includegraphics[width=0.7\paperwidth]{rotation}
\par\end{centering}
\caption{Evaluation grid: rotation\label{fig:evaluation grid}}
\end{figure}
\section{C++ global API}
All regression classes are derived from the \code{BaseRegression} abstract class, which stores a pointer to the ``particles'' (a matrix storing the simulations of $X^{x,t}$: the first dimension of the matrix corresponds to the dimension of $X^{x,t}$, and the second dimension corresponds to the number of particle), and stores if the current date $t$ is $0$ (then the conditional expectation is only an expectation).
\lstinputlisting[style=CStyle]{../StOpt/StOpt/regression/BaseRegression.h}
All regression classes share the same constructors:
\begin{itemize}
\item a first constructor stores the members of the class and calculates the matrices for the regression: it is used for example to build a regression object at each time step of a resolution method,
\item the second constructor is used to prepare data which will be shared by all future regressions. It must be used with the \code{updateSimulation} method to update the actual matrix construction. In a resolution method with many time steps, the object will be constructed only once and at each time step, the Markov state will be updated by the method \code{updateSimulation}.
\end{itemize}
All regression classes share the common methods:
\begin{itemize}
\item \code{updateSimulationBase} (see above),
\item \code{getCoordBasisFunction} takes the values $g(t+h,X_{t+h})$ for all simulations and returns the coefficients $\alpha_k$ of the basis functions,
\item \code{getCoordBasisFunctionMultiple} is used if we want to do the previous calculation on several $g$ functions in a single call. In the matrix given as an argument, the first dimension has a size equal to the number of Monte Carlo simulations, while the second dimension has a size equal to the number of functions to regress. At output, the first dimension has a size equal to the number of functions to regress and the second equal to the number of basis functions.
\item \code{getAllSimulations} takes the values $g(t+h,X_{t+h})$ for all simulations and returns the regressed values for all simulations $f(X_t)$
\item \code{getAllSimulationMultiple} is used if we want to do the previous calculation on several $g$ functions in a single call. In the matrix given as an argument, the first dimension has a size equal to the number of Monte Carlo simulations, while the second dimension has a size equal to the number of functions to regress. The regressed values are rendered in the same format.
\item \code{reconstruction} takes as input the coefficient $\alpha_k$ of the basis functions and returns all $f(X_t)$ for the stored simulations by applying the equation \reff{regressed}.
\item \code{reconstructionMultiple} is used if we want to do the previous calculation on several $g$ functions in a single call. As input the coefficients $\alpha_k$ of the basis functions are given
(number of function to regress for the first dimension, number of basis functions for second dimension). Consequently, the $f(X_t)$ for all the simulations and all the functions $f$ are returned (number of Monte Carlo simulations in the first dimension, number of functions to regress in the second dimension).
\item \code{reconstructionASim} takes a number of simulations $isim$ (optimization part) and $\alpha_k$ coefficient of the basis functions as input and returns $f(X_t^{isim})$ by applying the equation \reff{regressed},
\item \code{getValue} takes as its first argument samples of $X_t$, the basis function $\alpha_k$ and reconstructs the regressed solution of the equation \reff{regressed}.
\item \code{getValues} takes as its first argument samples of $X_t$ (dimension of uncertainty by number of samples), the basis function $\alpha_k$ and reconstructs the regressed solution of the equation \reff{regressed} (an array).
\end{itemize}
\section{Adapted local polynomial basis with same probability}
\label{subsec::local}
The description of the method and its properties can be found in \cite{bouchard2012monte}. We simply recall the methodology.
These adapted local methods can benefit from a rotation in its main axis through the PCA method. Rotation is activated by a flag in the objects builder.
\subsection{Description of the method}
The method essentially consists in applying a non-conforming finite element approach rather than a spectral type method as presented above.
The idea is to use, at each time step $t_i$, a set of functions $\psi_q, q \in [0,M_M]$ with local hyper cube support $D_{i_1,i_2,\dots,i_d}$ where $i_j= 1$ to $I_j$, $M_M= \prod_{k=1,d} I_k$, and $\{D_{i_1,\dots,i_d}\}_{(i_1,\dots,i_d)\in [1,I_1]\times\cdots\times [1,I_d]}$ is a partition of
$[\min_{k=1,N} X_{t_i}^{1,(k)},$ $\max_{k=1,N} X_{t_i}^{1,(k)}] \times$ $\cdots$ $ \times [ \min_{k=1,N} X_{t_i}^{d,(k)},\max_{k=1,N} X_{t_i}^{d,(k)}]$.
On each $D_{l}$, $l=(i_1,\dots,i_d)$, depending on the selected method, $\psi_l$ is
\begin{itemize}
\item either a constant function, so the global number of degrees of freedom is equal to $M_M$,
\item or a linear function with $1+d$ degrees of freedom, so the global number of degrees of freedom is equal to $M_M*(1+d)$.
\end{itemize}
This approximation is "non conform'' in the sense that we do not ensure the continuity of the approximation. However, it has the advantage of being able to adapt to any function, even discontinuous.
In order to avoid oscillations and to allow classical regression by the Cholesky method, the supports are chosen so as to contain roughly the same number of particles.
On the figure \ref{Mesh}, we have drawn an example of supports in the case of $6=4 \times 4$ local base cells, in the dimension $2$.\\
\begin{figure}[h!]
\centerline{
\includegraphics[width=7cm]{fig_maill_regre.png}}
\caption{ Support of 2D function basis}
\label{Mesh}
\end{figure}
Sometimes we can further leverage knowledge about the value of continuation. In the case of an American basket option for example, we have a convexity of this
continuation value as a function of the underlying price.
It is possible to modify the previous algorithm to try to impose that the numerical method repeats this convexity. The algorithm
in \cite{magnani2009convex} has been optionally implemented. This algorithm may not converge when used in multi-dimensional but it allows
to improve the convexity of the solution by iterating several times.
\subsection{C++ API}
\subsubsection{The constant per cell approximation}
\label{sec:ApiLocalConst}
The constructor of the local constant regression object is obtained by
\begin{lstlisting}[style=CStyle]
LocalConstRegression(const Eigen::ArrayXi &p_nbMesh, bool p_bRotationAndRecale = false);
\end{lstlisting}
where:
\begin{itemize}
\item \code{p\_nbMesh} is an array giving the number of meshes used in each direction ( $(4,4)$ for the figure \ref{Mesh} for example).
\item \code{p\_bRotationAndRecale} is an optional argument defined as \code{ false} by default which means that no data rotation in its axis of main components is performed. In the case of rotation, the directions are sorted with their decreasing singular values and the number of meshes in \code{p\_nbMesh} is defined for these sorted directions: \code{p\_nbMesh(0)} is associated with first direction with the highest singular value, \code{p\_nbMesh(1)} with the direction associated with the second highest singular value etc.
\end{itemize}
The second constructor allows to build the regression matrix,
\begin{lstlisting}[style=CStyle]
LocalConstRegression(const bool &p_bZeroDate,
const shared_ptr< ArrayXXd> &p_particles,
const Eigen::ArrayXi &p_nbMesh,
bool p_bRotationAndRecale = false)
\end{lstlisting}
where
\begin{itemize}
\item \code{p\_bZeroDate} is \code{true} if the regression date is $0$,
\item \code{p\_particles} the particles $X_t$ for all simulations (dimension of $X_t$ for first dimension, number of Monte Carlo simulations in second dimension),
\item \code{p\_nbMesh} is an array giving the number of meshes used in each direction $(4,4)$ for the figure \ref{Mesh},
\item \code{p\_bRotationAndRecale} is an optional argument defined as \code{ false} by default which means that no data rotation in its axis of main components is performed. In the case of rotation, the directions are sorted with their decreasing singular values and the number of meshes in \code{p\_nbMesh} is defined for these sorted directions: \code{p\_nbMesh(0)} is associated with first direction with the highest singular value, \code{p\_nbMesh(1)} with the direction associated with the second highest singular value etc.
\end{itemize}
\subsubsection{Linear approximation per cell}
The constructor of the local linear regression object is obtained by
\begin{lstlisting}[style=CStyle]
LocalLinearRegression(const Eigen::ArrayXi &p_nbMesh, bool p_bRotationAndRecale = false);
\end{lstlisting}
where
\begin{itemize}
\item \code{p\_nbMesh} is an array giving the number of meshes used in each direction ( $(4,4)$ for the figure \ref{Mesh} for example),
\item \code{p\_bRotationAndRecale} is an optional argument defined as \code{ false} by default which means that no data is rotated in its main components axis. In the case of rotation, the directions are sorted with their decreasing singular values and the number of meshes in \code{p\_nbMesh} is defined for these sorted directions: \code{p\_nbMesh(0)} is associated with the first direction with the highest singular value, \code{p\_nbMesh(1)} with the direction associated with the second highest singular value, etc.
\end{itemize}
The second constructor allows to build the regression matrix,
\begin{lstlisting}[style=CStyle]
LocalLinearRegression(const bool &p_bZeroDate,
const shared_ptr< ArrayXXd> &p_particles,
const Eigen::ArrayXi &p_nbMesh,
bool p_bRotationAndRecale = false)
\end{lstlisting}
where
\begin{itemize}
\item \code{p\_bZeroDate} is \code{true} if the regression date is $0$,
\item \code{p\_particles} the particles $X_t$ for all simulations (dimension of $X_t$ for the first dimension, number of Monte Carlo simulations in the second dimension),
\item \code{p\_nbMesh} is an array giving the number of meshes used in each direction $(4,4)$ for the figure \ref{Mesh}
\item \code{p\_bRotationAndRecale} is an optional argument defined as \code{ false} by default which means that no data is rotated in its main components axis. In the case of rotation, the directions are sorted with their decreasing singular values and the number of meshes in \code{p\_nbMesh} are defined for these sorted directions: \code{p\_nbMesh(0)} is associated with first direction with the highest singular value, \code{p\_nbMesh(1)} with the direction associated with the second highest singular value etc.
\end{itemize}
This class can benefit from the methodology in \cite{magnani2009convex} implementing a generalization of the member function \code{getAllSimulations}:
\begin{lstlisting}[style=CStyle]
Eigen::ArrayXd getAllSimulationsConvex(const Eigen::ArrayXd &p_fToRegress, const int &p_nbIterMax)
\end{lstlisting}
where
\begin{itemize}
\item \code{p\_fToRegress} is the set of points that we want to regress while preserving the convexity of the regressed function value
\item \code{p\_nbIterMax} is the maximum number of iterations of the method.
\end{itemize}
It returns the regressed values for all the simulations of the uncertainties.
\subsubsection{An example in the linear case}
Below, we give a small example where \code{toRegress} corresponds to $g(t+h, X_{t+h})$ for all simulations and $x$ store $X_t$ for all simulations.
\begin{lstlisting}[style=CStyle]
// create the mesh for a 2 dim problem, 4 meshes per direction
ArrayXi nbMesh = ArrayXi::Constant(2, 4);
// t is not zero
bool bZeroDate = 0;
// constructor, no rotation of the data
LocalLinearRegression localRegressor(nbMesh);
// update particles values
localRegressor.updateSimulations(bZeroDate, x);
// regressed values
ArrayXd regressedValues = localRegressor.getAllSimulations(toRegress);
\end{lstlisting}
\subsection{Python API}
\label{sec:pythonRegAdapt}
Here is a similar example using the second constructor of the linear case
\begin{lstlisting}[style=PStyle]
import StOptReg
nbSimul = 5000000;
np.random.seed(000)
x = np.random.uniform(-.,1.,size=(1,nbSimul));
# real function
toReal = (2+x[0,:]+(+x[0,:])*(1+x[0,:]))
# function to regress
toRegress = toReal + 4*np.random.normal(0.,nbSimul)
# mesh
nbMesh = np.array([6],dtype=np.int32)
# Regressor without rotation of data
regressor = StOptReg.LocalLinearRegression(False,x,nbMesh)
y = regressor.getAllSimulations(toRegress).transpose()[0]
\end{lstlisting}
Of cours,e the constant per cell case in python is similar.
As in C++, the linear case allows us to try to regress while preserving the convexity using the $getAllSimulationsConvex$ method.
\section{Adapted local basis by K-Means clustering methods}
This method can be interesting when a small number of particles is available to calculate the regressions and
we propose a K-Means clustering method to cluster simulations together. \\
The classical K-Means clustering method is as follows:
N points $X^k$ with $k=1$ to $N$ are given. A partition of the domain $S=(S_m)_{m \le p}$ with $p \le N$ domains is obtained by minimizing
\begin{flalign*}
\argmin_{S} \sum_{k=1}^p \sum_{X^{j} \in S_k} ||X^{j} - \mu_k ||^2 ,
\end{flalign*}
where $\mu_k$ is the barycenter of all points $X^{j} \in S_k$.\\
The classic Lloyd algorithm is used to calculated the cluster:
\begin{algorithm}[H]
\caption{Lloyd algorithm}
\label{LloydAlgo}
\begin{algorithmic}[1]
\State Choose $p$ points as initialization for $\mu_k^1$, $k=1, p$
\While{Not converged}
\State affect each particle to its Voronoi cell:
\begin{flalign*}
S^{l}_k= \{ X^i : || X^i - \mu^l_k|| \le || X^i - \mu^l_m||, m =1, p \}
\end{flalign*}
\State Update
\begin{flalign*}
\mu^{l+1}_k = \frac{1}{|S_k^l|} \sum_{X^i \in S_k^l} X^i
\end{flalign*}
\EndWhile
\end{algorithmic}
\end{algorithm}
This algorithm is effective in 1D by sorting the coordinates of the particles. Its extension in the general case is costly due the calculation of the Voronoi cells and the distance between all points.\\
We suppose that, as in the adaptive case with same probability, we want to have a partition such that the number of meshes in each direction is $I_k$ for $k=1,d$.\\
We propose a recursive algorithm to calculate the meshes.
This algorithm is given by \ref{algo:LloydAlgo1DR} and \ref{algo:LloydAlgoModified},
\begin{algorithm}[H]
\caption{Recursive 1D Lloyd algorithm}
\label{algo:LloydAlgo1DR}
\begin{algorithmic}[1]
\Procedure{RecurKMeans}{$id$,$X_{i_1,\dots,i_{id-1}}$, $S_{i_1,\dots,i_{id-1}}$}
\State Sort the particle in dimension $id$ and use Lloyd algorithm to partition $S_{i_1,\dots,i_{id-1}}$ in the dimension $id$ and get
$S^{i_1,\dots,i_{id}}$ , $i_{id} =1 , I_{id}$.
\For{$i_{id}=1, I_{id}$}
\State $X_{i_1,\dots,i_{id}} = \{ X \in X_{i_1,\dots,i_{id-1}} / X \in S_{i_1,\dots,i_{id}} \}$
\If{ $id < d$}
\State RecurKMeans( $id+1$, $X_{i_1,\dots,i_{id}}$, $ S_{i_1,\dots,i_{id}}$)
\EndIf
\EndFor
\EndProcedure
\end{algorithmic}
\end{algorithm}
\begin{algorithm}[H]
\caption{Modified Lloyd algorithm}
\label{algo:LloydAlgoModified}
\begin{algorithmic}[1]
\State $S= \R^d$, $X = \{ X^i / i =1,N\}$
\State RecurKMeans($1,X,S$)
\end{algorithmic}
\end{algorithm}
and an example of a resulting partition is given on figure \ref{fig:2DModifCluster} in 2D for $I_1=3, I_2=4$.
\begin{figure}[H]
\begin{centering}
\includegraphics[width=0.3\paperwidth]{ModifiedLloyd.png}
\par\end{centering}
\caption{Possible 2D partition due to modified K-Means algorithm \label{fig:2DModifCluster}}
\end{figure}
Once the partition has been performed, a regression is performed with a constant representation per mesh: \\
We note $(S^{i}_k)_{k=1,p}$ , a partition with the above method at the date $t_i$ using Monte Carlo particles $X_{t_i}^{(k)}$, $k=1, N$.
To calculate the conditional expectation of a function $g$ of $X_{t_{i+1}}$,
we use the constant representation by mesh and we then have:
\begin{flalign*}
\E[ g(X_{t_{i+1}}) / X_{t_i}= X_{t_i}^{k}] \simeq
\frac{1}{ |S^{i}_p|} \sum_{j / X_{t_i}^{j} \in S^{i}_p} g(X_{t_{i+1}}^j)
\end{flalign*}
where $X_{t_{i+1}}^k \in |S^{i}_p|$.
\subsection{C++ API}
The constructor of the local K-Means regression object is similar to that of the LocalConstRegression object inthe \ref{sec:ApiLocalConst} section. We do not then recall the signification of all the arguments. \\
A first constructor is:
\begin{lstlisting}[style=CStyle]
LocalKMeansRegression(const Eigen::ArrayXi &p_nbMesh, bool p_bRotationAndRecale = false);
\end{lstlisting}
and the second constructor permits the build the regression matrix,
\begin{lstlisting}[style=CStyle]
LocalKMeansRegression(const bool &p_bZeroDate,
const shared_ptr< ArrayXXd> &p_particles,
const Eigen::ArrayXi &p_nbMesh,
bool p_bRotationAndRecale = false)
\end{lstlisting}
\subsection{Python api}
Since the C++ API is the same as that of the \code{LocalConstRegression} object, we have the same python binding as in the \ref{sec:pythonRegAdapt} section.
\section{Local polynomial basis with meshes of same size}
\label{subsec::localSameSize}
In certain cases, instead of using adapted meshes, one can prefer to fix the mesh with a constant step in each direction with $I_k$ meshes in each direction so that
the total number of cells is $M_M= \prod_{k=1,d} I_k$.
On each cell as in section \ref{subsec::local}, one can have two approximations:
\begin{itemize}
\item either a linear per mesh representation, so the global number of degrees of freedom is equal to $M_M$,
\item or a linear function with $1+d$ degrees of freedom, so the global number of degrees of freedom is equal to $M_M*(1+d)$.
\end{itemize}
Because we define in each direction, the domain for the local basis, we do not use any data rotation.
\subsection{C++ API}
\subsubsection{The constant per cell approximation}
The constructor of the local constant regression object is achieved by
\begin{lstlisting}[style=CStyle]
LocalSameSizeConstRegression(const Eigen::ArrayXd &p_lowValues, const Eigen::ArrayXd &p_step, const Eigen::ArrayXi &p_nbStep);
\end{lstlisting}
\begin{itemize}
\item \code{p\_lowValues} is an array giving the first point of the grid in each direction,
\item \code{p\_step} is an array giving the size of the meshes in each direction,
\item \code{p\_nbStep} is an array giving the number of meshes used in each direction.
\end{itemize}
The second constructor allows to build the regression matrix,
\begin{lstlisting}[style=CStyle]
LocalSameSizeConstRegression(const bool &p_bZeroDate,
const std::shared_ptr< Eigen::ArrayXXd > &p_particles,
const Eigen::ArrayXd &p_lowValues,
const Eigen::ArrayXd &p_step,
const Eigen::ArrayXi &p_nbStep);
\end{lstlisting}
where
\begin{itemize}
\item \code{p\_bZeroDate} is \code{true} if the regression date is $0$,
\item \code{p\_particles} the particles $X_t$ for all simulations (dimension of $X_t$ for first dimension, number of Monte Carlo simulations in second dimension),
\item \code{p\_lowValues} is an array giving the first point of the grid in each direction,
\item \code{p\_step} is an array giving the size of the meshes in each direction,
\item \code{p\_nbStep} is an array giving the number of meshes used in each direction.
\end{itemize}
\subsubsection{The linear per cell approximation}
The constructor of the local linear regression object is achieved by
\begin{lstlisting}[style=CStyle]
LocalSameSizeLinearRegression(const Eigen::ArrayXd &p_lowValues, const Eigen::ArrayXd &p_step, const Eigen::ArrayXi &p_nbStep);
\end{lstlisting}
where
\begin{itemize}
\item \code{p\_lowValues} is an array giving the first point of the grid in each direction,
\item \code{p\_step} is an array giving the size of the meshes in each direction,
\item \code{p\_nbStep} is an array giving the number of meshes used in each direction.
\end{itemize}
The second constructor allows to build the regression matrix,
\begin{lstlisting}[style=CStyle]
LocalSameSizeLinearRegression(const bool &p_bZeroDate,
const std::shared_ptr< Eigen::ArrayXXd > &p_particles,
const Eigen::ArrayXd &p_lowValues,
const Eigen::ArrayXd &p_step,
const Eigen::ArrayXi &p_nbStep)
\end{lstlisting}
where
\begin{itemize}
\item \code{p\_bZeroDate} is \code{true} if the regression date is $0$,
\item \code{p\_particles} the particles $X_t$ for all simulations (dimension of $X_t$ for first dimension, number of Monte Carlo simulations in second dimension),
\item \code{p\_lowValues} is an array giving the first point of the grid in each direction,
\item \code{p\_step} is an array giving the size of the meshes in each direction,
\item \code{p\_nbStep} is an array giving the number of meshes used in each direction.
\end{itemize}
\subsection{An example in the linear case}
Below we give a small example where \code{toRegress} is the array to regress as a function of x an array ``x'' in dimension \code{p\_nDim}:
\begin{lstlisting}[style=CStyle]
// create a random ``x'' array
shared_ptr<ArrayXXd> x(new ArrayXXd(ArrayXXd::Random(p_nDim, p_nbSimul)));
// create the mesh by getting min and max value on the samples
double xMin = x->minCoeff() - tiny;
double xMax = x->maxCoeff() + tiny;
ArrayXd lowValues = ArrayXd::Constant(p_nDim, xMin);
ArrayXd step = ArrayXd::Constant(p_nDim, (xMax - xMin) / p_nMesh);
ArrayXi nbStep = ArrayXi::Constant(p_nDim, p_nMesh);
// constructor
LocalLinearRegression localRegressor(lowValues,step, nbStep);
// update particles values
localRegressor.updateSimulations(bZeroDate, x);
// regressed values
ArrayXd regressedValues = localRegressor.getAllSimulations(toRegress);
\end{lstlisting}
\subsection{Python API}
Here is a similar example using the second constructor of the linear case
\begin{lstlisting}[style=PStyle]
import StOptReg
nbSimul = 5000000;
np.random.seed(000)
x = np.random.uniform(-.,1.,size=(1,nbSimul));
# real function
toReal = (2+x[0,:]+(+x[0,:])*(1+x[0,:]))
# function to regress
toRegress = toReal + 4*np.random.normal(0.,,nbSimul)
# mesh
nStep = 20
lowValue = np.array([-1.0001],dtype=np.float)
step = np.array([2.0002/nStep],dtype=np.float)
nbMesh = np.array([nStep],dtype=np.int32)
# Regressor
regressor = StOptReg.LocalSameSizeLinearRegression(False,x,lowValue,step,nbMesh)
y = regressor.getAllSimulations(toRegress).transpose()[0]
\end{lstlisting}
Of course, the constant per cell in python is similar.
\section{Sparse grid regressor}
\label{sec:sparseGridReg}
In the case of a sparse regressor, the grid is an object \href{run:../StOpt/StOpt/core/grids/SparseSpaceGridNoBound.h}{\code{SparseSpaceGridNoBound}} (extrapolation for the boundary conditions).
The basis functions are given by the section \ref{sec::Sparse} for a linear, quadratic or cubic function base. No data rotation is available.
\subsection{C++ API}
Two specific constructor are available:
\begin{itemize}
\item The first one to be used with the \code{updateSimulations} methods
\begin{lstlisting}[style=CStyle]
SparseRegression(const int &p_levelMax, const Eigen::ArrayXd &p_weight, const int &p_degree, bool p_bNoRescale = false);
\end{lstlisting}
where
\begin{itemize}
\item \code{p\_levelMax} corresponds to $n$ in the equation \reff{classSparse},
\item \code{p\_weight} the weight of the sparse anisotropic grids (see equation \reff{anisotropicSparse},
\item \code{p\_degree} is equal to (linear basis function ), or 2 (quadratic basis) or 3 (for cubic basis functions),
\item \code{p\_bNoRescale} if \code{true} no rescaling of the particles is used. Otherwise a new scaling of the mesh size is obtained (as for local basis functions, see section \ref{subsec::local})
\end{itemize}
\item The second take the same arguments as the first constructor but adds a Boolean
to check if the regression date is $0$ and the particles $X_t$ (here the scaling is always performed):
\begin{lstlisting}[style=CStyle]
SparseRegression(const bool &p_bZeroDate,
const shared_ptr< Eigen::ArrayXXd > &p_particles,
const int &p_levelMax, const Eigen::ArrayXd &p_weight,
const int &p_degree);
\end{lstlisting}
\end{itemize}
A simple example to express the regression of \code{toRegress}
\begin{lstlisting}[style=CStyle]
// second member to regress
ArrayXd toRegress(p_nbSimul);
// for testing
toRegress.setConstant(.);
shared_ptr<ArrayXXd> x(new ArrayXXd(ArrayXXd::Random(p_nDim, p_nbSimul)));
// constructor : the current date is not zero
bool bZeroDate = 0;
// constructor
SparseRegression sparseRegressor(p_level , weight, p_degree);
sparseRegressor.updateSimulations(bZeroDate, x); // update the state
// then just calculate function basis coefficient
ArrayXd regressedFuntionCoeff = sparseRegressor.getCoordBasisFunction(toRegress);
// use the getValue method to get back the regressed values
for (int is = 0; is < p_nbSimul; ++is)
{
Map<ArrayXd> xloc(x->col(is).data(), p_nDim);
double reg = sparseRegressor.getValue(xloc, regressedFuntionCoeff);
}
// get back all values once for all
ArrayXd regressedAllValues = localRegressor.getValues(*x,regressedFuntionCoeff) ;
\end{lstlisting}
\subsection{Python API}
Here is a simple example of the python API:
\begin{lstlisting}[style=PStyle]
import StOptReg
nbSimul = 2000000;
np.random.seed(000)
x = np.random.uniform(-.,1.,size=(1,nbSimul));
# real function
toReal = (2+x[0,:]+(+x[0,:])*(1+x[0,:]))
# function to regress
toRegress = toReal + 4*np.random.normal(0.,,nbSimul)
# level for sparse grid
iLevel = 5;
# weight for anisotropic sparse grids
weight= np.array([],dtype=np.int32)
# Regressor degree
regressor = StOptReg.SparseRegression(False,x,iLevel, weight, )
y = regressor.getAllSimulations(toRegress)
# get back basis function
regressedFuntionCoeff= regressor.getCoordBasisFunction(toRegress)
# get back all values
ySecond= regressor.getValues(x,regressedFuntionCoeff)
\end{lstlisting}
\section{Global polynomial basis}
\label{sec:globPol}
\subsection{Description of the method}
In this section, the $\psi_k(X_t)$ involved in equation \ref{regressed} are given polynomials.
The available polynomials are the canonical polynominals, those of Hermite and Chebyshev.\\
\begin{itemize}
\item Hermite polynomials $H_m(x) = (-1)^n e^{\frac{x^2}{2}} \frac{d^n}{dx^n} e^{-\frac{x^2}{2}} $ are orthogonal with respect to the weight $w(x) = e^{-\frac{x^2}{2}}$ and we get
$$ \int_{-\infty}^{+\infty} H_m(x) H_n(x) dx =\delta_{mn} \sqrt{2 \pi} n!$$
they satisfy the recurrence:
$$ H_{n+1}(x)= x H_n(x) - H_n^{'}(x)$$
assuming $H_n(x)= \sum_{k=0}^n a_{n,k} x^k$, we get the recurrence
\begin{eqnarray}
a_{n+1,k}= a_{n,k-1} - n a_{n-1,k}, k> 0 \\
a_{n+1,0} = - n a_{n-1,0}
\end{eqnarray}
\item Chebyshev polynomials are $T_{N+1}(x)= cos ((N+1) arcs(x))$. They are orthogonal to the weight $w(x) = \frac{1}{\sqrt{1-x^2}}$ and
$$ \int_{-1}^{1} T_{N}(x)T_{M}(x) w(x) dx = \left \{ \begin{array}{l}
0 , \mbox{ if } M \ne N \\
\pi, \mbox{ if } M=N=0 \\
\frac{\pi}{2}, \mbox{ if } M=N \ne 0
\end{array}
\right.
$$
They satisfy the following recurrence:
$$T_{N+2}(x) = 2x T_{N+1}(x) - T_N(x)$$
\end{itemize}
Optionally, data rotation is possible even if the advantage of rotation seems limited for global polynomials.
\subsection{C++ API}
The class \code{GlobalRegression} is templated by the type of the polynomial (\code{Canonical}, \code{Tchebychev} or \code{Hermite})
The first constructor:
\begin{lstlisting}[style=CStyle]
GlobalRegression(const int & p_degree, const int & p_dim, bool p_bRotationAndRecale = false);
\end{lstlisting}
where \code{p\_degree} is the total degree of the polynomial approximation, \code{p\_dim} is the dimension of the problem, \code{p\_bRotationAndRecale} is an optional flag set to \code{true} if data rotation must be performed (by default, no rotation).
A second constructor is provided:
\begin{lstlisting}[style=CStyle]
GlobalRegression(const bool &p_bZeroDate,
const std::shared_ptr< Eigen::ArrayXXd > &p_particles,
const int & p_degree, bool p_bRotationAndRecale = false)
\end{lstlisting}
where
\begin{itemize}
\item \code{p\_bZeroDate} is \code{true} if the regression date is $0$,
\item \code{p\_particles} the particles $X_t$ for all simulations (dimension of $X_t$ for first dimension, number of Monte Carlo simulations in second dimension),
\item \code{p\_degree} is the total degree of the polynomial approximation,
\item \code{p\_bRotationAndRecale} is an optional flag set to \code{true} if data rotation is to be performed (default, no rotation)
\end{itemize}
Below, we give a small example where \code{toRegress} corresponds to $g(t+h, X_{t+h})$ for all simulations and $x$ store $X_t$ for all simulations.
\begin{lstlisting}[style=CStyle]
// total degree equal to 2
int degree=2;
// t is not zero
bool bZeroDate = 0;
// constructor with Hermite polynomials, no rotation
GlobalRegression<Hermite> localRegressor(degree,x.rows());
// update particles values
localRegressor.updateSimulations(bZeroDate, x);
// regressed values
ArrayXd regressedValues = localRegressor.getAllSimulations(toRegress);
\end{lstlisting}
In the example above, the Hermite regression can be replaced by the canonical regression:
\begin{lstlisting}[style=CStyle]
GlobalRegression<Canonical> localRegressor(degree,x.rows());
\end{lstlisting}
or by a Chebyshev:
\begin{lstlisting}[style=CStyle]
GlobalRegression<Tchebychev> localRegressor(degree,x.rows());
\end{lstlisting}
\subsection{Python API}
Here is a similar example using the second constructor
\begin{lstlisting}[style=PStyle]
import StOptReg
nbSimul = 5000000;
np.random.seed(1000)
x = np.random.uniform(-.,1.,size=(1,nbSimul));
# real function
toReal = (2+x[0,:]+(+x[0,:])*(1+x[0,:]))
# function to regress
toRegress = toReal + 4*np.random.normal(0.,,nbSimul)
# degree
degree =2
# Regressor, no rotation
regressor = StOptReg.GlobalHermiteRegression(False,x,degree)
y = regressor.getAllSimulations(toRegress).transpose()[0]
\end{lstlisting}
The available regressors are \code{GlobalHermiteRegression} as in the example above , \code{GlobalCanonicalRegression} and \code{GlobalTchebychevRegression} with obvious correspondence.
\section{Kernel regression with Epanechnikov kernel}
\label{sec:kernelReg}
Let $(x_{1},y_{1}),(x_{2},y_{2}),\ldots,(x_{N},y_{N})$ be a sample of
$N$ input points $x_{i}$ and output points $y_{i}$ drawn from
a joint distribution $(X,Y)$. The kernel density estimator (aka Parzen--Rosenblatt
estimator) of the density of $X$ at the evaluation point $z$ is
given by:
\begin{equation}
\hat{f}_{\mathrm{KDE}}(z):=\frac{1}{N}\sum_{i=1}^{N}K_{h}(x_{i}-z)\label{eq:localdens}
\end{equation}
where $K_{h}(u):=\frac{1}{h}K\left(\frac{u}{h}\right)$ with kernel
$K$ and bandwidth $h$. The Nadaraya--Watson kernel regression estimator
of $\mathbb{E}\left[Y\left|X=z\right.\right]$ is given by:
\begin{equation}
\hat{f}_{\mathrm{NW}}(z):=\frac{\sum_{i=1}^{N}K_{h}(x_{i}-z)y_{i}}{\sum_{i=1}^{N}K_{h}(x_{i}-z)}\label{eq:localreg0}
\end{equation}
The estimator $\hat{f}_{\mathrm{NW}}(z)$ performs a kernel-weighted
local average of the response points $y_{i}$ that are such that their
corresponding inputs $x_{i}$ are close to the evaluation point $z$.
It can be described as a locally constant regression. More generally,
locally linear regressions can be performed:
\begin{equation}
\hat{f}_{\mathrm{L}}(z):=\min_{\alpha(z),\beta(z)}\sum_{i=1}^{N}K_{h}(x_{i}-z)\left[y_{i}-\alpha(z)-\beta(z)x_{i}\right]^{2}\label{eq:localreg1}
\end{equation}
The well known computational problem with the implementation of the
kernel smoothers \eqref{eq:localdens}-\eqref{eq:localreg0}-\eqref{eq:localreg1}
is that their direct evaluation on a set of $M$ evaluation points
would require $\mathcal{O}(M\times N)$ operations. In particular,
when the evaluation points coincide with the input points $x_{1},x_{2},\ldots,x_{N}$,
a direct evaluation requires a quadratic $\mathcal{O}(N^{2})$ number
of operations.
StOpt implements the methodology described in \cite{langrene2017fast} to bring the computational cost down to $\mathcal{O}(N \log N)$.
\subsection{The univariate case}
In one dimension, StOpt uses the one-dimensional Epanechnikov kernel
\begin{flalign*}
K(u)=\frac{3}{4}(1-u^{2})\mathbbm{1}\{\left|u\right|\leq1\}
\end{flalign*}
and the fast summation algorithm is used:
Let $(x_{1},y_{1}),(x_{2},y_{2}),\ldots,(x_{N},y_{N})$
be a sample of $N$ input points (source) $x_{i}$ and output points
$y_{i}$, and let $z_{1},z_{2},\ldots,z_{M}$ be a set of $M$ evaluation
(target) points. Without loss of generality, we assume that the input
points and evaluation points are sorted: $x_{1}\leq x_{2}\leq\ldots\leq x_{N}$
and $z_{1}\leq z_{2}\leq\ldots\leq z_{M}$. In order to compute the
kernel density estimator \eqref{eq:localdens}, kernel regression
\eqref{eq:localreg0} and locally linear regression \eqref{eq:localreg1}
for every evaluation point $z_{j}$, we need to compute sums of
the type
\begin{equation}
\mathbf{S}_{j}=\mathbf{S}_{j}^{p,q}:=\frac{1}{N}\sum_{i=1}^{N}K_{h}(x_{i}-z_{j})x_{i}^{p}y_{i}^{q}=\frac{1}{Nh}\sum_{i=1}^{N}K\left(\frac{x_{i}-z_{j}}{h}\right)x_{i}^{p}y_{i}^{q}\,,p=0,1,\,q=0,1\label{eq:sum_unidim}
\end{equation}
for each $j\in\{1,2,\ldots,M\}$. Direct and independent evaluation
of these sums would require $\mathcal{O}(N\times M)$ operations (a
sum of $N$ terms for each $j\in\{1,2,\ldots,M\}$). The idea of fast
sum updating consists in using the information in the sum $\mathbf{S}_{j}$
to calculate the next sum $\mathbf{S}_{j+1}$ without going through
all the $N$ input points again. Using the Epanechnikov
kernel (parabolic) $K(u)=\frac{3}{4}(1-u^{2})\mathbbm{1}\{\left|u\right|\leq1\}$ we get:
\begin{align}
& \mathbf{S}_{j}^{p,q}=\frac{1}{Nh}\sum_{i=1}^{N}\frac{3}{4}\left(1-\left(\frac{x_{i}-z_{j}}{h}\right)^{2}\right)x_{i}^{p}y_{i}^{q}\mathbbm{1}\{z_{j}\!-\!h\leq x_{i}\leq z_{j}\!+\!h\}\nonumber \\
& =\frac{1}{Nh}\frac{3}{4}\sum_{i=1}^{N}\left(1-\frac{z_{j}^{2}}{h^{2}}+2\frac{z_{j}}{h^{2}}x_{i}-\frac{1}{h^{2}}x_{i}^{2}\right)x_{i}^{p}y_{i}^{q}\mathbbm{1}\{z_{j}\!-\!h\leq x_{i}\leq z_{j}\!+\!h\}\nonumber \\
& =\frac{3}{4Nh}\left\{ \!\left(\!1\!-\!\frac{z_{j}^{2}}{h^{2}}\!\right)\!\mathcal{S}^{p,q}([z_{j}\!-\!h,z_{j}\!+\!h])+2\frac{z_{j}}{h^{2}}\mathcal{S}^{p+1,q}([z_{j}\!-\!h,z_{j}\!+\!h])-\frac{1}{h^{2}}\mathcal{S}^{p+2,q}([z_{j}\!-\!h,z_{j}\!+\!h])\!\right\} \label{eq:parabolic-kernel-development}
\end{align}
where
\begin{equation}
\mathcal{S}^{p,q}([L,R]):=\sum_{i=1}^{N}x_{i}^{p}y_{i}^{q}\mathbbm{1}\{L\leq x_{i}\leq R\}\label{eq:SpqLR}
\end{equation}
These sums $\mathcal{S}^{p,q}([z_{j}-h,z_{j}+h])$ can be evaluated
quickly from $j=1$ to $j=M$ as long as the input points $x_{i}$
and the evaluation points $z_{j}$ are sorted in ascending order.
Indeed,
\begin{align}
& \mathcal{S}^{p,q}([z_{j+1}\!-\!h,z_{j+1}\!+\!h])=\sum_{i=1}^{N}x_{i}^{p}y_{i}^{q}\mathbbm{1}\{z_{j+1}\!-\!h\leq x_{i}\leq z_{j+1}\!+\!h\}\nonumber \\
& =\sum_{i=1}^{N}x_{i}^{p}y_{i}^{q}\mathbbm{1}\{z_{j}\!-\!h\leq x_{i}\leq z_{j}\!+\!h\}\nonumber \\
& -\sum_{i=1}^{N}x_{i}^{p}y_{i}^{q}\mathbbm{1}\{z_{j}\!-\!h\leq x_{i}<z_{j+1}\!-\!h\}+\sum_{i=1}^{N}x_{i}^{p}y_{i}^{q}\mathbbm{1}\{z_{j}\!+\!h<x_{i}\leq z_{j+1}\!+\!h\}\nonumber \\
& =\mathcal{S}^{p,q}([z_{j}\!-\!h,z_{j}\!+\!h])-\mathcal{S}^{p,q}([z_{j}\!-\!h,z_{j+1}\!-\!h[)+\mathcal{S}^{p,q}(]z_{j}\!+\!h,z_{j+1}\!+\!h])\label{eq:1d_updating}
\end{align}
Therefore, we can simply update the sum $\mathcal{S}^{p,q}([z_{j}-h,z_{j+1}+h])$
for the evaluation point $z_{j}$ to obtain the next sum $\mathcal{S}^{p,q}([z_{j+1}-h,z_{j+1}+h])$
for the next evaluation point $z_{j+1}$ by subtracting the terms
$x_{i}^{p}y_{i}^{q}$ for which $x_{i}$ is between $z_{j}-h$ and
$z_{j+1}-h,$ and adding the terms $x_{i}^{p}y_{i}^{q}$ for which
$x_{i}$ is between $z_{j}+h$ and $z_{j+1}+h$. This can be achieved
in a fast $\mathcal{O}(M+N)$ operations by going through the input
points $x_{i}$, stored in increasing order at a cost of $\mathcal{O}(N\log N)$ operations,
and through the evaluation points $z_{j}$, stored in
increasing order at a cost of $\mathcal{O}(M\log M)$ operations.\\
\subsection{The multivariate case}
We now turn to the multivariate case. Let $d$ be the dimension of
the inputs. We consider again a sample $(x_{1},y_{1}),(x_{2},y_{2}),\ldots,(x_{N},y_{N})$
of $N$ input points $x_{i}$ and output points $y_{i}$, where the
input points are now multivariate:
\[
x_{i}=\left(x_{1,i},x_{2,i},\ldots,x_{d,i}\right)\,,\,i\in\{1,2,\ldots,N\}
\]
The StOpt library implements the additive Epanechnikov kernel in the multi-dimensional case (\cite{langrene2017fast}).
\begin{equation}
K_{d}\left(u_{1},\ldots,u_{d}\right)=\frac{1}{d2^{d-1}}\sum_{k=1}^{d}K(u_{k})\prod_{k_{0}=1}^{d}\mathbbm{1}\{\left|u_{k_{0}}\right|<1\}=\frac{3}{d2^{d+1}}\sum_{k=1}^{d}\left(1-u_{k}^{2}\right)\prod_{k_{0}=1}^{d}\mathbbm{1}\{\left|u_{k_{0}}\right|<1\}\label{eq:kernel_mean}
\end{equation}
We can show (\cite{langrene2017fast})
that calculating the multivariate version of the smoothing kernels
\eqref{eq:localdens}, \eqref{eq:localreg0} and \eqref{eq:localreg1}
boils down to the calculation of the following sums:
\begin{eqnarray}
\mathbf{S}_{j} & = & \mathbf{S}_{k_{1},k_{2},j}^{p_{1},p_{2},q}:=\frac{1}{N}\sum_{i=1}^{N}K_{d,h}(x_{i}-z_{j})x_{k_{1},i}^{p_{1}}x_{k_{2},i}^{p_{2}}y_{i}^{q}\nonumber \\
& = & \frac{1}{N\Pi_{k=1}^{d}h_{k}}\sum_{i=1}^{N}K_{d}\left(\frac{x_{1,i}-z_{1,j}}{h_{1}},\frac{x_{2,i}-z_{2,j}}{h_{2}},\ldots,\frac{x_{d,i}-z_{d,j}}{h_{d}}\right)x_{k_{1},i}^{p_{1}}x_{k_{2},i}^{p_{2}}y_{i}^{q}\label{eq:sum_multidim}
\end{eqnarray}
for each evaluation point $z_{j}=(z_{1,j},z_{2,j},\ldots,z_{d,j})\in\mathbb{R}^{d}$,
$j\in\{1,2,\ldots,M\}$, for powers $p_{1},p_{2},q=0,1$ and for dimension
indices $k_{1},k_{2}=1,2,\ldots,d$.
\subsubsection{Kernel expansion}
Using the multivariate kernel \eqref{eq:kernel_mean}, we can expand
the sum \eqref{eq:sum_multidim} as follows:
\begin{align}
& \mathbf{S}_{j}=\frac{1}{N\prod_{k=1}^{d}h_{k}}\sum_{i=1}^{N}K_{d}\left(\frac{x_{1,i}-z_{1,j}}{h_{1}},\frac{x_{2,i}-z_{2,j}}{h_{2}},\ldots,\frac{x_{d,i}-z_{d,j}}{h_{d}}\right)x_{k_{1},i}^{p_{1}}x_{k_{2},i}^{p_{2}}y_{i}^{q}\nonumber \\
& =\frac{3}{d2^{d+1}N\prod_{k=1}^{d}h_{k}}\sum_{i=1}^{N}\sum_{k=1}^{d}\left(1-\frac{(x_{k,i}-z_{k,j})^{2}}{h_{k}^{2}}\right)x_{k_{1},i}^{p_{1}}x_{k_{2},i}^{p_{2}}y_{i}^{q}\prod_{k_{0}=1}^{d}\mathbbm{1}\{\left|x_{k_{0},i}-z_{k_{0},j}\right|\leq1\}\nonumber \\
& =\frac{3}{d2^{d+1}N\prod_{k=1}^{d}h_{k}}\sum_{k=1}^{d}\sum_{i=1}^{N}\left(1-\frac{z_{k,j}^{2}}{h_{k}^{2}}+2\frac{z_{k,j}}{h_{k}^{2}}x_{k,i}-\frac{1}{h_{k}^{2}}x_{k,i}^{2}\right)x_{k_{1},i}^{p_{1}}x_{k_{2},i}^{p_{2}}y_{i}^{q}\prod_{k_{0}=1}^{d}\mathbbm{1}\{\left|x_{k_{0},i}-z_{k_{0},j}\right|\leq1\}\nonumber \\
& =\frac{3}{d2^{d+1}N\prod_{k=1}^{d}h_{k}}\sum_{k=1}^{d}\left\{ \left(1-\frac{z_{k,j}^{2}}{h_{k}^{2}}\right)\mathcal{S}_{[k,k_{1},k_{2}]}^{[0,p_{1},p_{2}],q}([z_{j}-h_{j},z_{j}+h_{j}])+\right.\nonumber \\
& =\left.2\frac{z_{k,j}}{h_{k}^{2}}\mathcal{S}_{[k,k_{1},k_{2}]}^{[1,p_{1},p_{2}],q}([z_{j}-h_{j},z_{j}+h_{j}])-\frac{1}{h_{k}^{2}}\mathcal{S}_{[k,k_{1},k_{2}]}^{[2,p_{1},p_{2}],q}([z_{j}-h_{j},z_{j}+h_{j}])\right\} \label{eq:parabolic-kernel-development-multivariate}
\end{align}
where
\begin{equation}
\mathcal{S}^{\mathrm{idx}}([\mathbf{L},\mathbf{R}]):=\mathcal{S}_{\mathbf{k}}^{\mathbf{p},q}([\mathbf{L},\mathbf{R}]):=\sum_{i=1}^{N}\left(\prod_{l=1}^{3}(x_{k_{l},i})^{p_{l}}\right)y_{i}^{q}\prod_{k_{0}=1}^{d}\mathbbm{1}\{L_{k_{0}}\leq x_{k_{0},i}\leq R_{k_{0}}\}\label{eq:SpqLRd}
\end{equation}
for any hyperrectangle $[\mathbf{L},\mathbf{R}]:=\left[L_{1},R_{1}\right]\times\left[L_{2},R_{2}\right]\times\ldots\times\left[L_{d},R_{d}\right]\subseteq\mathbb{R}^{d}$,
powers $\mathbf{p}:=(p_{1},p_{2},p_{3})\in\mathbb{N}^{3}$, $q\in\mathbb{N}$, indices $\mathbf{k}:=(k_{1},k_{2},k_{3})\in\{1,2,\ldots,d\}^{3}$,
and where $[z_{j}-h_{j},z_{j}+h_{j}]:=\left[z_{1,j}-h_{1,j},z_{1,j}+h_{1,j}\right]\times\ldots\times\left[z_{d,j}-h_{d,j},z_{d,j}+h_{d,j}\right]$. To simplify notations, we make use of the multi-index $\mathrm{idx}:=(\mathbf{p},q,\mathbf{k})$.
To sum up what has been established so far, computing multivariate kernel
smoothers (kernel density estimation, kernel regression, locally linear
regression) boils down to computing sums of type \eqref{eq:SpqLRd}
on hyperrectangles of the type $[z_{j}-h_{j},z_{j}+h_{j}]$ for every evaluation
point $j\in\{1,2,\ldots,M\}$. In the univariate case, these sums
could be computed efficiently by sorting the input points $x_{i}$,
$i\in\{1,2,\ldots,N\}$ and updating the sums from one evaluation
point to the next (equation \eqref{eq:1d_updating}). We now describe a similar efficient fast sum updating algorithm for
multivariate sums \eqref{eq:SpqLRd}, first established in \cite{langrene2017fast}. To do so, we first
partition the input data into a multivariate rectilinear grid (subsection
\ref{subsec:Data-partition}), taking advantage of the fact that
the evaluation grid is rectilinear
and that the supports of the kernels have a hyperrectangle shape. Then, we set
up a fast sweeping algorithm using the sums on each hyperrectangle of the
partition as the unit blocks to be added and removed (subsection \ref{subsec:Fast-multivariate-sweeping}),
unlike the univariate case where the input points themselves were
being added and removed iteratively.
\subsubsection{Data partition\label{subsec:Data-partition}}
The first stage of the multivariate fast sum updating algorithm is
to partition the sample of input points into boxes. To do so, define
the sorted lists
$\tilde{\mathcal{G}}_{k}=\left\{ \tilde{g}_{k,1},\tilde{g}_{k,2},\ldots,\tilde{g}_{k,2M_{k}}\right\} :=\mathrm{sort}\!\left(\left\{ z_{k,j_{k}}-h_{k,j_{k}}\right\} _{j_{k}\in\{1,2,\ldots,M_{k}\}}\bigcup\left\{ z_{k,j_{k}}+h_{k,j_{k}}\right\} _{j_{k}\in\{1,2,\ldots,M_{k}\}}\right)$ in each dimension $k\in\{1,2,\ldots,d\}$, and define the partition
intervals $\tilde{I}_{k,l}:=\left[\tilde{g}_{k,l},\tilde{g}_{k,l+1}\right]$
for $l\in\left\{ 1,2,\ldots,2M_{k}-1\right\} $. By definition of
$\tilde{\mathcal{G}}_{k}$, all the bandwidths edges $z_{k,j_{k}}-h_{k,j_{k}}$
and $z_{k,j_{k}}+h_{k,j_{k}}$, $j_{k}\in\{1,2,\ldots,M_{k}\}$, belong
to $\tilde{\mathcal{G}}_{k}$. Therefore, there exists some indices
$\tilde{L}_{k,j_{k}}$ and $\tilde{R}_{k,j_{k}}$ such that $[z_{k,j_{k}}-h_{k,j_{k}},z_{k,j_{k}}+h_{k,j_{k}}]=[\tilde{g}_{k,\tilde{L}_{k,j_{k}}},\tilde{g}_{k,\tilde{R}_{k,j_{k}}\!+1}]=\bigcup_{l_{k}\in\{\tilde{L}_{k,j_{k}}\!,\ldots,\tilde{R}_{k,j_{k}}\!\}}\!\!\tilde{I}_{k,l_{k}}$.
From there, for any evaluation point $z_{j}=\left(z_{1,j_{1}},z_{2,j_{2}},\ldots,z_{d,j_{d}}\right)\in\mathbb{R}^{d}$,
the box $[z_{j}-h_{j},z_{j}+h_{j}]\subset\mathbb{R}^{d}$ can be decomposed
into a union of smaller boxes:
\vspace{-1mm}
\begin{align}
[z_{j}-h_{j},z_{j}+h_{j}] & =\left[z_{1,j_{1}}-h_{1,j_{1}},z_{1,j_{1}}+h_{1,j_{1}}\right]\times\ldots\times\left[z_{d,j_{d}}-h_{d,j_{d}},z_{d,j_{d}}+h_{d,j_{d}}\right]\nonumber \\
& =\left[\tilde{g}_{1,\tilde{L}_{1,j_{1}}},\tilde{g}_{1,\tilde{R}_{1,j_{1}}\!+1}\right]\times\ldots\times\left[\tilde{g}_{d,\tilde{L}_{d,j_{d}}},\tilde{g}_{d,\tilde{R}_{d,j_{d}}\!+1}\right]\nonumber \\
& =\bigcup_{(l_{1}\!,\ldots,l_{d})\in\{\tilde{L}_{1,j_{1}}\!,\ldots,\tilde{R}_{1,j_{1}}\!\}\!\times\ldots\times\!\{\tilde{L}_{d,j_{d}}\!,\ldots,\tilde{R}_{d,j_{d}}\!\}}\!\!\!\tilde{I}_{1,l_{1}}\!\times\ldots\times\tilde{I}_{d,l_{d}}\label{eq:pavement-1}
\end{align}
In other words, the set of boxes $\tilde{I}_{1,l_{1}}\times\tilde{I}_{2,l_{2}}\times\ldots\times\tilde{I}_{d,l_{d}}$
s.t. $l_{k}\in\{\tilde{L}_{k,j_{k}},\tilde{L}_{k,j_{k}}+1,\ldots,\tilde{R}_{k,j_{k}}\}$
in each dimension $k\in\left\{ 1,2,\ldots,d\right\} $ forms a partition
of the box $[z_{j}-h_{j},z_{j}+h_{j}]$. Consequently, the sum \eqref{eq:SpqLRd}
evaluated on the box $[z_{j}-h_{j},z_{j}+h_{j}]$ can be decomposed
as follows:
\begin{equation}
\mathcal{S}^{\mathrm{idx}}([z_{j}-h_{j},z_{j}+h_{j}])=\!\sum_{(l_{1}\!,\ldots,l_{d})\in\{\tilde{L}_{1,j_{1}}\!,\ldots,\tilde{R}_{1,j_{1}}\!\}\!\times\ldots\times\!\{\tilde{L}_{d,j_{d}}\!,\ldots,\tilde{R}_{d,j_{d}}\!\}}\!\!\!\mathcal{S}^{\mathrm{idx}}\!\left(\tilde{I}_{1,l_{1}}\times\ldots\times\tilde{I}_{d,l_{d}}\right)\label{eq:sum_partition_full-1}
\end{equation}
where we assume without loss of generality that the bandwidth grid
$h_{j}\!=\!\left(h_{1,j_{1}},\!h_{2,j_{2}},\!\ldots\!,\!h_{d,j_{d}}\right)$,
$j_{k}\in\{1,2,\ldots,M_{k}\},\,k\in\{1,2,\ldots d\}$ is such that
the list $\tilde{\mathcal{G}}_{k}$ does not contain any input $x_{k,i}$,
$i\in\left\{ 1,2,\ldots,N\right\} $ (as such boundary points would
be counted twice in the right-hand side of \eqref{eq:sum_partition_full-1}). The sum decomposition \eqref{eq:sum_partition_full-1} is the cornerstone
of the fast multivariate sum updating algorithm, but before going
further, one can simplify the partitions $\tilde{\mathcal{G}}_{k}$ while maintaining a sum decomposition
of the type \eqref{eq:sum_partition_full-1}. Indeed, in general some
intervals $\tilde{I}_{k,l}$ might be empty (i.e. they might not contain
any input point $x_{k,i}$). To avoid keeping track of sums $\mathcal{S}^{\mathrm{idx}}$
on boxes known to be empty, one can trim the partitions $\tilde{\mathcal{G}}_{k}$
by replacing each succession of empty intervals by one new partition
threshold. For example, if $\tilde{I}_{k,l}=[\tilde{g}_{k,l},\tilde{g}_{k,l+1}]$
is empty, one can remove the two points $\tilde{g}_{k,l}$ and $\tilde{g}_{k,l+1}$
and replace them by, for example, $(\tilde{g}_{k,l}+\tilde{g}_{k,l+1})/2$.
Denote by $\mathcal{G}_{k}=\left\{ g_{k,1},g_{k,2},\ldots,g_{k,m_{k}}\right\} $
the sorted simplified list, where $2\leq m_{k}\leq2M_{k}$, $k\in\left\{ 1,2,\ldots,d\right\} $,
and $m:=\prod_{k=1}^{d}m_{k}\leq2^{d}M$. Define the new partition
intervals $I_{k,l}:=\left[g_{k,l},g_{k,l+1}\right]$, $l\in\left\{ 1,2,\ldots,m_{k}-1\right\} $.
Because the trimming from $\tilde{\mathcal{G}}_{k}$ to $\mathcal{G}_{k}$
only affects the empty intervals, the following still holds:
\begin{lem}
\label{lem:sum_decomposition}For any evaluation point $z_{j}=(z_{1,j_{1}},z_{2,j_{2}},\ldots,z_{d,j_{d}})\in\mathbb{R}^{d}$,
$j_{k}\in\{1,2,\ldots,M_{k}\}$, $k\in\{1,2,\ldots d\}$ , there exists
indices $(L_{1,j_{1}},L_{2,j_{2}},\ldots,L_{d,j_{d}})$ and $(R_{1,j_{1}},R_{2,j_{2}},\ldots,R_{d,j_{d}})$
where $L_{k,j_{k}}$ and $R_{k,j_{k}}\in\{1,2,\ldots,m_{k}-1\}$ with
$L_{k,j_{k}}\leq R_{k,j_{k}}$ such that
\begin{equation}
\mathcal{S}^{\mathrm{idx}}([z_{j}-h_{j},z_{j}+h_{j}])=\!\sum_{(l_{1}\!,\ldots,l_{d})\in\{L_{1,j_{1}}\!,\ldots,R_{1,j_{1}}\!\}\!\times\ldots\times\!\{L_{d,j_{d}}\!,\ldots,R_{d,j_{d}}\!\}}\!\!\!\mathcal{S}^{\mathrm{idx}}\!\left(I_{1,l_{1}}\times\ldots\times I_{d,l_{d}}\right)\label{eq:sum_partition_slim}
\end{equation}
For later use, we introduce the compact notation $\mathcal{S}_{l_{1},l_{2},\ldots,l_{d}}^{\mathrm{idx}}\hspace{-0.1em}:=\mathcal{S}^{\mathrm{idx}}(I_{1,l_{1}}\hspace{-0.1em}\!\times\!\ldots\!\times\hspace{-0.1em}I_{d,l_{d}})$. Recalling equation \eqref{eq:SpqLRd}, the sum $\mathcal{S}_{l_{1},l_{2},\ldots,l_{d}}^{\mathrm{idx}}$ corresponds to the sum of the polynomials $(\prod_{l=1}^{3}(x_{k_{l},i})^{p_{l}})y_{i}^{q}$ over all the data points within the box $I_{1,l_{1}}\!\times\ldots\times I_{d,l_{d}}$.
\end{lem}
%
\subsubsection{Fast multivariate sweeping algorithm\label{subsec:Fast-multivariate-sweeping}}
So far, we have shown that computing multivariate kernel smoothers
is based on the computation of the kernel sums \eqref{eq:sum_multidim},
which can be decomposed into sums of the type \eqref{eq:SpqLRd},
which can themselves be decomposed into the smaller sums \eqref{eq:sum_partition_slim}
by decomposing every kernel support of every evaluation point onto
the box partition described in the previous subsection \ref{subsec:Data-partition}.
The final task is to define an efficient algorithm to traverse all
the hyperrectangle unions $\bigcup_{(l_{1}\!,\ldots,l_{d})\in\{L_{1,j_{1}}\!,\ldots,R_{1,j_{1}}\!\}\!\times\ldots\times\!\{L_{d,j_{d}}\!,\ldots,R_{d,j_{d}}\!\}}I_{1,l_{1}}\!\times\ldots\times I_{d,l_{d}}$,
so as to compute the right-hand side sums in equations \eqref{eq:sum_partition_slim} (Lemma \ref{lem:sum_decomposition}) in an efficient fast sum updating way similar to the univariate \eqref{eq:1d_updating}. We precompute all the sums $\mathcal{S}_{l_{1},l_{2},\ldots,l_{d}}^{\mathrm{idx}}$ with $\mathrm{idx}=\left(\mathbf{p},q,\mathbf{k}\right)\in\{0,1,2\}\times\{0,1\}^{3}\times\{1,2,\ldots,d\}^{3}$,
and use them as input material for fast multivariate sum updating.
We start with the bivariate case. We first provide an algorithm to compute the
sums $\mathcal{T}_{1,l_{2}}^{\mathrm{idx}}:=\sum_{l_{1}=L_{1,j_{1}}}^{R_{1,j_{1}}}\mathcal{S}_{l_{1},l_{2}}^{\mathrm{idx}}$
, for every $l_{2}\in\left\{ 1,2,\ldots,m_{2}-1\right\} $ and every
index interval $\left[L_{1,j_{1}},R_{1,j_{1}}\right]$, $j_{1}\in\{1,2,\ldots,M_{1}\}$.
Starting with $j_{1}=1$, we first compute $\mathcal{T}_{1,l_{2}}^{\mathrm{idx}}=\sum_{l_{1}=L_{1,1}}^{R_{1,1}}\mathcal{S}_{l_{1},l_{2}}^{\mathrm{idx}}$
for every $l_{2}\in\left\{ 1,2,\ldots,m_{2}-1\right\} $. Then we
iteratively increment $j_{1}$ from $j_{1}=1$ to $j_{1}=M_{1}$. After each incrementation of $j_{1}$, we update $\mathcal{T}_{1,l_{2}}^{\mathrm{idx}}$
by fast sum updating
\begin{equation}
\sum_{l_{1}=L_{1,j_{1}}}^{R_{1,j_{1}}}\mathcal{S}_{l_{1},l_{2}}^{\mathrm{idx}}=\sum_{l_{1}=L_{1,j_{1}-1}}^{R_{1,j_{1}-1}}\mathcal{S}_{l_{1},l_{2}}^{\mathrm{idx}}+\sum_{l_{1}=R_{1,j_{1}-1}+1}^{R_{1,j_{1}}}\mathcal{S}_{l_{1},l_{2}}^{\mathrm{idx}}-\sum_{l_{1}=L_{1,j_{1}-1}}^{L_{1,j_{1}}-1}\mathcal{S}_{l_{1},l_{2}}^{\mathrm{idx}}\label{eq:2d_updating_1}
\end{equation}
The second stage is to perform a fast sum updating in the second dimension,
with the sums $\mathcal{T}_{1,l_{2}}^{\mathrm{idx}}=\sum_{l_{1}=L_{1,j_{1}}}^{R_{1,j_{1}}}\mathcal{S}_{l_{1},l_{2}}^{\mathrm{idx}}$
as input material. Our goal is to compute the sums $\mathcal{T}_{2}^{\mathrm{idx}}:=\sum_{l_{2}=L_{2,j_{2}}}^{R_{2,j_{2}}}\mathcal{T}_{1,l_{2}}^{\mathrm{idx}}$
for every index interval $\left[L_{2,j_{2}},R_{2,j_{2}}\right]$,
$j_{2}\in\{1,2,\ldots,M_{2}\}$. In a similar manner, we start from
$j_{2}=1$ with the initial sum $\mathcal{T}_{2}^{\mathrm{idx}}=\sum_{l_{2}=L_{2,1}}^{R_{2,1}}\mathcal{T}_{1,l_{2}}^{\mathrm{idx}}$.
We then increment $j_{2}$ from $j_{2}=1$ to $j_{2}=M_{2}$ iteratively.
After each incrementation of $j_{2}$, we update $\mathcal{T}_{2}^{\mathrm{idx}}$
by fast sum updating:
\begin{equation}
\sum_{l_{2}=L_{2,j_{2}}}^{R_{2,j_{2}}}\mathcal{T}_{1,l_{2}}^{\mathrm{idx}}=\sum_{l_{2}=L_{2,j_{2}-1}}^{R_{2,j_{2}-1}}\mathcal{T}_{1,l_{2}}^{\mathrm{idx}}+\sum_{l_{2}=R_{2,j_{2}-1}+1}^{R_{2,j_{2}}}\mathcal{T}_{1,l_{2}}^{\mathrm{idx}}-\sum_{l_{2}=L_{2,j_{2}-1}}^{L_{2,j_{2}}-1}\mathcal{T}_{1,l_{2}}^{\mathrm{idx}}\label{eq:2d_updating_2}
\end{equation}
Using Lemma \ref{lem:sum_decomposition}, the resulting sum $\sum_{l_{2}=L_{2,j_{2}}}^{R_{2,j_{2}}}\mathcal{T}_{1,l_{2}}^{\mathrm{idx}}=\sum_{l_{1}=L_{1,j_{1}}}^{R_{1,j_{1}}}\sum_{l_{2}=L_{2,j_{2}}}^{R_{2,j_{2}}}\mathcal{S}_{l_{1},l_{2}}^{\mathrm{idx}}$
is equal to $\mathcal{S}^{\mathrm{idx}}([z_{j}-h_{j},z_{j}+h_{j}])$,
which can be used to compute the kernel sums $\mathbf{S}_{j}$
using equation \eqref{eq:parabolic-kernel-development-multivariate},
from which the bivariate kernel smoothers can be computed.
This ends the description of the fast sum updating algorithm in the
bivariate case.
Finally, the general multivariate case is a straightforward extension
of the bivariate case (see \cite{langrene2017fast}).
\subsection{C++ API}
The constructor allows to define the kernel regressor:
\begin{lstlisting}[style=CStyle]
LocalGridKernelRegression(const bool &p_bZeroDate,
const std::shared_ptr< Eigen::ArrayXXd > &p_particles,
const double &p_coeffBandWidth,
const double &p_coefNbGridPoint,
const bool &p_bLinear);
\end{lstlisting}
where
\begin{itemize}
\item \code{p\_bZeroDate} is \code{true} if the regression date is $0$,
\item \code{p\_particles} the particles $X_t$ for all simulations (dimension of $X_t$ for first dimension, number of Monte Carlo simulations in second dimension),
\item \code{p\_coeffBandWidth} between 0 and 1 defines the percentage of points to use to define the bandwidth for each point.
\item \code{p\_coefNbGridPoint} is a multiplying factor defining the number of points $z$ used for the multi-grid approximation: a PCA is used to define a data rotation. The kernel regression is performed according the basis defined by the eigenvectors associated with the PCA. The number of points along the axes defined by the eigenvectors is given as a function of the singular value associated with the eigenvector.
The total number of evaluation points along the axes of the new base is approximately the number of simulations (p\_particles.cols()) by \code{p\_coefNbGridPoint}.
\item \code{p\_bLinear} when set to \code{false} indicates that the simple estimate of the density of the kernel \eqref{eq:localreg0} is used. When \code{p\_bLinear} is \code{true}, the linear regression of the kernel \eqref{eq:localreg1} is used.
\end{itemize}
Below we give a small example where \code{toRegress} corresponds to $g(t+h, X_{t+h})$ for all simulations and $x$ stores $X_t$ for all simulations.
\begin{lstlisting}[style=CStyle]
// t is not zero
bool bZeroDate = 0;
// proportion of points used to define the bandwidth
double prop =0.1;
// multiplicative factor equal to one: number of evaluation points equal to the number of particles
double q =1.
// choose a linear regression
bool bLin= true;
// constructor
LocalGridKernelRegression kernelReg(bZeroDate, x, prop, q, bLin);
// update particles values
localRegressor.updateSimulations(bZeroDate, x);
// regressed values
ArrayXd regressedValues = localRegressor.getAllSimulations(toRegress);
\end{lstlisting}
\subsection{Python API}
As usual the Python constructors are similar to the C++ constructors. Here is a small example of the use of the kernel regression method.
\begin{lstlisting}[style=PStyle]
import StOptReg
nbSimul = 5000000;
np.random.seed(1000)
x = np.random.uniform(-.,1.,size=(1,nbSimul));
# real function
toReal = (2+x[0,:]+(+x[0,:])*(1+x[0,:]))
# function to regress
toRegress = toReal + 4*np.random.normal(0.,,nbSimul)
# bandwidth
bandwidth = 0.1
# factor for the number of points
factPoint=1
# Regressor
regressor = StOptReg.LocalGridKernelRegression(False,x,bandwidth,factPoint, True)
# get regressed
y = regressor.getAllSimulations(toRegress).transpose()[0]
\end{lstlisting}
\section{Kernel regression with Laplacian kernels}
This subsection is based on the work \cite{langrene2020fast}. Keeping in mind the notations of section \ref{sec:kernelReg}, we focus on the Laplacian kernel, defined by
\begin{equation}
K(u)=\frac{1}{2}e^{-|u|}\label{eq:Laplacian_kernel_1D}
\end{equation}
The Laplacian kernel density estimator is defined by:
\begin{equation}
\hat{f}_{\mathrm{KDE}}(z)=\frac{1}{N}\sum_{i=1}^{N}\frac{1}{2h}e^{-\frac{|x_{i}-z|}{h}}\label{eq:Laplacian_kde_1D}
\end{equation}
\subsection{ Reducing the problem to empiral CDF calculations}
This kernel density estimator can be decomposed as follows in one dimension:
\begin{align}
\hat{f}_{\mathrm{KDE}}(z)= & \frac{1}{N}\sum_{i=1}^{N}\frac{1}{2h}e^{-\frac{|x_{i}-z|}{h}}\nonumber \\
= & \frac{1}{2hN}\left(\sum_{i=1}^{N}e^{\frac{x_{i}-z}{h}}\mathbbm{1}\{x_{i}\leq z\}+\sum_{i=1}^{N} e^{\frac{z-x_{i}}{h}}\mathbbm{1}\{x_{i}>z\}\right)\nonumber \\
= & \frac{1}{2hN}\left(e^{-\frac{z}{h}}\sum_{i=1}^{N} e^{\frac{x_{i}}{h}}\mathbbm{1}\{x_{i}\leq z\}+e^{\frac{z}{h}}\sum_{i=1}^{N} e^{-\frac{x_{i}}{h}}\mathbbm{1}\{x_{i}>z\}\right)\nonumber \\
= & \frac{1}{2h}\left(e^{-\frac{z}{h}}F_{N}(z;x,we^{\frac{x}{h}})+e^{\frac{z}{h}}\bar{F}_{N}(z;x,we^{-\frac{x}{h}})\right)\label{eq:Laplacian_decomposition_1d}
\end{align}
where the empirical CDF $F_{N}$ and the empirical complementary CDF
$\bar{F}_{N}$ are defined by equations
\begin{equation}
F_{N}(z)=F_{N}(z;x,y)\triangleq\frac{1}{N}\sum_{i=1}^{N}y_{i}\mathbbm{1}\{x_{1,i}\leq z_{1},\ldots,x_{d,i}\leq z_{d}\}\,.\label{eq:ECDF}
\end{equation}
\begin{equation}
\bar{F}_{N}(z)=\bar{F}_{N}(z;x,y)\triangleq\frac{1}{N}\sum_{i=1}^{N}y_{i}\mathbbm{1}\{x_{1,i}>z_{1},\ldots,x_{d,i}>z_{d}\}\,.\label{eq:ESF}
\end{equation}
Crucially, such a CDF decomposition of KDE also holds in the multivariate
setting. The multivariate Laplacian kernel is defined by
\begin{equation}
K_{\hspace{-0.0833em}d}(u)=\frac{1}{2^{d}}e^{-|u|}=\frac{1}{2^{d}}e^{-\sum_{k=1}^{d}|u_{k}|}\label{eq:Laplacian_kernel_nD}
\end{equation}
and the multivariate Laplacian kernel density estimator is
given by
\begin{equation}
\hat{f}_{\mathrm{KDE}}(z)=\frac{1}{2^{d}N\Pi_{k=1}^{d}h_{k}}\sum_{i=1}^{N} e^{-\left|\frac{x_{i}-z}{h}\right|}=\frac{1}{2^{d}N\Pi_{k=1}^{d}h_{k}}\sum_{i=1}^{N} e^{-\sum_{k=1}^{d}\frac{\left|x_{k,i}-z_{k}\right|}{h_{k}}}\label{eq:Laplacian_kde_nD}
\end{equation}
where $h=(h_{1},h_{2},\ldots,h_{d})\in\mathbb{R}^{d}$ is a multivariate
bandwidth. \\
We introduce :
\begin{align}
F_{N}(z,\delta) & =F_{N}(z,\delta;x,y)\triangleq\frac{1}{N}\sum_{i=1}^{N}y_{i}\mathbbm{1}\{x_{1,i}\leq_{\delta_{1}}z_{1},\ldots,x_{d,i}\leq_{\delta_{d}}z_{d}\}\label{eq:ECDFdelta}
\end{align}
where $\delta=\left\{ \delta_{1},\delta_{2},\ldots,\delta_{d}\right\} \in\left\{ -1,1\right\} ^{d}$,
and where the generalized inequality operator $\leq_{c}$ corresponds
to $\leq$ (lower or equal) if $c\geq0$, and to $<$ (strictly lower) if $c<0$. In particular $F_{N}(z)=F_{N}(z,1;x,y)$
and $\bar{F}_{N}(z)=F_{N}(-z,-1;-x,y)$ respectively.\\
Using the same approach as equation \eqref{eq:Laplacian_decomposition_1d},
the sum \eqref{eq:Laplacian_kde_nD} can be decomposed as follows:
\begin{align}
\hat{f}_{\mathrm{KDE}}(z)= & \frac{1}{2^{d}N\Pi_{k=1}^{d}h_{k}}\sum_{i=1}^{N} \prod_{k=1}^{d}\left(e^{-\frac{z_{k}}{h_{k}}}e^{\frac{x_{k,i}}{h_{k}}}\mathbbm{1}\{x_{k,i}\leq z_{k}\}+e^{\frac{z_{k}}{h_{k}}}e^{-\frac{x_{k,i}}{h_{k}}}\mathbbm{1}\{-x_{k,i}<-z_{k}\}\right)\nonumber \\
= & \frac{1}{2^{d}N\Pi_{k=1}^{d}h_{k}}\sum_{i=1}^{N} \sum_{\delta\in\{-1,1\}^{d}}\prod_{k=1}^{d}e^{-\frac{\delta_{k}z_{k}}{h_{k}}}e^{\frac{\delta_{k}x_{k,i}}{h_{k}}}\mathbbm{1}\{\delta_{k}x_{k,i}\leq_{\delta_{k}}\delta_{k}z_{k}\}\nonumber \\
= & \frac{1}{2^{d}\Pi_{k=1}^{d}h_{k}}\sum_{\delta\in\{-1,1\}^{d}}e^{-\sum_{k=1}^{d}\frac{\delta_{k}z_{k}}{h_{k}}}\frac{1}{N}\sum_{i=1}^{N} e^{\sum_{k=1}^{d}\frac{\delta_{k}x_{k,i}}{h_{k}}}\mathbbm{1}\{\delta_{1}x_{1,i}\leq_{\delta_{1}}\delta_{1}z_{1},\ldots,\delta_{d}x_{d,i}\leq_{\delta_{d}}\delta_{d}z_{d}\}\nonumber \\
= & \frac{1}{2^{d}\Pi_{k=1}^{d}h_{k}}\sum_{\delta\in\{-1,1\}^{d}}e^{-\sum_{k=1}^{d}\frac{\delta_{k}z_{k}}{h_{k}}}F_{N}(\delta z,\delta;\delta x,y)\label{eq:Laplacian_decomposition_nD}
\end{align}
with $y_{i}=y_{i}(\delta):=e^{\sum_{k=1}^{d}\frac{\delta_{k}x_{k,i}}{h_{k}}}$.
Equation \eqref{eq:Laplacian_decomposition_nD} shows that the computation
of the multivariate Laplacian kernel density estimator
can be decomposed into the computation of $2^{d}$ generalized empirical
CDF \eqref{eq:ECDFdelta}.
\subsection{Fast computation of ECDFs}
We present two ways to compute efficiently an expression such as \ref{eq:Laplacian_decomposition_nD}.
The first is based on the use of a rectilinear grid as evaluation points and an interpolation is needed to get back the conditional expectation at the sample points.
The second one, based on the divide and conquer approach, is exact but much more costly.
\subsubsection{Fast sum updating in lexicographical order\label{subsec:Fast-lexicographical-sweep}}
Let $z_{j}=(z_{1,j},z_{2,j},\ldots,z_{d,j})\in\mathbb{R}^{d}$, $j\in\{1,2,\ldots,M\}$,
be a set of $M$ evaluation (target) points.
We require this evaluation grid to be rectilinear, i.e., the $M$
evaluation points $z_{1},z_{2},\ldots,z_{M}$ lie on a regular grid
with possibly non-uniform mesh, of dimension $M_{1}\times M_{2}\times\ldots\times M_{d}=M$:
\[
\mathbf{z}=\left\{ (z_{1,j_{1}},z_{2,j_{2}},\ldots,z_{d,j_{d}})\in\mathbb{R}^{d},\,j_{k}\in\{1,2,\ldots,M_{k}\},\,k\in\{1,2,\ldots,d\}\right\}
\]
For convenience, we extend the definition of the grid with the notational conventions $z_{k,0}\triangleq-\infty$ and $z_{k,M_{k}+1}\triangleq\infty$.
In each dimension $k\in\{1,2,\ldots,d\}$, the vector $(z_{k,1},z_{k,2},\ldots,z_{k,M_{k}})\in\mathbb{R}^{M_{k}}$
is assumed to be sorted in increasing order:
\[
z_{k,1}<z_{k,2}<\ldots<z_{k,M_{k}},\,k\in\{1,2,\ldots,d\}
\]
We partition the input data $\mathbf{x}$ along this evaluation grid
$\mathbf{z}$. For each evaluation grid index $(j_{1},j_{2},\ldots,j_{d})\in\{1,2,\ldots,M_{1}+1\}\times\ldots\times\{1,2,\ldots,M_{d}+1\}$
we define the following local sum
\begin{equation}
s_{j_{1},j_{2},\ldots,j_{d}}:=\frac{1}{N}\sum_{i=1}^{N}y_{i}\mathbbm{1}\{z_{1,j_{1}-1}<x_{1,i}\leq z_{1,j_{1}},\ldots,z_{d,j_{d}-1}<x_{d,i}\leq z_{d,j_{d}}\}\label{eq:partial_sums}
\end{equation}
Together, the sums \eqref{eq:partial_sums}
form a generalized multivariate histogram (classical histogram
in the case $y\equiv1$). For completeness, the computation of the local sums \eqref{eq:partial_sums}
is detailed in algorithm \ref{algo:local_sum_general}.
\begin{algorithm}[H]
\caption{Fast computation of local sums by independent sorting in each dimension \label{algo:local_sum_general}}
\begin{algorithmic}[1]
\State Input: sample $x_{i}=(x_{1,i},\ldots,x_{d,i})$, $i=1,2,\ldots,N$
\State Input : evaluation grid $(z_{1,j_{1}},z_{2,j_{2}},\ldots,z_{d,j_{d}})$, $j_{k}\in\{1,2,\ldots,M_{k}\}$, $k\in\{1,2,\ldots,d\}$
\State
Define index matrix $\mathrm{INDEX}[k,i]$ \Comment{local sum
index $\in\{1,2,M_{k}+1\}$}
where $k=1,2,\ldots,d$ and $i=1,2,\ldots,N$
\For $\textcolor{blue}{\mathbf{(}}$ $k=1,2,...\hspace{0.0833em},d$
$\textcolor{blue}{\mathbf{)}}$
\State
Sort the set $\left\{ x_{k,1},\ldots x_{k,N}\right\} $ in increasing
order, using for example quicksort or
mergesort ($\mathcal{O}(N\log N)$): define the permutation $\phi_{k}:\{1,2,\ldots,N\}\mapsto\{1,2,\ldots,N\}$
such that
\begin{equation}
x_{k,\phi_{k}(1)}<x_{k,\phi_{k}(2)}<\cdots<x_{k,\phi_{k}(N)}\label{eq:sorted_kdim}
\end{equation}
\State $x_{\mathrm{idx}}=1$ \Comment{input index $\in\{1,2,\ldots,N\}$}
\State $z_{\mathrm{idx}}=1$ \Comment{evaluation grid index $\in\{1,2,\ldots,M_{k}\}$}
\While $\textcolor{blue}{\mathbf{(}}$ $x_{\mathrm{idx}}\leq N$
$\textcolor{blue}{\mathbf{)}}$
\If $\textcolor{blue}{\mathbf{(}}$ $x_{k,\phi_{k}(x_{\mathrm{idx}})}\leq z_{k,z_{\mathrm{idx}}}$
$\textcolor{blue}{\mathbf{)}}$
\State $\mathrm{INDEX}[k,\phi_{k}(x_{\mathrm{idx}})]=z_{\mathrm{idx}}$
\State $x_{\mathrm{idx}}\,+\hspace{-0.0833em}\!=1$
\Else
\State $z_{\mathrm{idx}}\,+\hspace{-0.0833em}\!=1$
\EndIf
\EndWhile
\EndFor
\State $s_{j_{1},j_{2},\ldots,j_{d}}=0$, ${\scriptstyle \forall(j_{1},j_{2},\ldots,j_{d})\in\{1,2,\ldots,M_{1}+1\}\times\ldots\times\{1,2,\ldots,M_{d}+1\}}$
\For $\textcolor{blue}{\mathbf{(}}$ $i=1,2,...\hspace{0.0833em},N$ $\textcolor{blue}{\mathbf{)}}$
\State $s_{\mathrm{INDEX}[1,i],\,\mathrm{INDEX}[2,i],\,\ldots,\,\mathrm{INDEX}[d,i]}\,+\hspace{-0.0833em}\!=y_{i}/N$
\EndFor
\State \Return $s_{j_{1},j_{2},\ldots,j_{d}}=\frac{1}{N}\sum_{i=1}^{N}y_{i}\mathbbm{1}\{z_{1,j_{1}-1}<x_{1,i}\leq z_{1,j_{1}},\ldots,z_{d,j_{d}-1}<x_{d,i}\leq z_{d,j_{d}}\}$
for every local sum index ${\scriptstyle (j_{1},j_{2},\ldots,j_{d})\in\{1,2,\ldots,M_{1}+1\}\times\ldots\times\{1,2,\ldots,M_{d}+1\}}$
\end{algorithmic}
\end{algorithm}
In particular, using equation \eqref{eq:ECDF}, the following key
equality holds:
\begin{equation}
F_{N}(z)=\sum_{l_{1}=1}^{j_{1}}\!\sum_{l_{2}=1}^{j_{2}}\cdots\sum_{l_{d}=1}^{j_{d}}s_{l_{1},l_{2},\ldots,l_{d}}\label{eq:ECDF_decomposition}
\end{equation}
for any evaluation point $z=(z_{1,j_{1}},z_{2,j_{2}},\ldots,z_{d,j_{d}})\in\mathbf{z}$.
We propose a simple fast summation algorithm, Algorithm \ref{algo:fast_sum_CDF}, to compute the ECDFs $F_N(z)$ for every $z\in\mathbf{z}$ in lexicographical order based on the local sum decomposition \eqref{eq:ECDF_decomposition}. One can easily verify that the number of operations is proportional to $M_{1}\times M_{2}\times\ldots\times M_{d}=M$. As the computation of the local sums \eqref{eq:partial_sums} costs $\mathcal{O}(N{\log}N)$ operations (or only $\mathcal{O}(N)$ if the grid is uniform or the data already sorted), the overall computational complexity of Algorithm \ref{algo:fast_sum_CDF} is $\mathcal{O}(M+N{\log}N)$, or $\mathcal{O}(N{\log}N)$ when $M{\approx}N$ (respectively $\mathcal{O}(M+N)$ and $\mathcal{O}(N)$ when the grid is uniform or the data already sorted).\\
\begin{algorithm}[H]
\caption{Fast joint empirical cumulative distribution function\label{algo:fast_sum_CDF}}
\begin{algorithmic}[1]
\State Input :precomputed sums $s_{l_{1},l_{2},\ldots,l_{d}}$
\State $\mathcal{S}_{1,l_{2},l_{3},\ldots,l_{d}}=0$
\For $\textcolor{blue}{\mathbf{(}}$ $j_{1}=1,...,M_{1}+1$ $\textcolor{blue}{\mathbf{)}}$
\State $\mathcal{S}_{1,l_{2},l_{3},\ldots,l_{d}}\,\,+\!=\,s_{j_{1},l_{2},l_{3},\ldots,l_{d}}$,~~${\scriptstyle \forall l_{k}\in\left\{ 1,2,\ldots, M_{k}+1 \right\} }$,~${\scriptstyle k\in\{2,3,\ldots,d\}}$
\Comment{Here $\mathcal{S}_{1,l_{2},l_{3},\ldots,l_{d}}\!=\sum_{l_{1}=1}^{j_{1}}\!s_{l_{1},l_{2},\ldots,l_{d}}$,~${\scriptstyle \forall l_{k}\in\left\{ 1,2,\ldots,M_{k}+1\right\} }$,~${\scriptstyle k\in\{2,3,\ldots,d\}}$}
\State $\mathcal{S}_{2,l_{3},\ldots,l_{d}}=0$
\For $\textcolor{blue}{\mathbf{(}}$ $j_{2}=1,...,M_{2}+1$ $\textcolor{blue}{\mathbf{)}}$
\State $\mathcal{S}_{2,l_{3},\ldots,l_{d}}\,\,+\!=\,\mathcal{S}_{1,j_{2},l_{3},\ldots,l_{d}}$,~~${\scriptstyle \forall l_{k}\in\left\{ 1,2,\ldots,M_{k}+1\right\} }$,~${\scriptstyle k\in\{3,\ldots,d\}}$
\Comment{Here $\mathcal{S}_{2,l_{3},\ldots,l_{d}}\!=\sum_{l_{1}=1}^{j_{1}}\!\sum_{l_{2}=1}^{j_{2}}\!\!s_{l_{1},l_{2},\ldots,l_{d}}$,~${\scriptstyle \forall l_{k}\in\left\{ 1,\ldots, M_{k}+1\right\} }$,~${\scriptstyle k\in\{3,\ldots d\}}$}
\State $\mathcal{S}_{d}=0$
\For $\textcolor{blue}{\mathbf{(}}$ $j_{d}=1,...,M_{d}+1$ $\textcolor{blue}{\mathbf{)}}$
\State $\mathcal{S}_{d}\,\,+\!=\,\mathcal{S}_{d-1,j_{d}}$ \\
\Comment{Here $\mathcal{S}_{d}=\sum_{l_{1}=1}^{j_{1}}\!\sum_{l_{2}=1}^{j_{2}}\cdots\sum_{l_{d}=1}^{j_{d}}s_{l_{1},l_{2},\ldots,l_{d}}$}
\Comment{$=F_{N}(z_{1,j_{1}},z_{2,j_{2}},\ldots,z_{d,j_{d}})=F_{N}(z)$ from equation \eqref{eq:ECDF_decomposition}}
\EndFor
\EndFor
\EndFor
\State \Return $F_{N}(z)$ for all $z\in\mathbf{z}$
\end{algorithmic}
\end{algorithm}
\subsection{Divide-and-conquer approach}
Consider the case when the evaluation points $z_j$ are equal to the input points $x_i$. The calculation of the ECDFs $\{F_{N}(x_{i})\}_{i=1,N}$ (equation \eqref{eq:ECDF}) corresponds to a domination
problem in dimension $d$. An algorithm based on a recursive divide-and-conquer sequence has first been proposed in \cite{Bentley1980} for this problem.
An adaptation was proposed in \cite{bouchard2012monte} to solve this problem for
the case of the calculation of conditional expectation using Malliavin
weights. The computational complexity was shown to be $O(c(d)N\log(N)^{(d-1){\vee}1})$.
We do not repeat the construction of this algorithm here, and the interested reader can refer to \cite{langrene2020fast}.
\subsection{C++ API for fast summation method}
The constructor allows to define the Laplacian kernel regressor with the fast summation method:
\begin{lstlisting}[style=CStyle]
LaplacianGridKernelRegression(const bool &p_bZeroDate,
const Eigen::ArrayXXd &p_particles,
const Eigen::ArrayXd &p_h,
const double &p_coefNbGridPoint,
const bool &p_bLinear);
\end{lstlisting}
where
\begin{itemize}
\item \code{p\_bZeroDate} is \code{true} if the regression date is $0$,
\item \code{p\_particles} the particles $X_t$ for all simulations (dimension of $X_t$ for first dimension, number of Monte Carlo simulations in second dimension),
\item \code{p\_h} bandwidth array per dimension.
\item \code{p\_coefNbGridPoint} is a multiplying factor defining the number of points $z$ used for the multi-grid approximation. The total number of points on the rectilinear grid is the number of samples by \code{p\_coefNbGridPoint}.
\item \code{p\_bLinear} when set to \code{false} indicates that the simple estimate of the density of the kernel \eqref{eq:localreg0} is used. When \code{p\_bLinear} is \code{true}, the linear regression of the kernel \eqref{eq:localreg1} is used.
\end{itemize}
Below we give a small example where \code{toRegress} corresponds to $g(t+h, X_{t+h})$ for all simulations and $x$ store $X_t$ for all simulations.
\begin{lstlisting}[style=CStyle]
// t is not zero
bool bZeroDate = false;
// use linear regression
bool bLinear = true;
// bandwidth
ArrayXd hB = ArrayXd::Constant(1, p_h);
// test regression object
double q = 50; // coeff for the number of grid points used
LaplacianGridKernelRegression kernelReg(bZeroDate, x, hB, q, bLinear);
// regress on grid
ArrayXd regressed = kernelReg.getAllSimulations(y);
\end{lstlisting}
\subsection{Python API for fast summation method}
For example, using the linear regressor we get the following Python code:
\begin{lstlisting}[style=PStyle]
import StOptReg
nbSimul = 100000;
np.random.seed(1000)
x = np.random.uniform(-1.,1.,size=(1,nbSimul));
# real function
toReal = (4+x[0,:]+(3+x[0,:])*(2+x[0,:]))
# function to regress
toRegress = toReal + 4*np.random.normal(0.,1,nbSimul)
# bandwidth
bandwidth = 0.05*np.ones(1)
# multiplicative for rectilinear grid
coeffMul = 2
# Linear or constant regressions
bLinear= False
# Regressor
regressor = StOptReg.LaplacianGridKernelRegression(False,x,bandwidth, coeffMul,bLinear)
# test particules
y = regressor.getAllSimulations(toRegress).transpose()
\end{lstlisting}
\subsection{C++ API for exact divid and conquer method}
The constructor allows to defines the Laplacian kernel regressor with the divide and conquer method and a constant regression
\begin{lstlisting}[style=CStyle]
LaplacianConstKernelRegression(const bool &p_bZeroDate,
const std::shared_ptr< Eigen::ArrayXXd > &p_particles,
const double &p_h);
\end{lstlisting}
where
\begin{itemize}
\item \code{p\_bZeroDate} is \code{true} if the regression date is $0$,
\item \code{p\_particles} the particles $X_t$ for all simulations (dimension of $X_t$ for first dimension, number of Monte Carlo simulations in second dimension),
\item \code{p\_h} bandwidth array per dimension.
\end{itemize}
And the following one deals with the linear regression case.
\begin{lstlisting}[style=CStyle]
LaplacianLinearKernelRegression(const bool &p_bZeroDate,
const std::shared_ptr< Eigen::ArrayXXd > &p_particles,
const double &p_h);
\end{lstlisting}
where
\begin{itemize}
\item \code{p\_bZeroDate} is \code{true} if the regression date is $0$,
\item \code{p\_particles} the particles $X_t$ for all simulations (dimension of $X_t$ for first dimension, number of Monte Carlo simulations in second dimension),
\item \code{p\_h} bandwidth array per dimension.
\end{itemize}
\subsection{Python API for exact divide-and-conquer method}
As usual, the Python constructor is similar to the C++ constructor.
For example, using the linear regressor we get the following Python code:
\begin{lstlisting}[style=PStyle]
import StOptReg
nbSimul = 100000;
np.random.seed(1000)
x = np.random.uniform(-1.,1.,size=(1,nbSimul));
# real function
toReal = (4+x[0,:]+(3+x[0,:])*(2+x[0,:]))
# function to regress
toRegress = toReal + 4*np.random.normal(0.,1,nbSimul)
# bandwidth
bandwidth = 0.05*np.ones(1)
# Regressor
regressor = StOptReg.LaplacianConstKernelRegression(False,x,bandwidth)
# test particules
y = regressor.getAllSimulations(toRegress).transpose()
\end{lstlisting}
\chapter{Calculating conditional expectation by trees}
\label{sec::tree}
A popular method for calculating conditional expectation is to use scenario trees.\\
In the financial community, binary and trinomial trees are generally used to evaluate options.
When the asset is modeled by a Black Scholes model, a binary model is used, while a trinomial model is used to model the average reversion using a Vaciseck model for interest rate, for example \cite{hull2003options}.
An example of a trinomial tree is given in the figure \ref{fig:trinomial} for an Ornstein--Uhlenbeck model (so in dimension 1).
\begin{figure}[h]
\centerline{
\includegraphics[width=8cm]{trinomialTree.png}}
\caption{Trinomial tree}
\label{fig:trinomial}
\end{figure}
This tree models the possible evolution of a state $X_t$ in dimension 1 and each node corresponds to a possible value of $X_t$.
These trees recombine. The nodes at each dates $i$ are numbered from $0$ to $N_i-1$ with increasing values $X_t^i$ of the state.\\
From a node $i$ on a date $t$, 3 nodes can be reached on the date $t+1$. The probability transition from going to a node down $f(i,t)-1$ is $p_d^{t,i}$ while the probability of going to a middle node $f(i,t)$ is $p_m^{t,i}$ and the probability of going to a node up to $f(i,t)+1$ is $p_u^{t,i}$.\\
The conditional expectation of a function with the values $g_j^{t+1}= g(X_{t+1}^j)$ at the node $j$ on the date $i+1$ is simply given by:
\begin{flalign}
\E[ g(X_{t+1})/ X_{t} = X_t^i ] \simeq p_d^{t,i} g_{f(t,i)-1}^{t+1} + p_m^{t,i} g_{f(t,i)}^{t+1} + p_u^{t,i} g_{f(t,i)+1}^{t+1}
\end{flalign}
In the literature, non-recombining scenario trees are used by the discrete stochastic optimization community.
These non-recombining trees can be obtained by reducing certain recombining trees (see \cite{heitsch2003scenario} for example, or \cite{koc2012optimal} for a more recent survey developing algorithm minimizing the Kantorovich or Wasserstein metric between the initial tree and a subtree of the initial tree). An example of non-recombining tree is given in the figure \ref{fig:arbre}.\\
\begin{figure}[h]
\centerline{
\includegraphics[width=6cm]{tree.png}}
\caption{Non-recombining tree}
\label{fig:arbre}
\end{figure}
On figure \ref{fig:arbre}, assuming that $X_2$ has the possible values $Y_2$, $Y_3$ at node $2$ and $3$, assuming that $X_3$ have discrete values at nodes $4, \dots, 9$ on the date $t=3$ and that values of $g(X_3)$ have the value $g_i$ at the node $i$ on the date $3$, then
\begin{flalign}
\E[ g(X_{3}/ X_{2} = Y_3 ] = P_{3,7} g_7 + P_{3,8} g_8 + P_{3,9} g_9
\end{flalign}
\subsection{C++ API}
\subsubsection{Calculation of conditional expectation}
As explained, conditional expectations are easy to calculate with trees. The library provides an object \code{Tree} allowing to make such calculations.
\begin{lstlisting}[style=CStyle]
Tree(const std::vector<double> &p_proba, const std::vector< std::vector< std::array<int, 2> > > &p_connected)
\end{lstlisting}
with
\begin{itemize}
\item \code{p\_proba} a probability vector at a given date defining the probability transition between the nodes at the current date and the nodes at the next date.
\item \code{p\_connected} the connection between the nodes and the index in the probability vector.
\begin{center}
\code{p\_proba[p\_connected[i][j].second]}
\end{center}
is the probability of going from the node $i$ at the current date to the node \code{p\_connected[i][j].first} at the next date. So \code{p\_connected[i].size()} gives the number of nodes connected to the node $i$.
\end{itemize}
For regression objects, some methods are provided to calculate conditional expectations:
\begin{itemize}
\item \code{expCond} takes an Eigen array with the size equal to the number of nodes at the next date and calculates the conditional expectation of the node values of current date,
\item \code{expCondMultiple} does the same so that several functions regress (size of the number of functions by number of nodes at the following date) and return a two-dimensional Eigen array (size of functions by number of nodes at the current date).
\end{itemize}
\subsubsection{Python API}
\label{sec:pyTree}
The python interface for tree is obtained importing the StOptTree module.
An example taking a trinomial simulator is given below
\lstinputlisting[style=PStyle,firstline=21,lastline=64]{../StOpt/test/python/unit/tree/testTree.py}
\chapter{Continuation values objects and similar ones}
\label{sec:continuation}
In the first part, we develop the different continuation objects by using regression to calculate conditional expectations.
Next, we explain the structure of the continuation object with tree to calculate the conditional expectations.
\section{Continuation values objects with regression methods}
In the first part we describe a way to store and use continuation values calculated when using regression methods to estimate conditional expectations.
In a second part, we introduce an object used to interpolate a function both discretized on grids for its deterministic part and estimated by regressor for its stochastic part.
The second object is similar to the first in spirit, but being dedicated to interpolation is more effective to use in simulations performed after the optimization part of a problem.\\
A third object is the continuation cut object used to approximate the concave or convex Bellman values by cuts.\\
It is used when the transition problem is solved using a LP.
\subsection{Continuation values object}
A special case is the case where the state $X^{x,t}$ in the equation \reff{eds} can be separated into two parts $X^{x,t} = (X^{x,t}_1,X^{x,t}_2)$ where
\begin{enumerate}
\item the first part is given by the following equation
\begin{equation}
d X^{x,t}_{s,1} = b(t,X^{x,t}_{s,1}) ds + \sigma_(s,X^{x,t}_{s,1}) dW_s
\label{eq:X1}
\end{equation}
and is not controlled: the stochastic process is exogenous,
\item the second part is given by the following equation
\begin{equation}
d X^{x,t}_{s,2} = b_a(t) ds
\label{eq:X2}
\end{equation}
so that $ X^{x,t}_2 $ is a degenerate version of \ref{eds} without distribution, $a$ representing the control.
\end{enumerate}
This first case is encountered, for example, in the valuation of American options in finance. In this case, $X_1^{x,t}$ contains the values of the assets involved in the option
and $ X^{x,t}_2$ is for example an integer value process equal to one if the option is not exercised and to 0 if it has already been exercised.\\
Another classical case that occurs when dealing with stocks for example is a gas storage valuation. In this simple case, the process $X_1^{x,t}$ is the market value of the gas
and $X^{x,t}_2$ is the position (in volume) in the gas storage.
The library proposes to store the conditional expectation for all states $X^{x,t}_2$.
\begin{itemize}
\item $X^{x,t}_2$ will be stored at the points of the grid (see section \ref{gridChapter})
\item for each point $i$ of the grid the conditional expectation of a function
$g_i(X^{x,t}_2)$ associated with the point $i$ using a regressor (see section \ref{gridChapter}) can be calculated and stored so that the continuation value $C$ is a function of $(X^{x,t}_1,X^{x,t}_2)$.
\end{itemize}
\subsubsection{C++ API}
Regarding regressions, two constructors are provided
\begin{itemize}
\item The first is the default construction: it is used in the simulation algorithm with the \code{loadForSimulation} method to store the basis
coefficients $\alpha_k^i$ for the grid point $i$ (see the equation \reff{regressed}),
\item The second
\begin{lstlisting}[style=CStyle]
ContinuationValue(const shared_ptr< SpaceGrid > & p_grid ,
const shared_ptr< BaseRegression > & p_condExp,
const Eigen::ArrayXXd &p_cash)
\end{lstlisting}
with
\begin{itemize}
\item \code{p\_grid} the grids associated with the deterministic control space,
\item \code{p\_condExp} the conditional expectation operator
\item \code{p\_cash} the function to regress as a function of the grid position (first dimension the number of simulations, second dimension the size of the grid)
\end{itemize}
This constructor builds for all point $i$ all the $\alpha_k^i$ (see equation \reff{regressed}).
\end{itemize}
The main methods provided are:
\begin{itemize}
\item a first method used in simulation allowing to load for the grid point $i$ the coefficient $\alpha_k^i$ associated with the function $g_i$,
\begin{lstlisting}[style=CStyle]
void loadForSimulation(const shared_ptr< SpaceGrid > & p_grid ,
const shared_ptr< BaseRegression > & p_condExp,
const Eigen::ArrayXXd &p_values)
\end{lstlisting}
with
\begin{itemize}
\item \code{p\_grid} the grid associated with the controlled deterministic space,
\item \code{p\_condExp} the conditional expectation operator,
\item \code{p\_values} the $\alpha_k^i$ for all grid points $i$ (size the number of basis function, the number of grid points)
\end{itemize}
\item a second method taking as input a point to be interpolated in the grid and returning the conditional expectation at the interpolated point for all simulations:
\begin{lstlisting}[style=CStyle]
Eigen::ArrayXd getAllSimulations(const Eigen::ArrayXd &p_ptOfStock)
\end{lstlisting}
\item a method taking as input an interpolator in the grid and returning the conditional expectation for all simulations at the interpolated point used to build the interpolator:
\begin{lstlisting}[style=CStyle]
Eigen::ArrayXd getAllSimulations(const Interpolator &p_interpol)
\end{lstlisting}
\item a method taking as input a simulation number used in optimization and a point used to interpolate in the grid and returning the conditional expectation at the interpolated point for the given simulation used in optimization.
\begin{lstlisting}[style=CStyle]
double getASimulation(const int &p_isim, const Eigen::ArrayXd &p_ptOfStock)
\end{lstlisting}
\item a method taking as input a simulation number used in optimization and an interpolator in the grid and returning the conditional expectation at the interpolated point used to construct the interpolator for the given simulation used in optimization:
\begin{lstlisting}[style=CStyle]
double getASimulation(const int &p_isim, const Interpolator &p_interpol)
\end{lstlisting}
\item a method which calculates the conditional expectation for a sample of $X^{x,t}_1$:
\begin{lstlisting}[style=CStyle]
double getValue(const Eigen::ArrayXd &p_ptOfStock, const Eigen::ArrayXd &p_coordinates) const
\end{lstlisting}
where:
\begin{itemize}
\item \code{p\_ptOfStock} the point where we interpolate the conditional expectation (a realization of $X^{x,t}_2$)
\item \code{p\_coordinates} the sample of $X^{x,t}_1$ used to estimate the conditional expectation
\item and the function returns $C(X^{x,t}_1,X^{x,t}_2)$.
\end{itemize}
\end{itemize}
Below we regress an identical function for all the points of the grid (here a grid of 4 points in dimension 1):
\begin{lstlisting}[style=CStyle]
int sizeForStock = 4;
// second member to regress with a stock
ArrayXXd toRegress = ArrayXXd::Constant(p_nbSimul,sizeForStock, 1.);
// grid for stock
Eigen::ArrayXd lowValues(1), step(1);
lowValues(0) = 0. ;
step(0) = 1;
Eigen::ArrayXi nbStep(1);
nbStep(0) = sizeForStock - 1;
// grid
shared_ptr< RegularSpaceGrid > regular = MyMakeShared<RegularSpaceGrid>(lowValues, step, nbStep);
// conditional espectation (local basis functions)
ArrayXi nbMesh = ArrayXi::Constant(p_nDim, p_nbMesh);
shared_ptr<LocalLinearRegression> localRegressor = MyMakeShared<LocalLinearRegression>(false, x, nbMesh);
// create continuation value object
ContinuationValue continuation(regular, localRegressor, toRegress);
// regress with continuation value object
ArrayXd ptStock(1) ;
ptStock(0) = sizeForStock / 2; // point where we regress
// compute regression values for the current point for all the simulations
ArrayXd regressedByContinuation = continuation.getAllSimulations(ptStock);
\end{lstlisting}
\subsubsection{Python API}
\label{subsec:pythonCont}
Here is an example of the use of the mapping
\lstinputlisting[style=PStyle]{../StOpt/test/python/unit/continuation/testContinuation.py}
\subsection{The GridAndRegressedValue object}
As explained above, when we want to interpolate a partially discretized function on a grid and by regression, a specific object can be used.
As for the continuation object, it has a \code{getValue} to estimate the function at a state with both a deterministic and a stochastic part.
\subsubsection{C++ API}
The object has five constructors and we have only described the two most commonly used:
\begin{itemize}
\item The first one
\begin{lstlisting}[style=CStyle]
GridAndRegressedValue(const std::shared_ptr< SpaceGrid > &p_grid ,
const std::shared_ptr< BaseRegression > &p_reg,
const Eigen::ArrayXXd &p_values)
\end{lstlisting}
with
\begin{itemize}
\item \code{p\_grid} the grid associated with the deterministic control space,
\item \code{p\_reg} the regressor object
\item \code{p\_values} the functions at certain points of the deterministic and stochastic grid.
\end{itemize}
\item A second constructor stores only the grid and the regressor:
\begin{lstlisting}[style=CStyle]
GridAndRegressedValue(const std::shared_ptr< SpaceGrid > &p_grid ,
const std::shared_ptr< BaseRegression > &p_reg)
\end{lstlisting}
\end{itemize}
The main methods are the following ones:
\begin{itemize}
\item
the main method for calculating the function $C(X^{x,t}_{1,s},X^{x,t}_{2,s})$ value for a point $X^{x,t}_s = (X^{x,t}_{1,s},X^{x,t}_{2,s})$ where $X^{x,t}_{2,s}$ is on the grid and $X^{x,t}_{1,s}$ is the part treated by regression.
\begin{lstlisting}[style=CStyle]
double getValue(const Eigen::ArrayXd &p_ptOfStock, const Eigen::ArrayXd &p_coordinates) const
\end{lstlisting}
where:
\begin{itemize}
\item \code{p\_ptOfStock} $X^{x,t}_{2,s}$ part of $X^{x,t}_s$
\item \code{p\_coordinates} $X^{x,t}_{1,s}$ part of $X^{x,t}_s$.
\end{itemize}
\item
the method \code{getRegressedValues} which allows to obtain all the regression coefficients for all points of the grid. The returned array has a size (base number of function, number of points on the grid)
\begin{lstlisting}[style=CStyle]
Eigen::ArrayXXd getRegressedValues() const
\end{lstlisting}
\item the method \code{setRegressedValues} allows to store all the values of the regressed coefficients on a grid of a function of $X^{x,t}_s = (X^{x,t}_{1,s},X^{x,t}_{2,s})$.
\begin{lstlisting}[style=CStyle]
void setRegressedValues(const Eigen::ArrayXXd &p_regValues)
\end{lstlisting}
where \code{p\_regValues} has a size (number of function basis, number of points on the grid).
\end{itemize}
\subsubsection{Python API}
The python API is similar to that of the \code{ContinuationValue} object (see Section~\ref{subsec:pythonCont}).
\subsection{The continuation cut object}
\label{sec:contCutReg}
Suppose that the control problem is continuous and that the state of the system has the dynamics given by \eqref{eq:X1} et \eqref{eq:X2}.
This is the case for certain modeled storage associated with the maximization of a certain objective function.
The Bellman value associated with this problem is then concave.
For a given value of a margin process $X^{x,t}_{s,1}$, the Bellman curve can be approximated by cuts (see \ref{cutBell})
\begin{figure}[h]
\centerline{
\includegraphics[width=12cm]{cutfig.png}}
\caption{Bellman cuts}
\label{cutBell}
\end{figure}
By solving a PL for a given uncertainty and state in the storage levels $\hat y_i$ in dimension $d$, we obtain a cut
\begin{align*}
\kappa(X^{x,t}_{s,1}, y) =& a_0(X^{x,t}_{s,1}) + \sum_{i=1}^g a_i(X^{x,t}_{s,1}) (y_i- \hat y_i)
\end{align*}
For $s^{'} \le s$ a conditional cut can be obtained by calculating
\begin{align*}
\theta(X^{x,t}_{s^{'},1}, y) = \E \left[a_0(X^{x,t}_{s,1}) | X^{x,t}_{s^{'},1} \right] + \sum_{i=1}^d \E \left[a_0(X^{x,t}_{s,1}) | X^{x,t}_{s^{'},1} \right] ( y_i- \hat y_i)
\end{align*}
Using a regressor (see chapter \ref{sec::regression}) it is possible to represent each conditional cut on a basis for $j=0, \dots , d$.
\begin{align}
\E \left[a_i(X^{x,t}_{s,1}) | X^{x,t}_{s^{'},1} \right] = \sum_{j=1}^N a_{i,j} \psi_j(X^{x,t}_{s^{'},1})
\label{eq:coeffCut}
\end{align}
where $\psi_j$ corresponds to a basis function.\\
\subsubsection{C++ API}The first is the default construction: it is used in the simulation algorithm with the \code{loadForSimulation} method to store the database
Regarding regressions, two constructors are provided
\begin{itemize}
\item The first is the default construction: it is used in simulation algorithm with the \code{loadForSimulation} method to store the basis
coefficients $a_{i,j}^k$ for the grid point $k$,
\item The second is
\begin{lstlisting}[style=CStyle]
ContinuationCuts(const shared_ptr< SpaceGrid > & p_grid ,
const shared_ptr< BaseRegression > & p_condExp,
const Eigen::ArrayXXd &p_values)
\end{lstlisting}
with
\begin{itemize}
\item \code{p\_grid} the grids associated with the deterministic control space,
\item \code{p\_condExp} the conditional expectation operator
\item \code{p\_values} the coefficients of the cut to regress according to the position of the grid (first dimension the number of simulations by the number of components of the cut (nb storage+1), second dimension the size of the grid)
\end{itemize}
This constructor builds for all stock points the coefficients $a_{i,j}$ of the cuts \eqref{eq:coeffCut}.
Note that for a stock point $k$ with the coordinates $y^k$, the stored coefficients are $ \hat a_{0,j}^k = a_{0,j}^k - \sum_{i=1}^d a_{i,j}^k y_i^k$ and the $ \hat a_{i,j}^k = a_{i,j}^k$, $i=1,\dots d$.
The conditional cut can then be written:
\begin{align*}
\theta(X^{x,t}_{s^{'},1}, y) = \sum_{j=1}^N \hat a_{0,j} \psi_j(X^{x,t}_{s^{'},1}) + \sum_{i=1}^d \sum_{j=1}^N \hat a_{i,j} \psi_j(X^{x,t}_{s^{'},1}) y_i
\end{align*}
\end{itemize}
The main methods provided are:
\begin{itemize}
\item a first method used in simulation allowing to load for the grid point $i$ the coefficient $\alpha_k^i$ associated with the function $g_i$,
\begin{lstlisting}[style=CStyle]
void loadForSimulation(const shared_ptr< SpaceGrid > & p_grid ,
const shared_ptr< BaseRegression > & p_condExp,
const Eigen::Array<Eigen::ArrayXXd> &p_values)
\end{lstlisting}
with
\begin{itemize}
\item \code{p\_grid} the grid associated with the controlled deterministic space,
\item \code{p\_condExp} the conditional expectation operator,
\item \code{p\_values} the $a_{i,j}$ coefficients to reconstruct the cuts: its size corresponds to the number of cutting coefficients. The $i$ element of \code{p\_values} then allows you to store
the coefficients $a_{i,j}$ for $j=1, \dots, N$ and all stock points.
\end{itemize}
\item a second method taking as input the description of a hypercube (nb storages,2) described by its extreme coordinates:
\begin{itemize}
\item The coordinate (i,0) corresponds to the minimum coordinate value in dimension i
\item The coordinate (i,1) corresponds to the maximum coordinate value in dimension i
\end{itemize}
\begin{lstlisting}[style=CStyle]
Eigen::ArrayXXd getCutsAllSimulations(const Eigen::ArrayXXd &p_hypStock) const
\end{lstlisting}
It return an array of cuts coefficients for all particles state stored in its BaseRegression member.
\begin{itemize}
\item The first dimension corresponds to the number of cut coefficients by the number of simulations.
\item The second dimension corresponds to the number of points in the hypercube \code{p\_hypStock}.
\end{itemize}
\item a method to obtain an array of cuts for a given uncertainty.
\begin{lstlisting}[style=CStyle]
Eigen::ArrayXXd getCutsASim(const Eigen::ArrayXXd &p_hypStock, const Eigen::ArrayXd &p_coordinates) const
\end{lstlisting}
where:
\begin{itemize}
\item \code{p\_hypStock} corresponds to a hypercube used to select certain stock points as before,
\item \code{p\_coordinates} corresponds to the coordinates of the uncertainty to be considered.
\end{itemize}
It returns an array with in first dimension the cut coefficient number, the second dimension corresponds to the number of the cut (corresponding to a stock point in the hypercube).
\item a method that permits to get the coefficients calculated.
\begin{lstlisting}[style=CStyle]
const Eigen::Array< Eigen::ArrayXXd, Eigen::Dynamic, 1 > &getValues() const
\end{lstlisting}
\end{itemize}
\subsubsection{Python API}
\label{subsec:pythonContCut}
Here is an example of the use of the mapping
\lstinputlisting[style=PStyle]{../StOpt/test/python/unit/continuation/testContinuationCut.py}
\section{Continuation objects and associated with trees}
\subsection{Continuation object}
Likewise, instead of using a regressor, a tree can be used to create a continuation object.
\subsubsection{C++ API}
As for the object \code{ContinuationValue}, two constructors are provided:
\begin{itemize}
\item A default constructor, allowing to load the grid coefficients at each node of the tree with the \code{loadForSimulation} method,
\item And the second:
\begin{lstlisting}[style=CStyle]
ContinuationValueTree(const std::shared_ptr< SpaceGrid > &p_grid,
const std::shared_ptr< Tree > &p_condExp,
const Eigen::ArrayXXd &p_valuesNextDate)
\end{lstlisting}
with
\begin{itemize}
\item \code{p\_grid} the grids associated with the deterministic control space,
\item \code{p\_condExp} the tree object used to calculate the conditional expectation: by taking a few values defined at the nodes of the following date, it calculates the expected values conditional on each node at the current date.
\item \code{p\_valuesNext} the value of the function at the following date (first dimension the number of nodes on the following date, second dimension the size of the grid)
\end{itemize}
\end{itemize}
The main methods provided are:
\begin{itemize}
\item a first method used in simulation allowing to load for the grid point $i$ the expected value of the function $g_i$ (valuesNextDate) for all the nodes in the tree at the current date,
\begin{lstlisting}[style=CStyle]
void loadForSimulation(const shared_ptr< SpaceGrid > & p_grid ,const Eigen::ArrayXXd &p_values)
\end{lstlisting}
with
\begin{itemize}
\item \code{p\_grid} the grid associated with the controlled deterministic space,
\item \code{p\_values} the continuation values for all the nodes and stock points (size: the number of nodes by number of grid points at the current date)
\end{itemize}
\item a second method taking as input a point to be interpolated in the grid and returning the conditional expectation at the interpolated point for all nodes:
\begin{lstlisting}[style=CStyle]
Eigen::ArrayXd getValueAtNodes(const Eigen::ArrayXd &p_ptOfStock)
\end{lstlisting}
\item a method taking as input an interpolator in the grid and returning the conditional expectation for all the nodes at the interpolated point used to build the interpolator:
\begin{lstlisting}[style=CStyle]
Eigen::ArrayXd getValueAtNodes(const Interpolator &p_interpol)
\end{lstlisting}
\item a method taking as input a node number used in optimization and a point used to interpolate in the grid and returning the conditional expectation at the interpolated point for the given node used in optimization.
\begin{lstlisting}[style=CStyle]
double getValueAtANode(const int &p_node, const Eigen::ArrayXd &p_ptOfStock)
\end{lstlisting}
\item a method taking as input a simulation number used in optimization and an interpolator in the grid and returning the conditional expectation at the interpolated point used to build the interpolator for the given node used in optimization:
\begin{lstlisting}[style=CStyle]
double getValueAtANode(const int &p_node, const Interpolator &p_interpol)
\end{lstlisting}
\item a method which makes it possible to recover all the conditional expectations for all the nodes:
\begin{lstlisting}[style=CStyle]
double getValues() const
\end{lstlisting}
\end{itemize}
\subsubsection{Python API}
Used when importing the StOptTree module, the syntax is similar to that of c++.
Follwing examples in the section \ref{sec:pyTree};
\lstinputlisting[style=PStyle,firstline=66,lastline=74]{../StOpt/test/python/unit/tree/testTree.py}
\subsection{GridTreeValues}
This object allows you to interpolate in certain grid values for a function defined at the node values and the grid values.\\
The constructor
\begin{lstlisting}[style=CStyle]
GridTreeValue(const std::shared_ptr< SpaceGrid > &p_grid,
const Eigen::ArrayXXd &p_values)
\end{lstlisting}
where:
\begin{itemize}
\item \code{p\_grid} the grids associated with the deterministic control space,
\item \code{p\_values} value to store at nodes and on grid (size : number of nodes at the current date by number of points in the grid)
\end{itemize}
The methods:
\begin{itemize}
\item
The following is used to interpolate at a given stock point for a given node
\begin{lstlisting}[style=CStyle]
double getValue(const Eigen::ArrayXd &p_ptOfStock, const int & p_node) const
\end{lstlisting}
\begin{itemize}
\item \code{p\_ptOfStock} corresponds to a value of $X^{x,t}_{2,s}$ part of $X^{x,t}_s$
\item \code{p\_node} node number in the tree describing $X^{x,t}_{1,s}$
\end{itemize}
\item The second gives the interpolated values at all the nodes
\begin{lstlisting}[style=CStyle]
Eigen::ArrayXd getValues(const Eigen::ArrayXd &p_ptOfStock) const
\end{lstlisting}
\subsubsection{Python API}
Importing the StOptTree, previous constructor and methods are available.
\end{itemize}
\subsection{Continuation Cut with trees}
As for the regressor (section \ref{sec:contCutReg}), we can provide cuts during the approximation of a concave or convex function at each node of the tree.
\subsubsection{C++ API}
\begin{itemize}
\item The first is the default construction: it is used in the simulation algorithm with the \code{loadForSimulation} method to load the values at the grid points nodes,
\item The second
\begin{lstlisting}[style=CStyle]
ContinuationCutsTree(const std::shared_ptr< SpaceGrid > &p_grid,
const std::shared_ptr< Tree > &p_condExp,
const Eigen::ArrayXXd &p_values)
\end{lstlisting}
with
\begin{itemize}
\item \code{p\_grid} the grids associated with the controlled deterministic space,
\item \code{p\_condExp} the conditional expectation operator for tree
\item \code{p\_values} the coefficients of the cut from which we take the conditional expectation depending on the grid position (first dimension the number of nodes by the number of components of the cut (nb storage+1), second dimension the grid size)
\end{itemize}
This constructor constructs for all the stock points the coefficients of the cuts $a_i$ for $i=0, d$.
Note that for a stock point $k$ with the coordinates $y^k$, the stored coefficients are $ \hat a_{0}^k = a_{0}^k- \sum_{i=1}^d a_{i}^k y_i^k$ and the $ \hat a_{i}^k = a_{i}^k$, $i=1,\dots d$ so that a cut has an affine representation at a point $y$: $\hat a_{0}^k + \sum_{i=1}^d \hat a_i^k y_i$.
\end{itemize}
The main methods provided are:
\begin{itemize}
\item a first method used in simulation allowing to load for the grid point $i$ the values of cuts at the nodes.
\begin{lstlisting}[style=CStyle]
void loadForSimulation(const shared_ptr< SpaceGrid > & p_grid ,
const shared_ptr< Tree > & p_condExp,
const const std::vector< Eigen::ArrayXXd > &p_values)
\end{lstlisting}
with
\begin{itemize}
\item \code{p\_grid} the grid associated with the deterministic controlled space,
\item \code{p\_condExp} the conditional expectation operator by tree,
\item \code{p\_values} the $a_{i}$ coefficients to reconstruct the cuts: its size corresponds to the number of cutting coefficients. Tthe element $i$ of \code{p\_values} then allows you to store
the coefficients $a_{i}$ for all the nodes and all the stock points.
\end{itemize}
\item a second method taking as input the description of a hypercube (nb storages,2) described by its extreme coordinates:
\begin{itemize}
\item (i,0) coordinate corresponds to minimum coordinate value in dimension i
\item (i,1) coordinate corresponds to maximum coordinate value in dimension i
\end{itemize}
\begin{lstlisting}[style=CStyle]
Eigen::ArrayXXd getCutsAllNodes(const Eigen::ArrayXXd &p_hypStock) const
\end{lstlisting}
It returns an array of cut coefficients for all nodes in the tree structure at the grid points inside the hypercube.
\begin{itemize}
\item The first dimension corresponds to the number of cuts coefficients by the number of nodes.
\item The second dimension corresponds to the number of points in the hypercube \code{p\_hypStock}.
\end{itemize}
\item a method to obtain an array of cuts for a given node.
\begin{lstlisting}[style=CStyle]
Eigen::ArrayXXd getCutsANode(const Eigen::ArrayXXd &p_hypStock, const int &p_node) const
\end{lstlisting}
where:
\begin{itemize}
\item \code{p\_hypStock} corresponds to a hypercube used to select certain stock points as before,
\item \code{p\_node} corresponds to the node number in the tree structure.
\end{itemize}
It returns an array with in the first dimension the cut coefficient number, the second dimension corresponds to the number of the cutting (corresponding to a stock point in the hypercube).
\item a method for calculating the coefficients.
\begin{lstlisting}[style=CStyle]
const std::vector< Eigen::ArrayXXd> getValues() const
\end{lstlisting}
\end{itemize}
\subsubsection{Python API}
By importing the \code{StOptTree} module, the \code{ContinuationCutsTree} object is available in python.
\part{Solving optimization problems with dynamic programming methods}
\label{part:dynProg}
\chapter{Creating simulators}
In order to optimize the control problem, the user must develop simulators allowing to trace some trajectories of uncertainties.
This trajectories are used during optimization or in a simulation part testing the optimal control.
\section{Regression methods simulators}
In the following, we assume that we have developed a Simulator generating Monte Carlo simulations at different optimizations dates.
In order to use the different frameworks developed in the following, we assume that the simulator is derived from the abstract class
\code{SimulatorDPBase}.
\lstinputlisting[style=CStyle]{../StOpt/StOpt/dp/SimulatorDPBase.h}
Suppose that the Simulator is a Black Scholes simulator for the assets $P$, simulating $M$ the Monte Carlo simulations, on the dates $N+1$ $t_0,\dots,t_N$,
the Markov state for the particle $j$, the date $t_i$, the Monte Carlo simulation $k$ and the asset $p$ is $X_{p,i}^k$ and
we give below the meaning of the different methods of \code{SimulatorDPBase}:
\begin{itemize}
\item the \code{getParticle} method gives at the current optimization/simulation date $t_i$ the Markov states $X_{p,i}^k$ in a matrix $A$ such that $A(p,k)= X_{p,i}^k$,
\item the \code{stepForward} method is used while simulating the assets evolution in forward: a step forward is realized from $t_i$ to $t_{i+1}$ and Brownian motions used for the assets are
updated at the new time step,
\item the \code{stepBackward} method is used for the simulation of the asset from the last date to time 0. This method is used during an asset optimization by Dynamic Programming,
\item the method \code{stepForwardAndGetParticles}: second and first method in one call,
\item the method \code{stepBackwardAndGetParticles}: third and first method in one call,
\item the method \code{getDimension} returns the number of assets,
\item the method \code{getNbStep} returns the number of step ($N$),
\item the \code method{getStep} retu+++
rns the number of steps $t_{i+1}-t_i$ at the current time $t_i$,
\item the method \code{getNbSimul} returns $M$.
\item the method \code{getActuStep} returns the actualization factor over a time step
\item the method\code{getActu} returns a discount factor at date ``0''.
\end{itemize}
\section{Simulators for trees}
In order to develop solvers using tree-based methods, the user has to create a simulator derived from the \code{SimulatorDPBaseTree} class.
This simulator reads at each date in a geners archive, the values of the uncertainties at the nodes and the probability transition.
It is used deterministically in backward mode: the values of the nodes are all explored sequentially.
In forward mode, it allows to sample discrete values of the state through the tree.
\lstinputlisting[style=CStyle]{../StOpt/StOpt/dp/SimulatorDPBaseTree.h}
When designing their tree, the user must call the based simulator constructor by providing a geners archive giving
\begin{itemize}
\item An Eigen \code{ArrayXd} of the set of dates (size $N$) associated with the tree.
\item A vector of probabilities \code{P} at each of the first $N-1$ dates.
\item A vector of vector of pair of int at each of the first $N-1$ dates. Such a vector \code{v}, at a given date, has the size equal to the number of nodes in the tree at this date. For a node $i$, \code{v[i]} is the vector of arrival nodes number and probability index in \code{P}. Then \code{v[i][j].first} is the number of a node at next date connected to node $i$ at current date. The transition probability is given by \code{P[v[i][j].second]}.
\end{itemize}
In the geners archive, storage is carried out as in the \code{dump} function in the file \code{TrinomialTreeOUSimulator.cpp} storing the connection matrix probabilities of a trinomial tree.
\lstinputlisting[style=CStyle,firstline=175,lastline=194]{../StOpt/test/c++/tools/simulators/TrinomialTreeOUSimulator.cpp}
The different methods that the user has to provide are
\begin{itemize}
\item the \code{stepForward} method is used when simulating the evolution of forward assets: a step forward is made from $t_i$ to $t_{i+1}$ and samples are generated to give discrete uncertainties in the tree.
\item the \code{stepBackward} method is used when optimizing an asset from the last date to time 0 by Dynamic Programming. The structure of the tree should be updated (probabilities, connection between nodes)
\item the \code{getNbSimul} giving the number of samples used in forward mode,
\item the \code{getValueAssociatedToNode} method taking the number of a node and giving back the state associated with this node,
\item the \code{getNodeAssociatedToSim} method giving for a trajectory number in forward mode, the number of the node visited at current date.
\end{itemize}
An example of simulator for HJM model with trinomial tree for the OU process is \code{MeanRevertingSimulatorTree}.
\chapter{Using conditional expectation to solve simple problems}
In this chapter, we give some examples for valuing an American option. This use of conditional expectation operators can be extended to many stochastic problems using these previously developed objects.
\section{American option by regression}
\subsection{The American option valuing by Longstaff--Schwartz}
Suppose in this example that the payoff of the American option is given by $g$ and that the interest rate is 0. The value of the option is given by
\begin{equation}
\label{StoppingTime}
P_t = {\rm esssup}_{\tau \in {\cal T}_{[t,T]}}\E(g(\tau,X_\tau)~|~{ \cal F}_t) \;\;\mbox{ for } \;t\le T\;\;\mathbb{P}-\mbox{a.s.}\;,
\end{equation}
where $\Tc_{[t,T]}$ denotes the set of stopping times with values in $[t,T]$.\\
We recall the classic Longstaff--Schwartz Algorithm~\ref{Longstaff} estimating the empirical conditional expectation using the regression estimation seen previously.
\begin{algorithm}[h]
\caption{{ Algorithm with regression [optimal exercise time estimation]}
\label{Longstaff}}
\begin{algorithmic}
\State Initialization:
\State Set $\hat \tau^{1,\pi,(j)}_\kappa:=T$, $j\le N$
\State Backward induction:
\For{ $i=\kappa-1$ to $0$}
\State set $\hat\tau^{1,\pi}_i:=t_i{\bf 1}_{A^1_i}+ \hat \tau^{1,\pi}_{i+ 1}{\bf
1}_{(A^1_i)^c}$ where $A^1_i:=\{g(t_i, X_{t_i})\ge \hat \E[g(\hat \tau^{1,\pi}_{i+
1},X_{\hat \tau^{1,\pi}_{i+1}})~|~{ \cal F}_{t_i}]\}$.
\EndFor
\State Price estimator at $0$: $\hat P^{1,\pi}_{0}:=\hat \E[g(\hat \tau^{1,\pi}_{0}, X_{\hat \tau^{1,\pi}_{0}})]$.
\end{algorithmic}
\end{algorithm}
\subsubsection{American option by regression with the C++ API}
We value in the algorithm below an American option using a simulator \code{p\_sim}, a regressor \code{p\_regressor}, a payoff function \code{p\_payoff}:
\begin{lstlisting}[style=CStyle]
double step = p_sim.getStep(); // time step increment
// asset simulated under the neutral risk probability: get the trend of the first asset to get the interest rate
double expRate = exp(-step * p_sim.getMu()(0));
// Terminal pay off
VectorXd Cash(p_payOff(p_sim.getParticles()));
for (int iStep = 0; iStep < p_sim.getNbStep(); ++iStep)
{
shared_ptr<ArrayXXd> asset(new ArrayXXd(p_sim.stepBackwardAndGetParticles())); // asset = Markov state
VectorXd payOffLoc = p_payOff(*asset); // pay off
// update conditional expectation operator for current Markov state
p_regressor.updateSimulations(((iStep == (p_sim.getNbStep() - 1)) ? true : false), asset);
// conditional expectation
VectorXd condEspec = p_regressor.getAllSimulations(Cash) * expRate;
// arbitrage between pay off and cash delivered after
Cash = (condEspec.array() < payOffLoc.array()).select(payOffLoc, Cash * expRate);
}
return Cash.mean();
\end{lstlisting}
\subsubsection{American option with the Python API}
Using the python API the American resolution is given below:
\lstinputlisting[style=PStyle]{../StOpt/test/python/functional/utils/americanOption.py}
\section{American options by tree}
Using trees, American options are solved calculating the Bellman values at each date instead of valuing them as expectation of payoff at optimal stopping time.
\begin{algorithm}[h]
\caption{{ Algorithm with tree: Bellman value (0 interest rate)}
\label{AmrVal}}
\begin{algorithmic}
\State Initialization:
\State Set $P^j := g(X_{T}^j)$, $j\le N(\kappa)$ \Comment{Number of node at last date}
\State Backward induction:
\For{ $i=\kappa-1$ to $0$}
\State set $ P^j = \max [ \E[ P ~|~ X^j_{t_i}], g(X_{t_i}^j]$, $j \le N(i)$
\EndFor
\State Price estimator at $0$: $P^0$.
\end{algorithmic}
\end{algorithm}
\subsection{The American option by tree}
\lstinputlisting[style=CStyle, firstline=87,lastline=121]{../StOpt/test/c++/functional/testAmericanOptionTree.cpp}
\subsection{Python API}
\lstinputlisting[style=CStyle, firstline=55, lastline =87]{../StOpt/test/python/functional/testAmericanOptionTree.py}
\chapter{Using the general framework to manage stock problems }
\label{SecParal}
In this chapter the state is separated into three parts $X^{x,t} = (X^{x,t}_1,X^{x,t}_2, I_t)$. $(X^{x,t}_1,X^{x,t}_2)$, which corresponds to the special case of chapter \ref{sec:continuation} where $X^{x,t}_1$ is not controlled and $X^{x,t}_2$ is controlled.
Two cases can be tackled:
\begin{itemize}
\item the first case corresponds to the case where $X^{x,t}_2$ is deterministic (think of storage management),
\item the second case corresponds to the case where $X^{x,t}_2$ is stochastic (think of portfolio optimization).
\end{itemize}
$I_t$ takes integers values and is here to describe some finite discrete regimes (to deal with some switching problems).
A general framework is available to solve this type of problem. \\
First of all, the second part $X^{x,t}_2$ is discretized on a grid as explained in chapter \ref{sec:continuation}.
\begin{itemize}
\item Either a full grid is used for $X^{x,t}_2$ and two types of sequential or parallel resolutions be can considered:
\begin{itemize}
\item a resolution can be obtained sequentially or a parallelization with MPI on the computations can be carried out (acceleration but no increase in size). This approach can be used for small dimension problems.
\item a resolution can be obtained with a parallelization by the MPI framework by spreading the work to be done on the points of the grid, and by distributing the data between processors (acceleration and dimensioning). We will call this parallelization technique a ``distribution'' technique. This approach is necessary to tackle very large optimization problems where the overall solution cannot be stored in the memory of a single processor.
\end{itemize}
\item or the grid for $X^{x,t}_2$ is not full (therefore sparse) and only a parallelization by thread and MPI can be carried out on the calculations (acceleration and no increase in size). With sparse grids, only the deterministic $X^{x,t}_2$ case is treated.
\end{itemize}
In the case of the MPI parallelization technique distributing task and the data (full grids only), \cite{makassikis2008large} and \cite{vialle2008stochastic} are used.
Suppose that the grid is the same at each time step (only here to facilitate the case), and that we have 4 processors (figure \ref{Parallfig}) then:
\begin{itemize}
\item at the last time step, the final values at each point of each simulation are calculated (each processor calculates the values for its own grid points),
\item in the previous time step, from a grid point, specific to a processor, we are able to locate the grid points reached in the next time step by all the commands,
\item on figure \ref{Parallfig}, we give the points belonging to other processors wich can be reached from points belonging to processor 3,
\item certain MPI communications are carried out by bringing back the data (values calculated at the previous processed time step) necessary for processor 3 to be able to update the calculated value by dynamic programming at the moment for all the points belonging to processor 3,
\item all communications between all processors are done together.
\end{itemize}
\begin{figure}[h]
\centering
\includegraphics[width=8cm]{Paral.png}
\caption{Data to send to processor 3}
\label{Parallfig}
\end{figure}
The overall status of the problem is stored in the \href{run:../StOpt/StOpt/core/utils/StateWithStocks.h}{\code{StateWithStocks}} object.\\
\section{General requirement for the business object}
In order to use the framework, the developer must describe the problem he wants to solve in one step from a state $X^{x,t}$.
This business object must offer common methods and it is derived from \code{OptimizerBase}.
\lstinputlisting[style=CStyle]{../StOpt/StOpt/dp/OptimizerBase.h}
We detail all the methods to be implemented for all the resolution methods (with or without regressions).
\begin{itemize}
\item the \code{getNbRegime} makes it possible to obtain the number of regimes of the problem: for example, in switching problems, when there is a switching cost, the working regime has to be incorporated in the state. Another example is the case of the conditional delta to calculate for an asset: two regimes can be used: one to calculate the value of the asset and the second to calculate the $\Delta$. This number of regimes can depend on time: in this case for a current resolution date $t$ the \code{getNbRegime} method sends the number of regimes at the very beginning of the time step (in $t^{-}$) such such that a switch to a new regime can take place in $t^{+}$.
\item the \code{getSimulator} method is used to retrieve the simulator giving the Monte Carlo simulations,
\item the \code{getSimuFuncSize} method is used in simulation to define the number of functions to follow in the simulation part. For example in a stochastic target problem where the target is a given wealth with a given probability, one may want to follow the evolution of the probability at each time step and of the wealth obtained in trading. In this case the \code{getSimuFuncSize} returns $2$.
\item the \code{getCone} method is only relevant if the MPI framework with distribution is used. As argument it takes a vector of size the dimension of the grid. Each component of the vector is an array containing
the minimum and maximum coordinate values of the points of the current grid defining an hyper cube $H1$. It returns for each dimension, the min and max coordinates of the hyper cube $H2$ containing the points which can be reached by applying a command from a point of the grid in $H1$.
\item the \code{getDimensionToSplit} method is used to define in the MPI framework with distribution the directions to be divided for the solution on the processors. For each dimension, it returns a Boolean where \code{true} means that the direction is a candidate for splitting.
\item the \code{stepSimulateControl} method is used after the optimization using the optimal controls calculated in the optimization part. From a state \code{p\_state} (storing the $X^{x,t}$), the calculated optimal control in optimization \code{p\_control}, the values of optimal functions along the current path are stored in \code{p\_phiInOut}. The state \code{p\_state} is updated at the end of the call function.
\end{itemize}
\hspace{1cm}
In the first part, we present the framework of the problems where the conditional expectation is calculated by regression (case where $X^{t,x}_2$ is not controlled).
Next, we develop the framework that does not use regression for the conditional expectation calculations. All conditional expectations are calculated using exogenous particles and interpolation.
This will generally be the case for portfolio optimization.
\section{Solving the problem using conditional expectation calculated by regressions}
In this part, we assume that $X^{x,t}_2$ is controlled and deterministic so that regression methods can be used.
\subsection{Requirement to use the framework }
The \code{OptimizerBaseInterp} is an optimizer class common to all regression methods used by dynamic programming for stocks problems.
We detail the methods of \code{OptimizerBaseInterp} which is a derived from \code{OptimizerBase}. Only one method is added:
\begin{itemize}
\item the \code{stepSimulateControl} method is used after optimization using the optimal controls calculated in the optimization part. From a state \code{p\_state} (storing the $X^{x,t}$), the calculated optimal control
in the \code{p\_control} optimization, the values of the optimal functions along the current path are stored in \code{p\_phiInOut}. The state \code{p\_state} is updated at the end of the call function.
\end{itemize}
\subsection{Classical regression}
By classical regression, we mean regression problems with storages where the optimal command is calculated on one time step and estimated by testing all
possible discretized commands.\\
In order to use the framework with regression for conditional expectation, a business object describing the business at a time step from a state is derived from \code{OptimizerDPBase} itself derived from \code{OptimizerBaseInterp}.
\lstinputlisting[style=CStyle]{../StOpt/StOpt/dp/OptimizerDPBase.h}
We detail the different methods derived from \code{OptimizerDPBase} to implement in addition to the \code{OptimizerBaseInterp} methods:
\begin{itemize}
\item the \code{stepOptimize} method is used in optimization. We want to calculate the optimal value at the current $t_i$ at a grid point \code{p\_stock} using a \code{p\_grid} grid at the following date $t_{i+1}$,
the continuation values for all the \code{p\_condEsp} regimes allowing to calculate the conditional expectation of the optimal value function calculated in the previous one
treated time step $t_{i+1}$.
From a grid point \code{p\_stock} it calculates the function values and the optimal controls. It returns a pair where the
\begin{itemize}
\item the first element is a matrix (first dimension is the number of simulations, the second dimension the number of regimes) giving the value of the function,
\item the second element is a matrix (the first dimension is the number of simulations, the second dimension the number of controls) giving the optimal control.
\end{itemize}
\item the \code{stepSimulate} method is used after the optimization using the continuation values calculated in the optimization part. From a \code{p\_state} state (storing the $X^{x,t}$), the calculated continuation values
in optimization \code{p\_continuation}, the optimal functions values along the current path are stored in \code{p\_phiInOut}.
\end{itemize}
In the case of \cite{warin2012gas} gas storage, the storage holder can inject gas from the grid into the storage (by paying the market price) or withdraw gas from the storage on the grid (by receiving the market price).
In this case the Optimize object is given in the file \href{run:../StOpt/test/c++/tools/dp/OptimizeGasStorage.h}{\code{OptimizeGasStorage.h}}. You can take a look at the implementation of the \code{getCone} method.
\subsubsection{The framework in optimization with classical regressions}
\label{subsec:framework}
Once an Optimizer is derived for the project, and assuming a full grid is used for inventory discretization, the framework provides a \href{run:../StOpt/StOpt/dp/TransitionStepRegressionDPDist.h}{\code{TransitionStepRegressionDPDist}} object in MPI which allows to solve the
optimization problem with data distribution over a time step with the following constructor:
\begin{lstlisting}[style=CStyle]
TransitionStepRegressionDPDist(const shared_ptr<FullGrid> &p_pGridCurrent,
const shared_ptr<FullGrid> &p_pGridPrevious,
const shared_ptr<OptimizerDPBase > &p_pOptimize)
\end{lstlisting}
with
\begin{itemize}
\item \code{p\_pGridCurrent} is the grid at the current time step ($t_i$),
\item \code{p\_pGridPrevious} is the grid at the previously processed time step ($t_{i+1}$),
\item \code{p\_pOptimize} the optimizer object
\end{itemize}
\begin{Remark}
A similar object is available without the MPI distribution framework \href{run:../StOpt/StOpt/dp/TransitionStepRegressionDP.h}{\code{TransitionStepRegressionDP}} with always the activation of parallelization with threads and MPI on calculations on the full points grid.
\end{Remark}
\begin{Remark}
In the case of sparse grids with only parallelization on the calculations (threads and MPI) \href{run:../StOpt/StOpt/dp/TransitionStepRegressionDPSparse.h}{\code{TransitionStepRegressionDPSparse}}
object can be used.
\end{Remark}
The main method is
\begin{lstlisting}[style=CStyle]
std::vector< shared_ptr< Eigen::ArrayXXd > > OneStep(const std::vector< shared_ptr< Eigen::ArrayXXd > > &p_phiIn,
const shared_ptr< BaseRegression> &p_condExp)
\end{lstlisting}
with
\begin{itemize}
\item \code{p\_phiIn} the vector (its size corresponds to the number of regimes) of the matrix of optimal values calculated at the previous time iteration for each regime. Each matrix is a number of simulations per matrix of number of stock points matrix.
\item \code{p\_condExp} the conditional expectation operator,
\end{itemize}
returning a pair:
\begin{itemize}
\item The first element is a vector of matrix with new optimal values at the current time step (each element of the vector corresponds to a regime and each matrix is a number of simulations per matrix of number of stock points).
\item The second element is vector of matrix with new optimal controls at the current time step (each element of the vector corresponds to a control and each matrix is a number of simulations per number of stock points matrix).
\end{itemize}
\begin{Remark}
All \code{TransitionStepRegressionDP} derive from a \code{TransitionStepRegressionBase} object having a pure virtual \code{OneStep} method.
\end{Remark}
A second method is provided permitting to dump the continuation values of the problem and the optimal control at each time step:
\begin{lstlisting}[style=CStyle]
void dumpContinuationValues(std::shared_ptr<gs::BinaryFileArchive> p_ar , const std::string &p_name, const int &p_iStep,
const std::vector< std::shared_ptr< Eigen::ArrayXXd > > &p_phiInPrev,
const std::vector< std::shared_ptr< Eigen::ArrayXXd > > &p_control,
const std::shared_ptr<BaseRegression> &p_condExp,
const bool &p_bOneFile) const
\end{lstlisting}
with:
\begin{itemize}
\item \code{p\_ar} is the archive where the controls and solutions are dumped,
\item \code{p\_name} is a base name used in the archive to store the solution and the control,
\item \code{p\_phiInPrev} is the previous time step solution used to calculate the continuation values that are stored,
\item \code{p\_control} stores the optimal controls calculated at the current time step,
\item \code{p\_condExp} is the conditional expectation object allowing to calculate the conditional expectation of the functions defined at the previous time step processed \code{p\_phiInPrev} and allowing to store a representation of the optimal control.
\item \code{p\_bOneFile} is set if the continuation and optimal controls calculated by each processor are flushed to a single file. Otherwise, the continuation and optimal controls calculated by each processor are flushed to different files (one by processor). If the problem results in optimal continuation and control values on the global grid that can be stored in the memory of the computate node, it may be more interesting to dump the continuation/control values to a file for policy simulation optimal.
\end{itemize}
\begin{Remark}
As for the \code{TransitionStepRegressionDP} object and the \code{TransitionStepRegressionDPSparse} object, their \code{dumpContinuationValues} does not need an argument \code{p\_bOneFile}: the optimal controls are obviously stored in a single file.
\end{Remark}
Here we give a simple example of temporal resolution using this method when MPI data distribution is used
\lstinputlisting[style=CStyle]{../StOpt/test/c++/tools/dp/DynamicProgrammingByRegressionDist.cpp}
An example without data distribution can be found in the file \href{run:../StOpt/test/c++/tools/dp/DynamicProgrammingByRegression.cpp}{\code{DynamicProgrammingByRegression.cpp}}.
We finally give an array with the different \code{TransitionStepRegression} objects to use depending on the type of parallelization used.
\begin{table}[h!]
\caption {Which object \code{TransitionStepRegression} to use depending on the grid used and the type of parallelization used.}
\scalebox{0.8}{
\begin{tabular}{|c|c|c|}
\hline
& Full grid & Sparse grid \\ \hline
Sequential & \code{TransitionStepRegressionDP} & \code{TransitionStepRegressionDPSparse} \\ \hline
Parallelization on calculations& \code{TransitionStepRegressionDP} & \code{TransitionStepRegressionDPSparse} \\
threads and MPI & & \\ \hline
Distribution of calculations & \code{TransitionStepRegressionDPDist} & Not available \\
and data & & \\ \hline
\end{tabular}
}
\end{table}
\subsubsection {The framework in simulation with classical regressions}
\label{subsec::simulation}
Once the optimization is done, the continuation values are saved in a file (or in some files) at each time step.
In order to simulate the optimal policy, we can use the previously calculated continuation values (see chapter \ref{sec:continuation}) or we can use the optimal controls
calculated in optimization. In continuous optimization, the use of control is more efficient in terms of computational cost. When the control is discrete, the interpolation of the controls can lead to inadmissible controls and the simulation with the value function is more precise.\\
When simulating optimal control, two cases can occur:
\begin{itemize}
\item
In most cases (small dimension case), the optimal control or optimal function value can be stored in the compute node memory and the function values and controls are stored in a single file. In this case, an optimum control simulation can be easily performed by distributing the Monte Carlo simulations on the available compute nodes: this can be done using the \code{SimulateStepRegression} or
\code{SimulateStepRegressionControl} objects at each time step of the simulation.
\item When it comes to very large problems, optimization is achieved by distributing the data across the processors and it is impossible to store the optimal command on a node.
In this case, the optimal controls and the optimal solutions are stored in the memory of the node which was used to calculate them in optimization.
The simulations are reorganized at each time step and gathered so as to occupy the same part of the global grid. Each processor will then get from the other processors a version of the optimal control or solution it needs. This methodology is used in the \code{SimulateStepRegressionDist} and \code{SimulateStepRegressionControlDist} objects.
\end{itemize}
We detail the simulations objects using the optimal function value calculated in optimization and the optimal control for the case of very large problems.
\begin{itemize}
\item \underline{Simulation step using the value function calculated in optimization}: \\
In order to simulate one step of the optimal policy, an object \href{run:../StOpt/StOpt/dp/SimulateStepRegressionDist.h} {\code{SimulateStepRegressionDist}} is provided with constructor
\begin{lstlisting}[style=CStyle]
SimulateStepRegressionDist(gs::BinaryFileArchive &p_ar, const int &p_iStep, const std::string &p_nameCont,
const shared_ptr<FullGrid> &p_pGridFollowing, const shared_ptr<OptimizerDPBase > &p_pOptimize,
const bool &p_bOneFile)
\end{lstlisting}
where
\begin{itemize}
\item \code{p\_ar} is the binary archive where the continuation values are stored,
\item \code{p\_iStep} is the number associated with the current time step (0 at the start date of the simulation, the number is increased by one at each simulated time step ),
\item \code{p\_nameCont} is the base name for continuation values,
\item \code{p\_GridFollowing} is the grid at the next time step (\code{p\_iStep+1}),
\item \code{p\_Optimize} the Optimizer describing the passage from one time step to the next,
\item \code{p\_OneFile} equal to \code{true} if only one archive is used to store continuation values.
\end{itemize}
\begin{Remark}
A version without data distribution but with multithreaded and with possible MPI on calculations is available with the object \href{run:../StOpt/StOpt/dp/SimulateStepRegression.h} {\code{SimulateStepRegression}}. The \code{p\_OneFile} argument is omitted during construction.
\end{Remark}
This object implements the method \code{oneStep}
\begin{lstlisting}[style=CStyle]
void oneStep(std::vector<StateWithStocks > &p_statevector , Eigen::ArrayXXd &p_phiInOut)
\end{lstlisting}
where:
\begin{itemize}
\item \code{p\_statevector} stores the states of all simulations: this state is updated by applying the optimal command,
\item \code{p\_phiInOut} stores the gain/cost functions for all the simulations: it is updated by the function call. The size of the array is $(nb, nbSimul)$ where $nb$ is given by the \code{getSimuFuncSize} method of the optimizer and $ nbSimul $ the number of Monte Carlo simulations.
\end{itemize}
An example of using this method to simulate an optimal policy with distribution is given below:
\lstinputlisting[style=CStyle]{../StOpt/test/c++/tools/dp/SimulateRegressionDist.h}
The version of the previous example using a single archive storing the control/solution is given in the \href{run:../StOpt/test/c++/tools/dp/SimulateRegression.h}{\code{SimulateRegression.h}} file.
\item \underline{Simulation step using the optimal controls calculated in optimization}:\\
\begin{lstlisting}[style=CStyle]
SimulateStepRegressionControlDist(gs::BinaryFileArchive &p_ar, const int &p_iStep, const std::string &p_nameCont,
const std::shared_ptr<FullGrid> &p_pGridCurrent,
const std::shared_ptr<FullGrid> &p_pGridFollowing,
const std::shared_ptr<OptimizerDPBase > &p_pOptimize,
const bool &p_bOneFile);
\end{lstlisting}
where
\begin{itemize}
\item \code{p\_ar} is the binary archive where the continuation values are stored,
\item \code{p\_iStep} is the number associated with the current time step (0 at the start date of simulation, the number is increased by one at each simulated time step ),
\item \code{p\_nameCont} is the base name of the control values,
\item \code{p\_GridCurrent} is the grid at the current time step (\code{p\_iStep}),
\item \code{p\_GridFollowing} is the grid at the next time step (\code{p\_iStep+1}),
\item \code{p\_Optimize} is the Optimizer describing the passage from one time step to the next,
\item \code{p\_OneFile} is equal to \code{true} if only one archive is used to store continuation values.
\end{itemize}
\begin{Remark}
A version in which a single archive storing the control/solution is used is available with the object \href{run:../StOpt/StOpt/dp/SimulateStepRegressionControl.h} {\code{SimulateStepRegressionControl}}
\end{Remark}
This object implements the method \code{oneStep}
\begin{lstlisting}[style=CStyle]
void oneStep(std::vector<StateWithStocks > &p_statevector , Eigen::ArrayXd &p_phiInOut)
\end{lstlisting}
where:
\begin{itemize}
\item \code{p\_statevector} stores the state for all simulations: this state is updated by applying optimal commands,
\item \code{p\_phiInOut} stores the gain/cost functions for all simulations: it is updated by the function call. The size of the array is $(nb, nbSimul)$ where $nb$ is given by the \code{getSimuFuncSize} method of the optimizer and $ nbSimul $ the number of Monte Carlo simulations.
\end{itemize}
An example of using this method to simulate an optimal policy with distribution is given below:
\lstinputlisting[style=CStyle]{../StOpt/test/c++/tools/dp/SimulateRegressionControlDist.h}
The version of the previous example using a single archive storing the control/solution is given in the \href{run:../StOpt/test/c++/tools/dp/SimulateRegressionControl.h}{\code{SimulateRegressionControl.h}} file.
\end{itemize}
In the table below, we indicate which simulation object should be used at each time step depending on the \code{TransitionStepRegressionDP} object used in optimization.
\begin{sidewaystable}
\centering
%\label{tabOptSim}
\caption{ Which simulation object to use depending on the TransitionStepRegression object used.}
\scalebox{0.6}{
\begin{tabular}{|c|c|c|c|c|}
\hline
& \code{TransitionStepRegressionDP} & \code{TransitionStepRegressionDPDist} & \code{TransitionStepRegressionDPDist} & \code{TransitionStepRegressionDPSparse} \\
& & \code{bOneFile = true} & \code{bOneFile = false} & \\ \hline
\code{SimulateStepRegression} & Yes & Yes & No & Yes \\ \hline
\code{SimulateStepRegressionControl} & Yes & Yes & No & Yes \\ \hline
\code{SimulateStepRegressionDist} & No & Yes & Yes & No \\ \hline
\code{SimulateStepRegressionControlDist} & No & Yes & Yes & No \\ \hline
\end{tabular}
}
\end{sidewaystable}
\clearpage
\subsection{Regressions and cuts for continuous linear transition problems with certain characteristics of concavity and convexity}
\label{sec:withCuts}
During the optimization for example a storage, one can want to solve the transition problem on certain time steps by supposing that the uncertainties are known.
The Bellman values for a given uncertainty are then concave compared to the storage when one tries to maximize certain gains for example.
When the problem is continuous linear, we can use bender cuts to approximate the Bellman value with respect to the storage level as in the SDDP method \ref{chap:SDDP}.
To use this cuts a business object using an LP solver must be created. This business object is derived from \code{OptimizerDPCutBase} itself derived from \code{OptimizerBaseInterp}.
\lstinputlisting[style=CStyle]{../StOpt/StOpt/dp/OptimizerDPCutBase.h}
We detail the different methods to implement in addition to the \code{OptimizerBaseInterp} methods:
\begin{itemize}
\item the \code{stepOptimize} method is used in optimization. We want to calculate the optimal value and the corresponding sensibilities with respect to the stocks at current $t_i$ at a grid point \code{p\_stock} using a grid \code{p\_grid} at the next date $t_{i+1}$,
the continuation cuts values for all regimes \code{p\_condEsp} permitting to calculate an upper estimation (when maximizing) of conditional expectation of the optimal values using some optimization calculated at the previously
treated time step $t_{i+1}$.
From a grid point \code{p\_stock} it calculates the function values and the corresponding sensibilities. It returns a matrix (first dimension is the number of simulations by the number of cuts components (number of storage +1), second dimension the number of regimes) giving the function value and sensibilities.
\item the \code{stepSimulate} method is used after optimization using the continuation cuts values calculated in the optimization part. From a state \code{p\_state} (storing the $X^{x,t}$), the continuation cuts values calculated
in optimization \code{p\_continuation}, the optimal cash flows along the current trajectory are stored in \code{p\_phiInOut}.
\end{itemize}
In the case of gas storage, the Optimize object is given in the \href{run:../StOpt/test/c++/tools/dp/OptimizeGasStorageCut.h}{\code{OptimizeGasStorageCut.h}} file.
\subsubsection{The framework in optimization using certain cutting methods}
\label{subsec:frameworkCut}
Once an Optimizer object describing the business problem to be solved with cuts is created for the project, and assuming that a full grid is used for the discretization of the stock, the framework provides a \href{run:../StOpt/StOpt/dp/TransitionStepRegressionDPCutDist.h}{\code{TransitionStepRegressionDPCutDist}} object in MPI which solves the optimization problem with data adistribution over a time step with the following constructor:
\begin{lstlisting}[style=CStyle]
TransitionStepRegressionDPCutDist(const shared_ptr<FullGrid> &p_pGridCurrent,
const shared_ptr<FullGrid> &p_pGridPrevious,
const shared_ptr<OptimizerDPCutBase > &p_pOptimize):
\end{lstlisting}
with
\begin{itemize}
\item \code{p\_pGridCurrent} is the grid at the current time step ($t_i$),
\item \code{p\_pGridPrevious} is the grid at the previously processed time step ($t_{i+1}$),
\item \code{p\_pOptimize} the optimizer object
\end{itemize}
The construction is very similar to the classical regression methods using only the discretization by command.
\begin{Remark}
A similar object is available without the MPI distribution framework \href{run:../StOpt/StOpt/dp/TransitionStepRegressionDPCut.h}{\code{TransitionStepRegressionDPCut}} with always the activation of parallelization with threads and MPI on calculations on the full grid points.
\end{Remark}
The main method is
\begin{lstlisting}[style=CStyle]
std::vector< shared_ptr< Eigen::ArrayXXd > > OneStep(const std::vector< shared_ptr< Eigen::ArrayXXd > > &p_phiIn,
const shared_ptr< BaseRegression> &p_condExp)
\end{lstlisting}
with
\begin{itemize}
\item \code{p\_phiIn} the vector (its size corresponds to the number of regimes) of the matrix of optimal values and sensitivities calculated at the previous time iteration for each regime. Each matrix has a number of rows equal to the number of simulations by the number of stock plus one. The number of columns is equal to the number of stock points on the grid.
In the row, the number of simulations by the number of stock plus one value is stored as follows:
\begin{itemize}
\item The first values (number of simulations : $NS$) correspond to the optimal Bellman values at a given stock point,
\item The $NS$ values following corresponds to sensitivities $ \frac{ \partial V}{\partial S_1} $ at first storage
\item The $NS$ values following corresponds to sensitivities at the second storage...
\item $\dots$
\end{itemize}
\item \code{p\_condExp} the conditional expectation operator,
\end{itemize}
returning a vector of matrix with new optimal values and sensitivities to the current time step (each element of the vector corresponds to a regime and each matrix has a size equal to (number of simulations by (the number of storage plus one)) by the number of stock points). The structure of the output is then similar to the \code{p\_phiIn} input.\\
A second method is provided allowing to dump the continuation values and cuts of the problem and the optimal control at each time step:
\begin{lstlisting}[style=CStyle]
void dumpContinuationCutsValues(std::shared_ptr<gs::BinaryFileArchive> p_ar , const std::string &p_name, const int &p_iStep,
const std::vector< std::shared_ptr< Eigen::ArrayXXd > > &p_phiInPrev,
const std::shared_ptr<BaseRegression> &p_condExp,
const bool &p_bOneFile) const
\end{lstlisting}
with:
\begin{itemize}
\item \code{p\_ar} is the archive where controls and solutions are dumped,
\item \code{p\_name} is a base name used in the archive to store the solution and the control,
\item \code{p\_phiInPrev} is the solution to the previous time step used to calculate the values of continuation cuts which are stored,
\item \code{p\_condExp} is the conditional expectation object allowing to calculate the conditional expectation of the functions defined at the preceding time step processed \code{p\_phiInPrev}.
\item \code{p\_bOneFile} is set if the continuation cut values calculated by each processor are dumped on a single file. Otherwise the continuation cut values calculated by each processor are dumped on different files (one per processor). If the problem results from the cuts of the values on the global grid that can be stored in the memory of the compute node, it may be more interesting to dump them in a single file for the simulation of the optimal policy.
\end{itemize}
Here we give a simple example of temporal resolution using this method when MPI data distribution is used
\lstinputlisting[style=CStyle]{../StOpt/test/c++/tools/dp/DynamicProgrammingByRegressionCutDist.cpp}
An example without data distribution can be found in the file \href{run:../StOpt/test/c++/tools/dp/DynamicProgrammingByRegressionCut.cpp}{\code{DynamicProgrammingByRegressionCut.cpp}}.
\subsubsection{The simulation framework using cuts to approximate the Bellman's values}
\label{subsec::simulationCut}
Once the optimization carried out, the values of the continuation cuts are saved in a file (or in certain files) at each time step.
In order to simulate the optimal policy, we use previously calculated continuation cut values.
\begin{itemize}
\item
In most cases (small dimension case), the optimal values of the cut function can be stored in the compute node memory and the cut values are stored in a single file. In this case, a simulation of the optimal control can be easily performed by distributing the Monte Carlo simulations on the available compute nodes: this can be done by using the object \code{SimulateStepRegressionCut} at each time step of the simulation.
\item When it comes with very large problems, optimization is achieved by distributing the data across the processors and it is impossible to store the optimal cuts values on a node.
In this case, the optimal cuts values are stored in the memory of the node which was used to calculate them in optimization.
The simulations are reorganized at each time step and gathered so as to occupy the same part of the global grid. Each processor will then get from the other processors a localized version of the optimal control or solution that it needs. This methodology is used in the \code{SimulateStepRegressionCutDist} objects.
\end{itemize}
We detail the simulations objects using the optimal cut values calculated in optimization for the case of very large problems.\\
In order to simulate an optimal policy time step, a \href{run:../StOpt/StOpt/dp/SimulateStepRegressionCutDist.h} {\code{SimulateStepRegressionCutDist}} object is provided with constructor
\begin{lstlisting}[style=CStyle]
SimulateStepRegressionCutDist(gs::BinaryFileArchive &p_ar, const int &p_iStep, const std::string &p_nameCont,
const shared_ptr<FullGrid> &p_pGridFollowing, const shared_ptr<OptimizerDPCutBase > &p_pOptimize,
const bool &p_bOneFile)
\end{lstlisting}
where
\begin{itemize}
\item \code{p\_ar} is the binary archive where the continuation values are stored,
\item \code{p\_iStep} is the number associated with the current time step (0 at the start date of the simulation, the number is increased by one at each simulated time step),
\item \code{p\_nameCont} is the base name for continuation values,
\item \code{p\_GridFollowing} is the grid at the next time step (\code{p\_iStep+1}),
\item \code{p\_Optimize} the Optimizer describing the transition problem solved using a LP program.
\item \code{p\_OneFile} equal to \code{true} if only one archive is used to store continuation values.
\end{itemize}
\begin{Remark}
A version without data distribution but with multithreaded and with MPI possible on the calculations is available with the object \href{run:../StOpt/StOpt/dp/SimulateStepRegressionCut.h} {\code{SimulateStepRegressionCut}}. The \code{p\_OneFile} argument is omitted during construction.
\end{Remark}
This object implements the \code{oneStep} method
\begin{lstlisting}[style=CStyle]
void oneStep(std::vector<StateWithStocks > &p_statevector , Eigen::ArrayXXd &p_phiInOut)
\end{lstlisting}
where:
\begin{itemize}
\item \code{p\_statevector} stores the states of all the simulations: this state is updated by applying the optimal command,
\item \code{p\_phiInOut} stores the gain/cost functions for all simulations: it is updated by the function call. The size of the array is $(nb, nbSimul)$ where $nb$ is given by the \code{getSimuFuncSize} method of the optimizer and $ nbSimul $ the number of Monte Carlo simulations.
\end{itemize}
An example of using this method to simulate an optimal policy with distribution is given below:
\lstinputlisting[style=CStyle]{../StOpt/test/c++/tools/dp/SimulateRegressionCutDist.h}
The version of the previous example using a single archive storing the control/solution is given in \href{run:../StOpt/test/c++/tools/dp/SimulateRegressionCut.h}{\code{SimulateRegressionCut.h}} file.
\section{Solve the problem for $X^{x,t}_2$ stochastic}
In this part, we assume that $X^{x,t}_2$ is controlled but is stochastic.
\subsection{Requirement to use the framework }
To use the framework, a business object describing the business at a time step from a state is derived from \code{OptimizerNoRegressionDPBase} itself derived from \code{OptimizerBase}.
\lstinputlisting[style=CStyle]{../StOpt/StOpt/dp/OptimizerNoRegressionDPBase.h}
In addition to the \code{OptimizerBase} methods, the following method is required:
\begin{itemize}
\item the \code{stepOptimize} method is used in optimization. We want to calculate the optimal value regressed to $t_i$ current at a grid point \code{p\_stock} using a \code{p\_grid} grid at the following date $t_{i+1}$,
From a \code{p\_stock} grid point, it calculates the regressed function values and the regressed optimal controls. It returns a pair where the
\begin{itemize}
\item the first element is a matrix (the first dimension is the number of functions in the regression, the second dimension the number of regimes) giving the value of the regressed function,
\item the second element is a matrix (the first dimension is the number of functions in the regression, the second dimension the number of controls) giving the optimal regressed control.
\end{itemize}
\end{itemize}
In this case of the optimization of an updated portfolio with dynamic:
\begin{eqnarray*}
dX^{x,t}_2 = X^{x,t}_2 \frac{dX^{x,t}_1}{X^{x,t}_1}
\end{eqnarray*}
where ${X^{x,t}_1}$ is the value of the risky asset,
the Optimize object is given in the file \href{run:../StOpt/test/c++/tools/dp/OptimizePortfolio.h}{\code{OptimizePortfolio.h}}.
\subsection{The framework in optimization}
Once an Optimizer is derived for the project, and assuming a full grid is used for stock discretization, the framework provides a \href{run:../StOpt/StOpt/dp/TransitionStepDPDist.h}{\code{TransitionStepDPDist}} object in MPI which solves the optimization problem with the distribution of data over a time step with the following constructor:
\begin{lstlisting}[style=CStyle]
TransitionStepDPDist(const shared_ptr<FullGrid> &p_pGridCurrent,
const shared_ptr<FullGrid> &p_pGridPrevious,
const std::shared_ptr<BaseRegression> &p_regressorCurrent,
const std::shared_ptr<BaseRegression> &p_regressorPrevious,
const shared_ptr<OptimizerNoRegressionDPBase > &p_pOptimize):
\end{lstlisting}
with
\begin{itemize}
\item \code{p\_pGridCurrent} is the grid at the current time step ($t_i$),
\item \code{p\_pGridPrevious} is the grid at the previously processed time step ($t_{i+1}$),
\item \code{p\_regressorCurrent} is a regressor at the current date (to evaluate the function at the current date)
\item \code{p\_regressorPrevious} is a previously processed time step regressor ($t_{i+1}$) allowing to evaluate a function at date $t_{i+1}$,
\item \code{p\_pOptimize} the optimizer object
\end{itemize}
\begin{Remark}
A similar object is available without the MPI distribution framework \href{run:../StOpt/StOpt/dp/TransitionStepDP.h}{\code{TransitionStepDP}} with always the activation of parallelization with threads and MPI on the calculations on the full grid points.
\end{Remark}
\begin{Remark}
The case of sparse grids is not currently dealt with in the framework.
\end{Remark}
The main method is
\begin{lstlisting}[style=CStyle]
std::pair< std::shared_ptr< std::vector< Eigen::ArrayXXd > > , std::shared_ptr< std::vector< Eigen::ArrayXXd > > > oneStep(const std::vector< Eigen::ArrayXXd > &p_phiIn)
\end{lstlisting}
with
\begin{itemize}
\item \code{p\_phiIn} the vector (its size corresponds to the number of regimes) of the matrix of calculated optimal values regressed at the previous time iteration for each regime. Each matrix is a number of regressor function on the previous date by number of matrix stock points.
\end{itemize}
return a pair:
\begin{itemize}
\item the first element is a vector of matrix with new optimal values regressed at the current time step (each element of the vector corresponds to a regime and each matrix is a number of functions regressed at the current date by the number of stock points of the matrix).
\item the second element is a vector of matrix with new optimal controls regressed at the current time step (each element of the vector corresponds to a control and each matrix is a number of controls regressed by the number of matrix stock points).
\end{itemize}
\begin{Remark}
All \code{TransitionStepDP} derive from a \code{TransitionStepBase} object with a pure virtual \code{OneStep} method.
\end{Remark}
A second method is provided allowing to dump the optimal control at each time step:
\begin{lstlisting}[style=CStyle]
void dumpValues(std::shared_ptr<gs::BinaryFileArchive> p_ar ,
const std::string &p_name, const int &p_iStep,
const std::vector< Eigen::ArrayXXd > &p_control, const bool &p_bOneFile) const
\end{lstlisting}
with:
\begin{itemize}
\item \code{p\_ar} is the archive where controls and solutions are dumped,
\item \code{p\_name} is a base name used in the archive to store the solution and the control,
\item \code{p\_control} stores the optimal controls calculated at the current time step,
\item \code{p\_bOneFile} is set to one if the optimal controls calculated by each processor are dumped on a single file. Otherwise the optimal controls calculated by each processor are dumped on different files (one by processor). If the problem gives optimal control values on the global grid that can be stored in the memory of the computation node, it can be more interesting to dump the control values in one file for the simulation of the optimal policy.
\end{itemize}
\begin{Remark}
As for the \code{TransitionStepDP}, its \code{dumpValues} does not need a \code{p\_bOneFile} argument: obviously optimal controls are stored in a single file.
\end{Remark}
Here we give a simple example of temporal resolution using this method when MPI data distribution is used
\lstinputlisting[style=CStyle]{../StOpt/test/c++/tools/dp/DynamicProgrammingPortfolioDist.cpp}
An example without data distribution can be found in the file \href{run:../StOpt/test/c++/tools/dp/DynamicProgrammingPortfolio.cpp}{\code{DynamicProgrammingPortfolio.cpp}}.
\subsection{The simulation framework}
No special framework is available in simulation. Use the \code{SimulateStepRegressionControl} or \code{SimulateStepRegressionControlDist} function described in the \ref{subsec::simulation} section.
\section{Solving stock problems with trees}
In this section we detail how to solve problems
\begin{itemize}
\item Either by discretizing the control,
\item Or by solving a Linear Program problem approaching Bellman values by cuts.
\end{itemize}
\subsection{Resolution of dynamic programming problems with the discretization of commands}
\subsubsection{Framework usage condition}
The \code{OptimizerDPTreeBase} is the base object from which each business object is to be derived.
\lstinputlisting[style=CStyle]{../StOpt/StOpt/dp/OptimizerDPTreeBase.h}
Since the \code{OptimizerDPTreeBase} class is derived from \code{OptimizerBase}, we detail the additional methods required:
\begin{itemize}
\item the \code{stepOptimize} method is used in optimization. We want to calculate the optimal value at the current $t_i$ at a grid point \code{p\_stock} using a \code{p\_grid} grid at the following date $t_{i+1}$,
the continuation values for all the \code{p\_condEsp} regimes making it possible to calculate the conditional expectation of the optimal value function calculated at the previously processed time step $t_{i+1}$.
From a grid point \code{p\_stock} it calculates the function values and the optimal controls. It returns a pair where the
\begin{itemize}
\item the first element is a matrix (the first dimension is the number of nodes, the second dimension the number of regimes) giving the value of the function,
\item the second element is a matrix (the first dimension is the number of nodes, the second dimension the number of controls) giving the optimal control.
\end{itemize}
\item the \code{stepSimulate} method is used after the optimization using the continuation values calculated in the optimization part: these continuation values are stored in a GridTreeValue object for interpolation. From a \code{p\_state} state (storing the $X^{x,t}$), the continuation values calculated in the optimization \code{p\_continuation}, the optimal values of the stored functions in \code{p\_phiInOut}.
\item the \code{stepSimulateControl} simulates the strategy by direct interpolation of the control for a given node in the tree (sampled) and a position in the stock.
\end{itemize}
\subsubsection{The framework}
Most of the objects used with regression have their counterparts with tree methods.\\
In optimization:
\href{run:../StOpt/StOpt/dp/TransitionStepTreeDPDist.h}{\code{TransitionStepTreeDPDist}} resolves the transition to the date for all grid point and tree nodes using the distribution (MPI).
\begin{lstlisting}[style=CStyle]
TransitionStepTreeDPDist(const std::shared_ptr<FullGrid> &p_pGridCurrent,
const std::shared_ptr<FullGrid> &p_pridPrevious,
const std::shared_ptr<OptimizerDPTreeBase > &p_pOptimize
\end{lstlisting}
with
\begin{itemize}
\item \code{p\_pGridCurrent} is the grid at the current time step ($t_i$),
\item \code{p\_pGridPrevious} is the grid at the previously processed time step ($t_{i+1}$),
\item \code{p\_pOptimize} the optimizer object
\end{itemize}
A similar object is available without the MPI distribution framework \href{run:../StOpt/StOpt/dp/TransitionStepTreeDP.h}{\code{TransitionStepTreeDP}} with always the activation of parallelization with threads and MPI on calculations on the full grid points.\\
The main method is
\begin{lstlisting}[style=CStyle]
std::pair< std::vector< std::shared_ptr< Eigen::ArrayXXd > >, std::vector< std::shared_ptr< Eigen::ArrayXXd > > > oneStep(const std::vector< std::shared_ptr< Eigen::ArrayXXd > > &p_phiIn,
const std::shared_ptr< Tree> &p_condExp) const
\end{lstlisting}
with
\begin{itemize}
\item \code{p\_phiIn} the vector (its size corresponds to the number of regimes) of the matrix of optimal values calculated at the previous time iteration for each regime. Each matrix is a number of nodes the next date per number of stock points matrix.
\item \code{p\_condExp} the conditional expectation operator,
\end{itemize}
return a pair:
\begin{itemize}
\item first element is a vector of matrix with new optimal values at the current time step (each element of the vector corresponds to a regime and each matrix is a number of nodes at current date by number of points of stock matrix).
\item The second element is a vector of matrix with new optimal controls at the current time step (each element of the vector corresponds to a control and each matrix is a number of nodes at the current date by number of points of stock matrix).
\end{itemize}
A second method is provided allowing to dump the continuation values of the problem and the optimal control at each time step:
\begin{lstlisting}[style=CStyle]
void dumpContinuationValues(std::shared_ptr<gs::BinaryFileArchive> p_ar,
const std::string &p_name, const int &p_iStep,
const std::vector< std::shared_ptr< Eigen::ArrayXXd > > &p_phiIn,
const std::vector< std::shared_ptr< Eigen::ArrayXXd > > &p_control,
const std::shared_ptr< Tree> &p_tree,
const bool &p_bOneFile) const;
\end{lstlisting}
with:
\begin{itemize}
\item \code{p\_ar} is the archive where the controls and solutions are dumped,
\item \code{p\_name} is a base name used in the archive to store the solution and the control,
\item \code{p\_phiInPrev} is the previous time step solution used to calculate the continuation values that are stored,
\item \code{p\_control} stores the optimal controls calculated at the current time step,
\item \code{p\_tree} is the conditional expectation object allowing to calculate the conditional expectation of the functions defined at the previous time step processed \code{p\_phiInPrev} and allowing to store a representation of the optimal control.
\item \code{p\_bOneFile} is set to one if the continuation and optimal controls calculated by each processor are dumped on a single file. Otherwise the continuation and optimal controls calculated by each processor are dumped on different files (one per processor).
\end{itemize}
\begin{Remark}
The \code{p\_bOneFile} is not present for \code{TransitionStepTreeDP} objects.
\end{Remark}
In simulation (see detail in section for regressions)
\begin{itemize}
\item
A first object allowing the recalculation of the optimal control in simulation.
\begin{lstlisting}[style=CStyle]
SimulateStepTreeDist(gs::BinaryFileArchive &p_ar, const int &p_iStep, const std::string &p_nameCont,
const std::shared_ptr<FullGrid> &p_pGridFollowing, const std::shared_ptr<OptimizerDPTreeBase > &p_pOptimize,
const bool &p_bOneFile)
\end{lstlisting}
where
\begin{itemize}
\item \code{p\_ar} is the binary archive where the continuation values are stored,
\item \code{p\_iStep} is the number associated with the current time step (0 at the start date of the simulation, the number is increased by one at each simulated time step),
\item \code{p\_nameCont} is the base name for continuation values,
\item \code{p\_GridFollowing} is the grid at the next time step (\code{p\_iStep+1}),
\item \code{p\_Optimize} the Optimizer describing the transition from one time step to the next,
\item \code{p\_OneFile} equal to \code{true} if only one archive is used to store continuation values.
\end{itemize}
This object implements the method \code{oneStep}
\begin{lstlisting}[style=CStyle]
void oneStep(std::vector<StateTreeStocks > &p_statevector, Eigen::ArrayXXd &p_phiInOut) const
\end{lstlisting}
where:
\begin{itemize}
\item \code{p\_statevector} stores the states of all the simulations: this state is updated by applying the optimal command,
\item \code{p\_phiInOut} stores the gain/cost functions for all simulations: it is updated by the function call. The size of the array is $(nb, nbSimul)$ where $nb$ is given by the \code{getSimuFuncSize} method of the optimizer and $ nbSimul $ the number of Monte Carlo simulations.
\end{itemize}
\begin{Remark}
The version without distribution of Bellman values is available in the object \code{SimulateStepTree}.
\end{Remark}
\item A second object directly interpolating the control
\begin{lstlisting}[style=CStyle]
SimulateStepTreeControlDist(gs::BinaryFileArchive &p_ar, const int &p_iStep, const std::string &p_nameCont,
const std::shared_ptr<FullGrid> &p_pGridCurrent,
const std::shared_ptr<FullGrid> &p_pGridFollowing,
const std::shared_ptr<OptimizerDPTreeBase > &p_pOptimize,
const bool &p_bOneFile);
\end{lstlisting}
where
\begin{itemize}
\item \code{p\_ar} is the binary archive where the continuation values are stored,
\item \code{p\_iStep} is the number associated with the current time step (0 at the start date of the simulation, the number is increased by one at each simulated time step),
\item \code{p\_nameCont} is the base name of the control values,
\item \code{p\_GridCurrent} is the grid at the current time step (\code{p\_iStep}),
\item \code{p\_GridFollowing} is the grid at the next time step (\code{p\_iStep+1}),
\item \code{p\_Optimize} is the Optimizer describing the transition from one time step to the next,
\item \code{p\_OneFile} is equal to \code{true} if only one archive is used to store continuation values.
\end{itemize}
This object implements the method \code{oneStep}
\begin{lstlisting}[style=CStyle]
void oneStep(std::vector<StateTreeStocks > &p_statevector, Eigen::ArrayXXd &p_phiInOut) const;
\end{lstlisting}
where:
\begin{itemize}
\item \code{p\_statevector} stores the state for all the simulations : this state is updated by applying optimal commands,
\item \code{p\_phiInOut} stores the gain/cost functions for all simulations: it is updated by the function call. The size of the array is $(nb, nbSimul)$ where $nb$ is given by the \code{getSimuFuncSize} method of the optimizer and $ nbSimul $ the number of Monte Carlo simulations.
\end{itemize}
\begin{Remark}
The undistributed version is given by the object \code{SimulateStepTreeControl}.
\end{Remark}
\end{itemize}
\subsection{Solving Dynamic Programming by solving LP problems}
This approach can only be used for continuous problems with convex or concave Bellman values. See section \ref{sec:withCuts} for an explanation of the cut approximation.
\subsubsection{Framework usage requirement}
The expanded business object must derive from the \code{OptimizerDPCutBase} object derived from the \code{OptimizerBase} object.
\lstinputlisting[style=CStyle]{
../StOpt/StOpt/dp/OptimizerDPCutTreeBase.h}
We detail the different methods to implement in addition to the \code{OptimizerBase} methods:
\begin{itemize}
\item the \code{stepOptimize} method is used in optimization. We want to calculate the optimal value and the corresponding sensitivities with respect to stocks at $t_i$ current at a grid point \code{p\_stock} using a grid \code{p\_grid} at the next date $t_{i+1}$,
the continuation cuts the values for all the regimes \code{p\_condEsp} allowing to calculate a upper estimate (during the maximization) of the conditional expectation of the optimal values by using an optimization calculated at the previously treated time step $t_{i+1}$.
From a \code{p\_stock} grid point, it calculates the function values and the corresponding sensitivities. It returns a matrix (the first dimension is the number of nodes at the current cate by the number of components cuts (number of storage +1), the second dimension the number of regimes) giving the value of the function and sensitivities.
\item the \code{stepSimulate} method is used after the optimization using the continuation cuts the values calculated in the optimization part. From a \code{p\_state} state (storing the $X^{x,t}$), the sequence cuts the calculated values
in optimization \code{p\_continuation}, the optimal cash flows are stored in \code{p\_phiInOut}.
\end{itemize}
In the case of a gas storage the Optimize object is given in the file \href{run:../StOpt/test/c++/tools/dp/OptimizeGasStorageTreeCut.h}{\code{OptimizeGasStorageTreeCut.h}}.
\subsubsection{The framework in optimization using certain cutting methods}
We treat it exactly as in \ref{subsec:frameworkCut} section.
The framework provides an \href{run:../StOpt/StOpt/dp/TransitionStepTreeDPCutDist.h}{\code{TransitionStepTreeDPCutDist}} object in MPI which solves the optimization problem with data distribution over a time step with the following constructor:
\begin{lstlisting}[style=CStyle]
TransitionStepTreeDPCutDist(const std::shared_ptr<FullGrid> &p_pGridCurrent,
const std::shared_ptr<FullGrid> &p_pGridPrevious,
const std::shared_ptr<OptimizerDPCutTreeBase > &p_pOptimize);
\end{lstlisting}
with
\begin{itemize}
\item \code{p\_pGridCurrent} is the grid at the current time step ($t_i$),
\item \code{p\_pGridPrevious} is the grid at the previously processed time step ($t_{i+1}$),
\item \code{p\_pOptimize} the optimizer object
\end{itemize}
The construction is very similar to the classical regression methods using only the discretization by command.
\begin{Remark}
A similar object is available without the MPI distribution framework \href{run:../StOpt/StOpt/dp/TransitionStepRegressionDPCut.h}{\code{TransitionStepTreeDPCut}} with always the activation of parallelization with threads and MPI on calculations on the full points grid .
\end{Remark}
The main method is
\begin{lstlisting}[style=CStyle]
std::vector< std::shared_ptr< Eigen::ArrayXXd > > oneStep(const std::vector< std::shared_ptr< Eigen::ArrayXXd > > &p_phiIn,
const std::shared_ptr< Tree> &p_condExp) const
\end{lstlisting}
with
\begin{itemize}
\item \code{p\_phiIn} the vector (its size corresponds to the number of regimes) of the matrix of optimal values and sensitivities calculated at the previous time iteration for each regime. Each matrix has a number of rows equal to the number of nodes on the next date by the number of stock plus one. The number of columns is equal to the number of stock points on the grid.
In the row, the number of simulations by the number of stock plus one value is stored as follows:
\begin{itemize}
\item The first values (number of nodes on the following date: $NS$) correspond to the optimal Bellman values at a given stock point,
\item The $NS$ values following corresponds to sensitivities $ \frac{ \partial V}{\partial S_1} $ to first storage
\item The $NS$ values following corresponds to sensitivities to the second storage...
\item $\dots$
\end{itemize}
\item \code{p\_condExp} the conditional expectation operator,
\end{itemize}
returning a vector of matrix with new optimal values and sensitivities at the current time step (each element of the vector corresponds to a regime and each matrix has a size equal to (number of nodes at the current date by (the number of storage plus one)) by the number of stock points). The structure of the output is then similar to the \code{p\_phiIn} input.\\
A second method is provided allowing to dump the continuation values and the cuts of the problem and the optimal control at each time step:
\begin{lstlisting}[style=CStyle]
void dumpContinuationCutsValues(std::shared_ptr<gs::BinaryFileArchive> p_ar, const std::string &p_name, const int &p_iStep,
const std::vector< std::shared_ptr< Eigen::ArrayXXd > > &p_phiInPrev, const std::shared_ptr< Tree> &p_condExp,
const bool &p_bOneFile) const
\end{lstlisting}
with:
\begin{itemize}
\item \code{p\_ar} is the archive where controls and solutions are dumped,
\item \code{p\_name} is a base name used in the archive to store the solution and the control,
\item \code{p\_phiInPrev} is the solution to the previous time step used to calculate the values of continuation cuts which are stored,
\item \code{p\_condExp} is the conditional expectation object allowing to calculate the conditional expectation of the functions defined at the preceding time step processed \code{p\_phiInPrev}.
\item \code{p\_bOneFile} is set to one if the continuation cuts values calculated by each processor are dumped on a single file. Otherwise the continuation cuts values calculated by each processor are dumped on different files (one per processor).
\end{itemize}
Here we give a simple example of a temporal resolution using this method when MPI data distribution is used
\lstinputlisting[style=CStyle]{../StOpt/test/c++/tools/dp/DynamicProgrammingByTreeCutDist.cpp}
An example without data distribution can be found in the file \href{run:../StOpt/test/c++/tools/dp/DynamicProgrammingByTreeCut.cpp}{\code{DynamicProgrammingByTreeCut.cpp}}.
\subsubsection{Using the framework in simulation}
Similar to the \ref{subsec::simulationCut} section, we can use the cuts calculated in optimization to test the optimal strategy found.
In order to simulate an optimal policy step, a \href{run:../StOpt/StOpt/dp/SimulateStepTreeCutDist.h} {\code{SimulateStepTreeCutDist}} object is provided with the constructor
\begin{lstlisting}[style=CStyle]
SimulateStepTreeCutDist(gs::BinaryFileArchive &p_ar, const int &p_iStep, const std::string &p_nameCont,
const std::shared_ptr<FullGrid> &p_pGridFollowing,
const std::shared_ptr<OptimizerDPCutTreeBase > &p_pOptimize,
const bool &p_bOneFile);
\end{lstlisting}
where
\begin{itemize}
\item \code{p\_ar} is the binary archive where the continuation values are stored,
\item \code{p\_iStep} is the number associated with the current time step (0 at the start date of the simulation, the number is increased by one at each simulated time step),
\item \code{p\_nameCont} is the base name for continuation values,
\item \code{p\_GridFollowing} is the grid at the next time step (\code{p\_iStep+1}),
\item \code{p\_Optimize} the Optimizer describing the transition problem solved using an LP program.
\item \code{p\_OneFile} equal to \code{true} if only one archive is used to store continuation values.
\end{itemize}
\begin{Remark}
A version without data distribution but with multithreaded and with possible MPI on the calculations is available with the \href{run:../StOpt/StOpt/dp/SimulateStepTreeCut.h} {\code{SimulateStepTreeCut}} object. The \code{p\_OneFile} argument is omitted during construction.
\end{Remark}
This object implements the method \code{oneStep}
\begin{lstlisting}[style=CStyle]
void oneStep(std::vector<StateTreeStocks > &p_statevector, Eigen::ArrayXXd &p_phiInOut) const
\end{lstlisting}
where:
\begin{itemize}
\item \code{p\_statevector} stores the states of all the simulations: this state is updated by applying the optimal command,
\item \code{p\_phiInOut} stores the gain/cost functions for all simulations: it is updated by the function call. The size of the array is $(nb, nbSimul)$ where $nb$ is given by the \code{getSimuFuncSize} method of the optimizer and $ nbSimul $ the number of Monte Carlo simulations.
\end{itemize}
An example of using this method to simulate an optimal policy with distribution is given below:
\lstinputlisting[style=CStyle]{../StOpt/test/c++/tools/dp/SimulateTreeCutDist.h}
The version of the previous example using a single archive storing the control/solution is given in \href{run:../StOpt/test/c++/tools/dp/SimulateTreeCut.h}{\code{SimulateTreeCut.h}} file.
\chapter{The Python API to manage stocks}
\section{Mapping to the framework}
To use the Python API, it is possible to use only the mapping of grids, continuation values, and regression object and program an equivalent of \href{run:../StOpt/StOpt/dp/TransitionStepRegressionDP.h}{\code{TransitionStepRegressionDP}} and of \href{run:../StOpt/StOpt/dp/SimulateStepRegression.h}{
\code{SimulateStepRegression}}, \href{run:../StOpt/StOpt/dp/SimulateStepRegressionControl.h}{
\code{SimulateStepRegressionControl}} in python.
No mapping is currently available for \href{run:../StOpt/StOpt/dp/TransitionStepDP.h}{\code{TransitionStepDP}}.
An example using python is given by
\lstinputlisting[style=PStyle]{../StOpt/test/python/functional/dp/TransitionStepRegressionDP.py}
Some examples are available in the test directory (for example \href{run:../StOpt/test/python/functional/testSwingOption.py}{for swing options}).\\
Another approach more effective in term of computational cost consists in mapping the simulator object derived from the \href{run:../StOpt/StOpt/dp/SimulatorDPBase.h}{\code{SimulatorDPBase}} object and optimizer object
derived from the \href{run:../StOpt/StOpt/dp/OptimizerDPBase.h}{\code{OptimizerDPBase}} object and to use the high level python mapping of \href{run:../StOpt/StOpt/dp/TransitionStepRegressionDP.h}{\code{TransitionStepRegressionDP}} and \href{run:../StOpt/StOpt/dp/SimulateStepRegression.h}{\code{SimulateStepRegression}}.
In the test part of the library some \href{run:../StOpt/test/c++/tools/simulators/BlackScholesSimulator.h}{Black-Scholes simulator} and some \href{run:../StOpt/test/c++/tools/simulators/MeanRevertingSimulator.h}{Mean reverting simulator for a future curve deformation} are developed and some examples of the mapping are achieved in the
\href{run:../StOpt/test/c++/python/Pybind11Simulators.cpp}{\code{Pybind11Simulators.cpp}} file.
Likewise, \href{run:../StOpt/test/c++/tools/dp/OptimizeSwing.h}{optimizer class for swings options}, \href{run:../StOpt/test/c++/tools/dp/OptimizeFictitiousSwing.h}{optimizer for a fictitious swing in dimension 2}, \href{run:../StOpt/test/c++/tools/dp/OptimizeGasStorage.h}{optimizer for a gas storage}, \href{run:../StOpt/test/c++/tools/dp/OptimizeGasStorageSwitchingCost.h}{optimizer for a gas storage with switching cost} are mapped to python in the \href{run:../StOpt/test/c++/python/Pybind11Optimizers.cpp}{\code{Pybind11Optimizers.cpp}} file.\\
In the example below, we describe the use of this high level interface for swing options with a Black Scholes simulator: in this example we give the mapping of the most used objects:
\lstinputlisting[style=PStyle]{../StOpt/test/python/unit/global/testGlobal.py}
Its variation in terms of timing loop for optimization is given below ( note that the object \code{TransitionStepRegressionDP} is the result of the mapping between python and c++ and given in the module \code{StOptGlobal})
\lstinputlisting[style=PStyle]{../StOpt/test/python/functional/dp/DynamicProgrammingByRegressionHighLevel.py}
Likewise, a python temporal loop in simulation using the control previously calculated in optimization can be given as an example by:
\lstinputlisting[style=PStyle]{../StOpt/test/python/functional/dp/SimulateRegressionControlHighLevel.py}
The equivalent of using MPI and the distributing calculations and data can be used using the \code{mpi4py} package. An example of its use can be found in \href{run:../StOpt/test/python/functional/dp/testSwingOptimSimuHighLevelDist.py}{the MPI version of a swing optimization and valuation}.
\section{Special python binding}
Some specific features have been added to the python interface to increase the flexibility of the library.
A special mapping of the geners library was carried out for certain specific needs.
\subsection{A first binding to use the framework}
The \code{BinaryFileArchive} in the python module \code{StOptGeners} permits for:
\begin{itemize}
\item a grid on point,
\item a list of numpy array (dimension 2) of size the number of simulations used by the number of points on the grid (the size of the list corresponds to the number of regimes used in the event of a regime switching problem: if a regime, this list contains only one item which is a two-dimensional array)
\item a regressor
\end{itemize}
to create a regressed set of values from numpy arrays and store them in the archive. This feature allows you to store the continuation values associated with a problem.\\
The \code{dumpGridAndRegressedValue} dump method in the \code{BinaryFileArchive} class permits this dump.\\
It is also possible to retrieve the continuation values obtained using the \code{readGridAndRegressedValue} method.
\lstinputlisting[style=PStyle]{../StOpt/test/python/unit/geners/testBinaryArchive.py}
\subsection{Binding to store/read a regressor and a two-dimensional array}
Sometimes users prefer to avoid using the provided framework and prefer to only use the python binding associated with regression methods.
When some regressions are performed for different sets of particles (meaning that one or more functions are regressed), it it possible to dump the regressor used and some values associated with these regressions:
\begin{itemize}
\item the \code{dumpSome2DArray}, \code{readSome2DArray} allows you to dump and read 2-dimensional numpy arrays,
\item the \code{dumpSomeRegressor} , \code{readSomeRegressor} allows to dump and read a regressor.
\end{itemize}
\lstinputlisting[style=PStyle]{../StOpt/test/python/unit/geners/testSomeBinaryArchiveStorage.py}
\chapter{Framework to solve some switching problems with integer state constraints by regressions}
\label{switchng}
Switching problem with integer state are special case of the previous chapter where the state is separated in 3 parts as previously $X^{x,t} = (X^{x,t}_1,X^{x,t}_2, I_t)$ where
$X^{x,t}_1$ is not controlled, $I_t$ is an integer giving the regime mode and $X^{x,t}_2$ is a purely deterministic tensor taking {\bf some integer values}. As the values taken by $X^{x,t}_2$ are purely integer no interpolation is needed.\\
Therefore, in each regime, $X^{x,t}_2$ is discretized on a special grid taking some discrete integer values.
The grid is a full grid, and as previously for stocks problems, some MPI parallelization can be carried out to calculate the asset values at the different dterministic cases.
\paragraph{Exemple of some switching problems}
\label{parthermalSwitching}
We want to manage a thermal asset where prices of electricity and gas are given by a one factor model.
Then $X^{x,t}_1$ is two dimensional:
\begin{itemize}
\item $X^{x,t}_{1,1}$ is the price for electricity
\item $X^{x,t}_{1,2}$ is the price of gas multiplied by some heat rate.
\end{itemize}
When the asset is on, the gain is $X^{x,t}_{1,1}-X^{x,t}_{1,2}$ and the asset is off, the gain is null.
The asset has therefore two regime ($I_t$ takes 2 values for exemple 0 (off) and 1 (on)).\\
Some constraints are added :
\begin{itemize}
\item When the asset is ``on'', it has to be ``on'' during at least $nMinOn$ time steps and the state $X^{x,t}_2$ is one dimensional and can take some values from $0$ to $nMinoOn-1$ storing the number of time step since it is on. The state value $nMinoOn-1$ corresponds to the case where the number of time steps it is on at least $nMinoOn$ and the asset is allowed to switch off.
\item When the asset is ``off'', it has to be $off$ during at least $nMinOff$ time steps and the state $X^{x,t}_2$ is one dimensional and can take some values from $0$ to $nMinoOff-1$ storing the number of time step since it is off.
\end{itemize}
Some cost can be added, for exemple when the asset switch from $off$ to $on$.
\section{Business object for switching problems}
As previously, in order to use the framework, the developer describes the problem he wants to solve
in one step from a state $X^{x,t}$ . This business object must offer common methods and it is
derived from \code{OptimizerSwitchBase}.
\lstinputlisting[style=CStyle]{../StOpt/StOpt/dp/OptimizerSwitchBase.h}
\begin{itemize}
\item the \code{getNbRegime} makes it possible to obtain the number of regimes of the problem. The number of regimes is fixed.
\item the \code{getSimulator} method is used to retrieve the simulator giving the Monte Carlo simulations,
\item the \code{getSimuFuncSize} method is used in simulation to define the number of functions to follow in the simulation part (see chapter \ref{SecParal}).
\item the \code{getCone} method is only relevant if the MPI framework with distribution is used. As argument it takes the regime and a vector of size the dimension of the grid for this regime. Each component of the vector is an array containing for the given regime,
the minimum and maximum integer coordinate values of the deterministic state of the current grid defining an hyper cube $H1$. It returns for each dimension, the min and max integer coordinates of the hyper cube $H2$ containing the state which can be reached from a state of the grid in $H1$.
\item the \code{getDimensionToSplit} method is used to define in the MPI framework with distribution the directions to be divided for the solution on the processors. For each regime, for each dimension, it returns a Boolean where \code{true} means that the direction is a candidate for splitting.
\item the \code{stepOptimize} method is used in optimization. We want to calculate the optimal value at the current $t_i$ at a grid state \code{p\_state}, and for the regime \code{p\_ireg} using a vector \code{p\_grid} of grids of state (one for each regime) at the following date $t_{i+1}$, \code{p\_condEsp} is the object permitting to calculate conditional expectations of some functions calculated in the previous one
treated time step $t_{i+1}$.
At a grid point \code{p\_state} the function calculates the function values. It returns an array (its dimension is the number of simulations) giving the value of the function for the regime treated.
\item the \code{stepSimulate} method is used after the optimization using the continuation values calculated at each (integer) point of the grid in the optimization part. From a \code{p\_state} state (storing the $X^{x,t}$), the conditional expectation operator \code{p\_condExp}, and the basis functions \code{p\_basisFunc} for each point of the grid state for each regime, the values followed during simulation along the current path are stored in \code{p\_phiInOut}.
\end{itemize}
\section{Using the framework to optimize or simulate on a time step}
\subsection{Optimize on one time step}
Once an Optimizer is derived for the project, and assuming a RegularSpaceIntGrid grid is used for inventory discretization, the framework provides a \href{run:../StOpt/StOpt/dp/TransitionStepRegressionSwitchDist.h}{\code{TransitionStepRegressionSwitchDist}} object in MPI which allows to solve the
optimization problem with data distribution over a time step with the following constructor:
\begin{lstlisting}[style=CStyle]
TransitionStepRegressionSwitchDist(const vector< shared_ptr<RegularSpaceIntGrid> > &p_pGridCurrent,
const vector< shared_ptr<RegularSpaceIntGrid> > &p_pGridPrevious,
const sshared_ptr<OptimizerSwitchBase > &p_pOptimize)
\end{lstlisting}
with
\begin{itemize}
\item \code{p\_pGridCurrent} is the vector of grids at the current date: one by regime (so it is a vector) containing the grids describing the discrete integer values taken by the deterministic state.
\item \code{p\_pGridPrevious} is the vector of grids at the previous time step treated (so the next time step as the resolution is backward)
\item \code{p\_pOptimize} is the business model describing the physical problem to optimize;
\end{itemize}
\begin{Remark}
A similar object is available without the MPI distribution framework \href{run:../StOpt/StOpt/dp/TransitionStepRegressionSwitch.h}{\code{TransitionStepRegressionSwitch}} with always the activation of parallelization with threads and MPI on calculations on the full points grid.
\end{Remark}
The main method associated to this class:
\begin{lstlisting}[style=CStyle]
vector< shared_ptr< ArrayXXd >> TransitionStepRegressionSwitchDist::oneStep(const vector< shared_ptr< ArrayXXd > > &p_phiIn,
const shared_ptr< BaseRegression> &p_condExp)
\end{lstlisting}
with
\begin{itemize}
\item \code{p\_phiIn} the vector (its size corresponds to the number of regimes) of the matrix of optimal values calculated at the previous time iteration for each regime. Each matrix is a number of simulations per the number of integer state points.
\item \code{p\_condExp} the conditional expectation operator,
\end{itemize}
returning a vector of matrix with new optimal values at the current time step (each element of the vector corresponds to a regime and each matrix of this regime is a number of simulations per the number of state points).\\
A second method is provided permitting to dump the continuation values of the problem at each time step:
\begin{lstlisting}[style=CStyle]
void dumpContinuationValues(std::shared_ptr<gs::BinaryFileArchive> p_ar , const std::string &p_name, const int &p_iStep,
const std::vector< std::shared_ptr< Eigen::ArrayXXd > > &p_phiInPrev,
const std::shared_ptr<BaseRegression> &p_condExp) const
\end{lstlisting}
with:
\begin{itemize}
\item \code{p\_ar} is the archive where the solution is dumped,
\item \code{p\_name} is a base name used in the archive to store the solution,
\item \code{p\_phiInPrev} is the previous time step solution used to calculate the continuation values that are stored,
\item \code{p\_condExp} is the conditional expectation object allowing to calculate the conditional expectation of the functions defined at the previous time step processed \code{p\_phiInPrev}.
\end{itemize}
\begin{Remark}
All continuation values are reconstructed on the whole grid associated to the problem and not only on the calculation grid associated a to given processor.
\end{Remark}
Here we give a simple example of temporal resolution using this method when MPI data distribution is used
\lstinputlisting[style=CStyle]{../StOpt/test/c++/tools/dp/DynamicProgrammingSwitchingByRegressionDist.cpp}
An example without data distribution can be found in the file \href{run:../StOpt/test/c++/tools/dp/DynamicProgrammingSwitchingByRegression.cpp}{\code{DynamicProgrammingSwitchingByRegression.cpp}}.
\subsection{Simulate on one time step}
Once the optimization is done, the function basis associated to continuation values are saved at each point of each grids in a file at each time step.
The following simulation object \href{run:../StOpt/StOpt/dp/SimulateStepSwith.h} {\code{SimulateStepSwitch}} permits to simulate the optimal management on one time step.
\begin{lstlisting}[style=CStyle]
SimulateStepSwitch(gs::BinaryFileArchive &p_ar, const int &p_iStep, const string &p_nameCont,
const vector< shared_ptr<RegularSpaceIntGrid> > &p_pGridFollowing,
const shared_ptr<OptimizerSwitchBase > &p_pOptimize)
\end{lstlisting}
where
\begin{itemize}
\item \code{p\_ar} is the binary archive where the continuation values are stored,
\item \code{p\_iStep} is the number associated with the current time step (0 at the start date of simulation, the number is increased by one at each simulated time step ),
\item \code{p\_nameCont} is the base name of the control values,
\item \code{p\_GridFollowing} is the vector of grids for the deterministic state at the next time step (\code{p\_iStep+1}),
\item \code{p\_Optimize} is the Optimizer describing the transition from one time step to the next,
\end{itemize}
This object implements the method \code{oneStep}
\begin{lstlisting}[style=CStyle]
void oneStep(std::vector<StateWithIntState > &p_statevector , Eigen::ArrayXXd &p_phiInOut)
\end{lstlisting}
where:
\begin{itemize}
\item \code{p\_statevector} stores the states of all simulations: this state is updated by applying the optimal command,
\item \code{p\_phiInOut} stores the gain/cost functions for all the simulations: it is updated by the function call. The size of the array is $(nb, nbSimul)$ where $nb$ is given by the \code{getSimuFuncSize} method of the optimizer and $ nbSimul $ the number of Monte Carlo simulations.
\end{itemize}
An example of using this method to simulate an optimal policy with distribution is given below for a classical termal asset dumping in spot prices and the optimal regime during simulation:
\lstinputlisting[style=CStyle]{../StOpt/test/c++/tools/dp/SimulateRegressionSwitch.h}
\section{Using the python API}
As the the cas of stock management, a simulator describing the uncertainties deriving from the \href{run:../StOpt/StOpt/dp/SimulatorDPBase.h}{\code{SimulatorDPBase}} object has to be developed. A C++ optimizer deriving from the \href{run:../StOpt/StOpt/dp/OptimizerSwitchBase.h}{\code{OptimizerSwitchBase}} object has to be mapped and we have to use the high level python mapping of \href{run:../StOpt/StOpt/dp/TransitionStepRegressionSwitch.h}{\code{TransitionStepRegressionSwitch}} and \href{run:../StOpt/StOpt/dp/SimulateStepSwitch.h}{\code{SimulateStepSwitch}}.\\
This object can be used as in a time step optimization as follows
\lstinputlisting[style=PStyle]{../StOpt/test/python/functional/dp/DynamicProgrammingSwitchingByRegressionHighLevel.py}
and a simulation using a loop on the \code{SimulateStepSwitch} object can be used.
\lstinputlisting[style=PStyle]{../StOpt/test/python/functional/dp/SimulateSwitchingRegression.py}
An example of the use of these python functions for a thermal asset with integer states is then given by:
\lstinputlisting[style=PStyle]{../StOpt/test/python/functional/testThermalAssetHighLevel.py}
\chapter{Using the C++ framework to solve some hedging problem}
\label{chap:variance}
In this chapter we present an algorithm developed in StOpt to solve some hedging problem supposing that a mean variance criterion is chosen. The methodology follows the article \cite{warin2017variance}
In this section we suppose that $(\Omega, \Fc, (\Fc_t)_{t \in [0,T]})$ is a filtered probability space.
We define a set of trading dates $\mathcal{T}= \{t_0=0, t_1, \dots , t_{N-1}, t_{N}=T \}$ and
we suppose that we are given an asset used as an hedging product $(S_t)_{t_0.t_N}$ which is almost surely positive, square integrable so that $\E[ S_t^2] < \infty$ and adapted so that $S_{t}$ is $\Fc_t$-measurable
for $t=t_0,\dots, t_N$.\\
At last we suppose that the risk free rate is zero so that a bond has always a value of $1$.\\
\section{The problem}
Suppose we are given a contingent claim $H \in \Lc^2(P)$ which is assumed to be a random variable $\Fc_T$-measurable.
In the case of a European call option on an asset $S_t$ with strike $K$ and maturity $T$, $H(\omega)= (S_T(\omega)-K)^+$. \\
We are only interested in self-financing strategies with limited orders, therefore with limited controls. By extending the definition \cite{motoczynski2000multidimensional}, \cite{beutner2007mean}, we define:
\begin{definition}
A $(\bar m, \bar l)$ self-financing strategy $\Vc =(\Vc_{t_i})_{i=0,\dots,N-1}$ is a pair of adapted process $(m_{t_i},l_{t_i})_{i=0, \dots,N-1}$ defined for
$(\bar m, \bar l) \in (0, \infty) \times (0, \infty)$ such that:
\begin{itemize}
\item $ 0 \le m_{t_i} \le \bar m, \quad 0 \le l_{t_i} \le \bar l \quad \quad P.a.s. \quad \forall i = 0 ,\dots,N-1$,
\item $m_{t_i} l_{t_i} = 0 \quad P.a.s. \quad \forall i = 0 ,\dots,N-1$.
\end{itemize}
\end{definition}
In this definition $m_t$ corresponds to the number of shares sold on the date $t$, and $l_t$ the number of shares purchased on this date.
\begin{Remark}
The strategies defined in \cite{motoczynski2000multidimensional} and \cite{beutner2007mean} do not require that $m_t l_t= 0$ therefore a buy and sell check could take place on the same given date.
\end{Remark}
We denote $\Theta^{(\bar m, \bar l)}$ the set of $(\bar m, \bar l)$ self-financing strategy and with obvious notations $\nu= ( m,l)$ for $\nu \in \Theta^{(\bar m, \bar l)}$.\\
We consider a proportional cost model, so that an investor buying a stock on date $t$ will pay $(1+\lambda) S_t$ and an investor selling that stock will only receive $(1-\lambda) S_t$.
Assuming no transaction cost at the last date $T$, the final wealth of an investor with initial wealth $x$ is given by:
\begin{flalign}
x - \sum_{i=0}^{N-1} (1+\lambda) l_{t_i}S_{t_i} + \sum_{i=0}^{N-1} (1-\lambda) m_{t_i}S_{t_i} + \sum_{i=0}^{N-1} l_{t_i} S_{t_N} -\sum_{i=0}^{N-1} m_{t_i} S_{t_N}.
\end{flalign}
\begin{Remark}
The transaction costs at the last date $T$ are linked to the nature of the contract. In the case of a pure financial contract, the investor will sell the asset and then some transaction fees will need to be paid to offset the final position. In the energy market, for example, the contract is often associated with a physical delivery and no specific costs are payable.
Furthermore in these markets, even if the contract is purely financial, the futures markets are rather illiquid, which means significant transaction costs while the spot markets are much more liquid, which justifies neglecting final transaction costs.
\end{Remark}
As in \cite{motoczynski2000multidimensional} \cite{beutner2007mean}, we define the minimal risk strategy minimizing the $\Lc^2$ risk of the hedging portfolio:
\begin{definition}
A self-financing strategy $(\bar m, \bar l)$ $\hat \Vc =(\hat m, \hat l)$ is the minimization of the overall risk for the contingent claim $H$ and the initial capital $x$ if:
\begin{flalign}
\label{argminL2}
\hat \Vc = & \argmin_{\Vc = (m, l) \in \Theta^{(\bar m, \bar l)}} \E[(H-x +\sum_{i=0}^{N-1} (1+\lambda) l_{t_i} S_{t_i} - \nonumber \\
& \sum_{i=0}^{N-1} (1-\lambda) m_{t_i} S_{t_i} - \sum_{i=0}^{N-1} l_{t_i} S_{t_N} +\sum_{i=0}^{N-1} m_{t_i} S_{t_N})^2 ].
\end{flalign}
\end{definition}
\section{Theoretical algorithm}
it is assumed that the process is Markov and that the gain $H$ is a function of the asset value at maturity only to simplify the presentation of the proposed the Monte Carlo method.\\
We introduce the global position $\nu= (\nu_i)_{i=0, \dots, N-1}$ with:
\begin{flalign*}
\nu_{i} = \sum_{j=0}^i (m_{t_j} - l_{t_j}), \forall i=0,\dots, N-1.
\end{flalign*}
Using the property $m_{t_i}l_{t_i} =0, \quad \forall i=0, \dots, N-1$, we get $|\nu_{i}-\nu_{i-1}| = l_{t_i} +m_{t_i}$ with the convention that $\nu_{-1} =0$ and
\begin{flalign*}
G_T(\Vc) = \hat G_T(\nu) = x - \sum_{i=0}^{N-1} \lambda |\Delta \nu_{i-1} | S_{t_i} + \sum_{i=0}^{N-1} \nu_{i} \Delta S_i,
\end{flalign*}
where $\Delta S_i = S_{t_{i+1}} -S_{t_i}$, $\Delta \nu_i= \nu_{i+1} -\nu_{i}$.\\
We then introduce $\hat \Theta^{(\bar m, \bar l)}$ the set of adapted random variables $(\nu_{i})_{i=0,\dots,N-1}$ such that
\begin{flalign*}
- \bar m \le \nu_{i}- \nu_{i-1} \le \bar l, \forall i=1,\dots,N-1.
\end{flalign*}
The problem \eqref{argminL2} can be rewritten as it was done in \cite{schweizer1995variance} by finding $\hat \nu=(\hat \nu_i)_{i=0, \dots, N-1}$ satisfactory:
\begin{flalign}
\label{argminL2Bis}
\hat \nu = & \argmin_{ \nu \in \hat \Theta^{(\bar m, \bar l)}} \E[\big(H- x- \hat G_T(\nu)\big)^2 ].
\end{flalign}
We introduce the spaces $\kappa_i$, $i=0,\dots,N$ of the $\Fc_{t_i}$-measurable and square integrable random variables.
We define for $i \in 0,\dots,N$ , $V_i \in \kappa_i$ as:
\begin{flalign}
\label{VDef}
V_{N} =& H, \nonumber \\
V_{i} =& \E[ H - \sum_{j=i}^{N-1} \nu_{j} \Delta S_{j} + \lambda \sum_{j=i}^{N-1} | \Delta \nu_{j-1}| S_{t_j} \quad |\Fc_{t_i}], \forall i =0,\dots,N-1.
\end{flalign}
then
\begin{flalign}
\label{eq:globMin}
\E[(H- x- \hat G_T(\nu))^2 ] = & E[ \big( \left(V_{N} - \nu_{N-1} \Delta S_{N-1} + \lambda |\Delta \nu_{N-2}| S_{t_{N-1}} - V_{N-1} \right)+ \\
& \sum_{i=2}^{N-1} \left(V_i + \lambda | \Delta \nu_{i-2}| S_{t_{i-1}} - \nu_{i-1} \Delta S_{i-1} - V_{i-1} \right) + \\
& \left( V_{1} + \lambda |\nu_0| S_{t_{0}} - \nu_{0} \Delta S_0 -x\right) \big)^2]
\end{flalign}
Due to the definition \eqref{VDef}, we have that
\begin{flalign}
\label{eq:Balance}
E[ V_{i} + \lambda |\Delta \nu_{i-2} | S_{t_{i-1}} - \nu_{i-1} \Delta S_{i-1}-V_{i-1} |\Fc_{t_{i-1}}] =0, \forall i =1,\dots,N,
\end{flalign}
so that
\begin{flalign*}
\E[(H- x- \hat G_T(\nu))^2 ] = & \E[ \E[ \left(V_N - \nu_{N-1} \Delta S_{N-1} + \lambda |\Delta \nu_{N-2}| S_{t_{N-1}}- V_{N-1}\right)^2 | \Fc_{t_{N-1}}]+ \\
& \E[ \sum_{i=2}^{N-1} \left(V_{i} + \lambda |\Delta \nu_{i-2}| S_{t_{i-1}} - \nu_{i-1} \Delta S_{i-1} -V_{i-1} \right)^2 +\\
& \left( V_{1} + \lambda |\nu_{0}| S_{t_{0}} - \nu_{0} \Delta S_0 - x \right)^2]
\end{flalign*}
and iterating the process gives
\begin{flalign*}
\E[(H- x- \hat G_T(\nu))^2 ] = & \E[ \left(V_{N} - \nu_{N-1} \Delta S_{N-1} + \lambda |\Delta \nu_{N-2}| S_{t_{N-1}} - V_{N-1}\right)^2] + \\
& \sum_{i=2}^{N-1} \E[ \left(V_{i} + \lambda |\Delta \nu_{i-2}| S_{t_{i-1}} - \nu_{i-1} \Delta S_{i-1} -V_{i-1}\right)^2] + \\
& \E[\left(V_{1} + \lambda | \nu_{0}| S_{t_0} - \nu_{0} \Delta S_0 - x \right)^2]
\end{flalign*}
Then we can write the problem \eqref{argminL2Bis} as:
\begin{flalign}
\label{argminTer}
\hat \nu = & \argmin_{ \nu \in \hat \Theta^{(\bar m, \bar l)}} \E[ \left(V_{N} - \nu_{N-1} \Delta S_{N-1} + \lambda |\Delta \nu_{N-2}| S_{t_{N-1}}- V_{N-1}\right)^2] + \nonumber \\
& \sum_{i=2}^{N-1} \E[ \left(V_{i} + \lambda |\Delta \nu_{i-2}| S_{t_{i-1}} - \nu_{i-1} \Delta S_{i-1} -V_{i-1}\right)^2] + \nonumber \\
& \E[\left(V_{1} + \lambda |\nu_{0}| S_{t_0} - \nu_{0} \Delta S_0- x \right)^2]
\end{flalign}
We introduce the space
\begin{flalign*}
\rho_i^{\bar m, \bar l}(\eta) = & \{ (V, \nu) /
V , \nu \mbox{ are } \R \mbox{ valued } \Fc_{t_i}\mbox{-adapted with } - \bar m \le \nu - \eta \le \bar l \},
\end{flalign*}
and the space
\begin{flalign*}
\hat \rho_i^{\bar m, \bar l}(\eta) = & \{ (V, \nu_i,\dots, \nu_{N-1}) /
V \mbox{ is } \R \mbox{ valued, } \Fc_{t_i}\mbox{-adapted , the } \nu_j , j \ge i \mbox{ are } \R \mbox{ valued } \\
& \Fc_{t_j}\mbox{-adapted with } \bar m \le \nu_i - \eta \le \bar l , \bar m \le \nu_{j+1} - \nu_j \le \bar l \mbox{ for } i \le j < N-1\},
\end{flalign*}
As in the scheme introduced in \cite{bender2007forward} to improve the methodology proposed in \cite{gobet2005regression} to solve Backward Stochastic Differential Equations, we can propose an algorithm where the update for $\bar R$ is taken $\omega$ by $\omega$ and stores the optimal trading payoff function on each trajectory. Then $\bar R$ satisfies the date $t_{i}$ with an asset value $S_{t_i}$ for an investment $\nu_{i-1}$ chosen at the date $t_{i-1}$:
\begin{align*}
\bar R(t_i, S_{t_i}, \nu_{i-1}) = & H - \sum_{j=i}^{N-1} \nu_{j} \Delta S_{j} + \lambda \sum_{j=i}^{N-1} | \Delta \nu_{j-1}| S_{t_j},\\
& = R(t_{i+1}, S_{t_{i+1}}, \nu_{i}) -\nu_{i} \Delta S_{i} + \lambda | \Delta \nu_{i-1}| S_{t_i},
\end{align*}
and at the date $t_i$ according to the equation \eqref{eq:globMin} the optimal control is the control $\nu$ associated with the minimization problem:
\begin{align*}
\min_{(V,\nu) \in \rho_{i}^{\bar m, \bar l}(\nu_{i-1})} \E[ (\bar R(t_{i+1}, S_{t_{i+1}}, \nu) - \nu \Delta S_{i}
+ \lambda |\nu-\nu_{i-1}| S_{t_{i}} - V )^ 2 | \Fc_{t_{i}}]
\end{align*}
This leads to the ~\ref{algoMeanVar3} algorithm.
\begin{algorithm}[h]
\caption{\label{algoMeanVar3}Backward resolution for $\Lc^2$ minimization problem avoiding conditional expectation iteration.}
\begin{algorithmic}[1]
\State $ \bar R(t_{N}, S_{t_{N-1}}(\omega), \nu_{N-1}) = H(\omega), \quad \forall \nu_{N-1}$
\For{$i = N, 2$}
\State \begin{eqnarray}
(\tilde V(t_{i-1}, S_{t_{i-1}}, \nu_{i-2}),\nu_{i-1}) = & \argmin_{ (V,\nu) \in \rho_{i-1}^{\bar m, \bar l}(\nu_{i-2})} \E[ (\bar R(t_i, S_{t_i}, \nu) - \nonumber \\ & \nu \Delta S_{i-1}
+ \lambda |\nu-\nu_{i-2}| S_{t_{i-1}} - V )^ 2 | \Fc_{t_{i-1}}]
\label{argminBack} \end{eqnarray}
\State $ \begin{array}{ll} \bar R(t_{i-1}, S_{t_{i-1}}, \nu_{i-2}) = & \bar R(t_{i}, S_{t_{i}}, \nu_{i-1}) - \nu_{i-1} \Delta S_{i-1}
+ \lambda |\Delta \nu_{i-2}| S_{t_{i-1}}
\end{array} $
\EndFor
\State $ \begin{array}{ll}
\nu_{0} = & \argmin_{\nu \in [-\bar m,\bar l]} \E[ ( \bar R(t_1, S_{t_1}, \nu) + \lambda| \nu| S_{t_0} - \nu \Delta S_{0} - x)^2 ]
\end{array} $
\end{algorithmic}
\end{algorithm}
\begin{Remark}
\label{remarkMeanVar}
In order to deal with the case of the average variance coverage which consists in finding the optimal strategy and the initial wealth to hedge the contingent claim, the last line of the~\ref{algoMeanVar3} algorithm is replaced by
\begin{flalign*}
(\tilde V,\nu_{0}) = & \argmin_{(V,\nu)} \E[ (V(t_1,S_{t_1}, \nu) + \lambda |\nu| S_{t_0} - \nu \Delta S_{0} - V)^2 + R(t_{1}, S_{t_{1}}, \nu) ],
\end{flalign*}
and last line of Algorithm~\ref{algoMeanVar3} by
\begin{flalign*}
(\tilde V,\nu_{0}) = \argmin_{ (V,\nu) \in \R \times [-\bar m,\bar l]} \E[ ( \bar R(t_1, S_{t_1}, \nu) + \lambda | \nu| S_{t_0} - \nu \Delta S_{0} - V)^2 ].
\end{flalign*}
\end{Remark}
\begin{Remark}
In the two algorithms presented an argmin must be carried out: a discretization in $\nu_{i-2}$ must be carried out on a grid $[\nu_{i-1}-m,\nu_{i-1}+l]$.
\end{Remark}
\section{Practical algorithm based on Algorithm \ref{algoMeanVar3}}
From the theoretical Algorithm~\ref{algoMeanVar3}, we aim to obtain an efficient implementation based on a representation of the function $\tilde V$ as a function of time, $S_t$ and the position $\nu_t$ in plan assets.
\begin{itemize}
\item In order to represent the dependency in the hedging position, we introduce a time dependent grid
\begin{flalign*}
\Qc_{i} := (\xi k)_{k=- (i+1)\lfloor \frac{\bar m}{\xi} \rfloor,\dots, (i+1)\lfloor \frac{\bar l}{\xi} \rfloor}
\end{flalign*}
where $\xi$ is the mesh size associated with the set of grids $(\Qc_i)_{i=0,N}$ and, if possible, chosen such that $\frac{\bar l}{\xi} =\lfloor \frac{\bar l}{\xi} \rfloor$ and $\frac{\bar m}{\xi}= \lfloor \frac{\bar m}{\xi} \rfloor$.
\item To represent the dependency in $S_t$ we will use a Monte Carlo method using the simulated path $\left( (S_{t_i}^{(j)})_{i=0,\dots, N}\right)_{j=1,\dots, M}$ and calculate the $\argmin$ in the equation \eqref{argminBack} using a methodology similar so that described in \cite{bouchard2012monte}:
suppose we are given at each date $t_i$ $(D^i_q)_{q=1,\dots,Q}$ a partition of $[ \min_{j=1,M} S_{t_i}^{(j)}, \max_{j=1,M} S_{t_i}^{(j)}]$ so that each cell contains the same number of samples. We use the cells $Q$ $(D^i_q)_{q=1,\dots,Q}$ to represent the dependency of $\tilde V$ and $\nu$ in the $S_{t_i}$ variable.\\
On each cell $q$ we search $\hat V^q$ a linear approximation of the function $\tilde V$ at a given date $t_i$ and for a position $k \xi$ so that
$\hat V^q(t_i, S, k) = a_i^q + b_i^q S$ is an approximation of $ \tilde V(t_i,S, k \xi)$. On cell $q$ the optimal numeric hedging command $\hat \nu^q(k)$ for a position $k \xi$ can be seen as a sensitivity, so it is natural to look for a constant control per cell $q$ when the value function is represented as a linear function.
\end{itemize}
Let us denote $(l_i^q(j))_{j=1,\frac{M}{Q}}$ the set of all the samples belonging to the cell $q$ at date $t_i$. On each mesh the optimal control $\hat \nu^q$ is obtained by discretizing the command $\nu$ on a grid $\eta = ( (k+r) \xi )_{r = - \lfloor \frac{\bar m}{\xi} \rfloor, \dots, \lfloor \frac{\bar l}{\xi} \rfloor}$, and testing the one giving a value $\hat V^q$ minimizing the risk $\Lc^2$ to solve the equation \eqref{argminBack}.\\
The ~\ref{testCommand} algorithm allows to find the optimal $\nu_i^{(j)}(k)$ command using the ~\ref{algoMeanVar3} algorithm at the date $t_i$, for a position of hedging $k \xi$ and for all Monte Carlo simulations $j$. For each command tested on cell $q$ the corresponding function $\hat V^q$ is calculated by regression.
\begin{algorithm}[h]
\caption{\label{testCommand} Optimize minimal hedging position $(\hat \nu_{t_{i}}^{(l)}(k))_{l=1,\dots,M}$ at date $t_{i-1}$}
\begin{algorithmic}[1]
\Procedure{OptimalControl}{ $\bar R(t_{i+1},.,.) , k, S_{t_i}, S_{t_{i+1}}$}
\For{$q=1, Q$}
\State $P=\infty$,
\For{$k = -\lfloor \frac{\bar m}{\xi} \rfloor, \dots, \lfloor \frac{\bar l}{\xi} \rfloor $}
\State $ \begin{array}{ll}
(a_i^q,b_i^q ) = \argmin_{ (a,b )\in \R^2} & \displaystyle{\sum_{j=1}^{\frac{M}{Q}}} \big( \bar R(t_{i+1}, S_{t_{i+1}}^{l^q_i(j)}, (k+l) \xi) - \\& (k+l) \xi \Delta S_{i}^{l^q_i(j)}
+ \\
& \lambda |l \xi| S_{t_{i}}^{l^q_i(j)} - (a+b S_{t_{i}}^{l^q_i(j)}) \big)^ 2
\end{array}
$
\State $\begin{array}{ll} \tilde P = & \displaystyle{\sum_{j=1}^{\frac{M}{Q}}} \big( \bar R(t_{i+1}, S_{t_{i+1}}^{l^q_i(j)}, (k+l) \xi) - (k+l) \xi \Delta S_{i}^{l^q_i(j)}
+ \\ & \lambda |l \xi| S_{t_{i}}^{l^q_i(j)} - (a_i^q+ b_i^q S_{t_{i}}^{l^q_i(j)}) \big)^2 \end{array}$
\If{ $ \tilde P < P$}
\State $\nu^{q} = k \xi$, $P = \tilde P$
\EndIf
\EndFor
\For{$j=1,\frac{M}{Q}$}
\State $\hat \nu_{i}^{(l^q_i(j))}(k) = \nu^{q}$
\EndFor
\EndFor
\Return $( \hat \nu_{t_{i}}^{(j)}(k))_{j=1,\dots,M}$
\EndProcedure
\end{algorithmic}
\end{algorithm}
\begin{Remark}
It is possible to use a different discretization $\xi$ to define the set $\eta$ and the set $\Qc_{i}$. Then an interpolation is necessary to obtain the values $\bar R$ at a position not belonging to the grid.
An example of using such an interpolation for a gas storage problem following the optimal cash flow generated along Monte Carlo strategies can be found in \cite{warin2012gas}.
\end{Remark}
\begin{Remark}
This algorithm makes it possible to add a certain global constraint on the overall liquidity of the hedging asset. This is achieved by limiting the possible hedge positions to a subset of $\Qc_{i}$ at each date $t_i$.
\end{Remark}
Then, the global discretized version of the~\ref{algoMeanVar3} algorithm is given on the ~\ref{algoMeanVar4} algorithm where $H^{(j)}$ correspond to $j$ the Monte Carlo realization of the gain.
\begin{algorithm}[h]
\caption{\label{algoMeanVar4}Global backward resolution algorithm, optimal control and optimal variance calculation}
\begin{algorithmic}[1]
\For{$\nu \in \Qc_{N-1}$}
\For{$j\in [1,M]$}
\State$ \bar R(t_N ,S_{t_N}^{(j)}, \nu) = H^{(j)}$
\EndFor
\EndFor
\For{$i = N, 2$}
\For{$ k \xi \in \Qc_{i-2}$}
\State $(\nu^{(j)}_{i-1}(k))_{j=1,M} =$ OptimalControl$( \bar R(t_i,.,.), k, S_{t_{i-1}}, S_{t_i})$,
\For{$j\in [1,M]$}
\State $ \begin{array}{ll} \bar R(t_{i-1}, S_{t_{i-1}}^{(j)}, k\xi) = & \bar R(t_{i}, S_{t_{i}}^{(j)}, \nu_{i-1}^{(j)}(k)) - \\
& \nu_{i-1}^{(j)}(k) \Delta S_{i-1}^{(j)}
+ \lambda |\nu_{i-1}^{(j)}(k)-k \xi | S_{t_{i-1}}^{(j)}
\end{array} $
\EndFor
\EndFor
\EndFor
\State $P=\infty$,
\For{$k = -\lfloor \frac{\bar m}{\xi} \rfloor, \dots, \lfloor \frac{\bar l}{\xi} \rfloor $}
\State $\begin{array}{ll} \tilde P = & \displaystyle{\sum_{j=1}^{M}} \big( \bar R(t_1, S_{t_1}^{(j)}, k \xi) - k \xi \Delta S_{0}^{(j)}
+ \lambda |k| \xi S_0 - x )^2 \end{array}$
\If{ $ \tilde P < P$}
\State $\nu_0 = k \xi$, $P = \tilde P$
\EndIf
\EndFor
\State $Var = \frac{1}{M}\sum_{j=1}^M \big( \bar R(t_1,S_{t_1}^{(j)}, \nu_0) - \nu_0 \Delta S_0^{(j)}+\lambda |\nu_0| S_0 -x\big)^2$
\end{algorithmic}
\end{algorithm}
\part{Semi-Lagrangian methods}
For the semi-Lagrangian methods, the C++ API is the only one available (no python API is currently developed).
\chapter{Theoretical background}
In this part, we return to solving the equation \reff{hjb}.
\section{Notation and regularity results}
\label{notation}
We denote by $\wedge$ the minimum and $ \vee$ the maximum.
We denote by $|\quad | $ the Euclidean norm of a vector, $Q := (0,T] \times \R^d$.
For a bounded function $w$, we define
\begin{eqnarray}
| w|_0 = \sup_{(t,x) \in Q} | w(t,x)|, & \quad & [w]_1 = \sup_{(s,x) \ne (t,y)} \frac{ |w(s,x) -w(t,y)|}{|x-y| + |t-s|^{\frac{1}{2}}} \nonumber
\end{eqnarray}
and $|w|_1 = | w|_0 +[w]_1 $. $C_1(Q)$ will stand for the space of functions with a finite $|\quad |_1$ norm.\\
For $t$ given, we denote
\begin{eqnarray}
||w(t,.) ||_{\infty} = \sup_{x \in \R^d } | w(t,x)| \nonumber
\end{eqnarray}
We use the classical assumption on the data of \reff{hjb} for a given $\hat K$:
\begin{eqnarray}
\sup_a |g|_1 + |\sigma_a|_1 + |b_a|_1 + |f_a|_1 + | c_a|_1 \le \hat K
\label{coeff}
\end{eqnarray}
A classic result \cite{ishii1990viscosity} gives us the existence and uniqueness of the solution in space of bounded Lipschitz functions:
\begin{Proposition}
If the coefficients of the equation \reff{hjb} satisfy \reff{coeff}, there is a unique viscosity solution of the equation \reff{hjb} belonging to $C_1(Q)$. If $ u_1 $ and $u_2$ are respectively sub and super solution of the equation \reff{hjb} satisfying $u_1(0,.) \le u_2(0,.)$ then $u_1 \le u_2$.
\end{Proposition}
A spatial discretization length of the problem $\Delta x$ being given, thereafter $(i_1 \Delta x ,\dots,i_d \Delta x)$ with $\bar i = (i_1 , \dots, i_d) \in \mathbf{ Z}^d$ will correspond to the coordinates of a mesh $M_{\bar i}$ defining a hyper-cube in dimension $d$.
For an interpolation grid $(\xi_{i})_{i=0,\dots,N} \in [-1,1]^N$, and for a mesh $\bar i$, the point $y_{\bar i, \tilde j}$ with $\tilde j = (j_1, \dots, j_d) \in [0,N]^d$ will have the coordinate
$(\Delta x (i_1 + 0.5 (1+\xi_{j_1})) ,\dots,\Delta x (i_d + 0.5 (1+\xi_{j_d}))$.
We denote $(y_{\bar i, \tilde j})_{\bar i, \tilde j}$ the set of all the points of the grid over the whole domain.\\
We notice that for a regular mesh with constant volume $\Delta x^d$, we have the following relation for all $x \in \R^d$:
\begin{eqnarray}
\min_{\bar i, \tilde j} | x- y_{\bar i, \tilde j}| \le \Delta x.
\label{MaxDist}
\end{eqnarray}
\section{Temporal discretization for the HJB equation}
The equation \reff{hjb} is discretized in time by the scheme proposed by Camilli Falcone \cite{camilli1995approximation} for a discretization in time $h$.
\begin{eqnarray}
v_h(t+h,x) & = & \inf_{a \in \mathop{A}} \left[ \sum_{i=1}^q \frac{1}{2q} (v_h(t, \phi^{+}_{a, h, i}(t,x)) + v_h(t, \phi^{-}_{a, h, i}(t,x)) )
\right. \nonumber \\
& & \left. + f_a(t,x) h + c_a(t,x) h v_h(t,x) \vphantom{\int_t} \right] \nonumber \\
& := & v_h(t,x)+ \inf_{a \in \mathop{A}} L_{a,h}(v_h)(t,x) \label{hjbCamilli}
\end{eqnarray}
with
\begin{eqnarray}
L_{a,h}(v_h)(t,x) & = & \sum_{i=1}^q \frac{1}{2q} (v_h(t, \phi^{+}_{a, h, i}(t,x)) + v_h(t, \phi^{-}_{a, h, i}(t,x)) - 2 v_h(t,x)) \nonumber \\
& & + h c_a(t,x) v_h(t,x)+ h f_a(t,x) \nonumber \\
\phi^{+}_{a, h, i}(t,x) & =& x +b_a(t,x) h + (\sigma_a)_i(t,x) \sqrt{h q} \nonumber\\
\phi^{-}_{a, h, i}(t,x) & =& x +b_a(t,x) h - (\sigma_a)_i(t,x) \sqrt{h q} \nonumber
\end{eqnarray}
where $(\sigma_a)_i$ is the $i$-th column of $\sigma_a$. It is noted that it is also possible to choose other types of discretization in the same style as those defined
in \cite{munos2005consistency}.\\
In order to define the solution at each date, a condition on the value chosen for $v_h$ between $0$ and $h$ is required. We choose a temporal linear interpolation once the solution has been calculated at the date $h$:
\begin{eqnarray}
v_h(t,x) = (1- \frac{t}{h}) g(x)+ \frac{t}{h} v_h(h,x), \forall t \in [0,h].
\label{hjbCamilli1}
\end{eqnarray}
We first recall the following result:
\begin{Proposition}
\label{converDisH}
Under the condition on the coefficients given by the equation \reff{coeff}, the solution $v_h$ of the equations \reff{hjbCamilli} and \reff{hjbCamilli1} is uniquely defined and belongs to $C_1(Q)$. We check that if $ h \le (16 \sup_a \left \{ |\sigma_a|_1^2 + | b_a|_1^2 +1 \right \} \wedge 2 \sup_a |c_a|_0)^{-1} $, there is $C$ such that
\begin{eqnarray}
| v -v_h |_0 \le C h^{\frac{1}{4}}.
\end{eqnarray}
Moreover, there exists $C$ independent of $h$ such that
\begin{eqnarray}
\label{LipschitVh}
| v_h|_0 & \le & C, \\
|v_h(t,x)-v_h(t,y)| & \le & C |x-y|, \forall (x,y) \in Q^2.
\end{eqnarray}
\end{Proposition}
\section{Space interpolation}
The spacial resolution of the equation \reff{hjbCamilli} is obtained on a grid. The $\phi^{+}$ and $\phi^{-}$ must be calculated using an interpolator
$I$ such that:
\begin{eqnarray*}
v_h(t, \phi^{+}_{a, h, i}(t,x)) & \simeq & I(v_h(t,.))(\phi^{+}_{a, h, i}(t,x)), \\
v_h(t, \phi^{-}_{a, h, i}(t,x)) & \simeq & I(v_h(t,.))(\phi^{-}_{a, h, i}(t,x)). \\
\end{eqnarray*}
In order to easily prove the convergence of the scheme to the viscosity solution of the problem, the monotony of the scheme is generally required leading
to some linear interpolator slowly converging.
An adaptation to high order interpolator where the function is smooth can be achieved using Legendre grids and Sparse grids with some truncation (see \cite{warin2016some}, \cite{warin2014adaptive}).
\chapter{C++ API}
To perform the interpolation and calculate the semi-Lagrangian value
$$ \sum_{i=1}^q \frac{1}{2q} (v_h(t, \phi^{+}_{a, h, i}(t,x)) + v_h(t, \phi^{-}_{a, h, i}(t,x))$$
a first object \code{SemiLagrangEspCond} is available:
\lstinputlisting[style=CStyle]{../StOpt/StOpt/semilagrangien/SemiLagrangEspCond.h}
Its constructor uses the following arguments:
\begin{itemize}
\item a first \code{p\_interpolator} defines a ``spectral'' interpolator on a grid: this ``spectral'' interpolator is built from a grid and a function to be interpolated (see section \ref{gridChapter}). In our case, it will be used to interpolate the solution from the previous time step,
\item a second \code{p\_extremalValues} defines for each dimension the minimum and maximum coordinates of the points belonging to the grid,
\item a third one \code{p\_bModifVol} if set to \code{true} allows special processing when the points to be interpolated are outside the grid: the volatility of the underlying process is modified (keeping the same mean and the same variance) trying to keep points inside the domain (see \cite{warin2016some}).
\end{itemize}
This object has the \code{oneStep} method taking
\begin{itemize}
\item \code{p\_x} the foot of the characterize (for each dimension),
\item \code{p\_b} the process trend (for each dimension),
\item \code{p\_sig} the volatility of the process matrix,
\end{itemize}
such that the interpolation is carried out for a time step $h$ at the points $p\_x + p\_b h \pm p\_sig \sqrt{h}$. It returns a pair $(a,b)$ where $a$ contains the calculated value if the value $b$ is \code{true}.
When interpolation is not possible, the value $b$ is set to \code{false}.
\\
In order to use the API, an object deriving from the \code{OptimizerSLBase} object must be constructed. This object is used to define the PDE to be solved (with it optimization problem if applicable).
\lstinputlisting[style=CStyle]{../StOpt/StOpt/semilagrangien/OptimizerSLBase.h}
The main methods associated with this object are:
\begin{itemize}
\item \code{stepOptimize} is used to calculate the solution of the PDE at a point.
\begin{itemize}
\item It takes a point from the used grid \code{p\_point},
\item and apply the semi-Lagrangian scheme \code{p\_semiLag} at this point,
\item on a date given by \code{p\_time}.
\end{itemize}
It returns a pair containing:
\begin{itemize}
\item the value of the function calculated at \code{p\_point} for each regime,
\item the optimal control calculated at \code{p\_point} for each control.
\end{itemize}
\item \code{stepSimulate} is used when the PDE is associated with an optimization problem and we want to simulate an optimal policy using the function values calculated in the optimization part. The arguments are:
\begin{itemize}
\item \code{p\_gridNext} defining the grid used at the next time step,
\item \code{p\_semiLag} the semi-Lagrangian operator built with an interpolator using the following temporal solution,
\item \code{p\_state} the vector defining the current state for the current regime,
\item \code{p\_iReg} the current regime number,
\item \code{p\_gaussian} is the vector of Gaussian random variables used to calculate the Brownian involved in the underlying process of the current simulation,
\item \code{p\_phiInP} to the value of the function calculated in optimization at the next time step for the given point,
\item \code{p\_phiInOut} storing the cost functions: the size of the array is the number of functions to follow in simulation.
\end{itemize}
\item \code{stepSimulateControl} is used when the PDE is associated with an optimization problem and we want to simulate an optimal policy using the optimal controls calculated in the optimization part. The arguments are:
\begin{itemize}
\item \code{p\_gridNext} defining the grid used at the next time step,
\item \code{p\_controlInterp} a vector (for each control) of interpolators in controls
\item \code{p\_state} the vector defining the current state for the current regime,
\item \code{p\_iReg} the current regime number,
\item \code{p\_gaussian} is the vector of Gaussian random variables used to calculate the Brownian involved in the underlying process of the current simulation.
\item \code{p\_phiInOut} storing the cost functions: the size of the array is the number of functions to follow in simulation.
\end{itemize}
On return, the vector \code{p\_state} is modified, the \code{p\_iReg} is modified and the cost function \code{p\_phiInOut} is modified for the current trajectory.
\item the \code{getCone} method is only relevant if the data distribution (therefore MPI) is used. As argument it takes a vector of size the dimension of the grid. Each component of the vector is an array containing the minimum and maximum coordinate values of the points of the current grid defining a hyper cube $H1$. It returns for each dimension, the min and max coordinates of the hyper cube $H2$ containing the points that can be reached by applying a command from a point of the grid in $H1$. If no optimization is carried out, it returns the hyper cube $H2$ containing the points that can be reached by the semi-Lagrangian diagram. For an explanation of the parallel formalism, see the \ref{SecParal} chapter.
\item the \code{getDimensionToSplit} method is only relevant if the data distribution (therefore MPI) is used. The method makes it possible to define the directions to be divided for the distribution of solution on the processors. For each dimension, it returns a Boolean where \code{true} means that the direction is a candidate for splitting,
\item the \code{isNotNeedingBC} allows to define for a point on the limit of the grid if a boundary condition is necessary (\code{true} is returned) or if no limit is necessary (return \code{false}).
\end{itemize}
And example derivation of such an optimizer for a simple stochastic target problem (described in paragraph 5.3.4 in \cite{warin2016some}) is given below:
\lstinputlisting[style=CStyle]{../StOpt/test/c++/tools/semilagrangien/OptimizeSLCase3.cpp}
\section{PDE resolution }
Once the problem is described, temporal recursion can be achieved by using the \code{TransitionStepSemilagrang} object in a sequential resolution of the problem. This object allows to solve the problem in one time step.
\lstinputlisting[style=CStyle]{../StOpt/StOpt/semilagrangien/TransitionStepSemilagrang.h}
It constructor takes the following arguments:
\begin{itemize}
\item \code{p\_gridCurrent} a grid describing the meshes at the current date,
\item \code{p\_gridPrevious} a grid describing the meshes at the previously processed date,
\item \code{p\_optimize} an object derived from \code{OptimizerSLBase} and describing the problem to be solved at a given date and point in the current grid.
\end{itemize}
A first method \code{oneStep} takes the following arguments:
\begin{itemize}
\item \code{p\_phiIn} describes for each regime the solution previously calculated on the grid at the previous time,
\item \code{p\_time} is the current time step,
\item \code{p\_boundaryFunc} is a function giving the Dirichlet solution of the problem according to the number of regimes and the position on the boundary.
\end{itemize}
It returns an estimate of the solution at the current date on the current grid for all the regimes and an estimate of the optimal control calculated for all the controls.
\\
A last method \code{dumpValues} allows to dump calculated the solution \code{p\_phiIn} at step \code{p\_istep+1} and optimal control at step \code{p\_istep} in a \code{p\_ar} archive.\\
A version using the distribution of data and calculations can be found in the
\href{run:../StOpt/StOpt/semilagrangien/TransitionStepSemilagrangDist.h}{\code{TransitionStepSemilagrangDist}} object.
An example of sequential temporal recursion can be found in the function \href{run:../StOpt/test/c++/tools/semilagrangien/semiLagrangianTime.cpp}{\code{semiLagrangianTime}} and an example with distribution can be found in the \href{run:../StOpt/test/c++/tools/semilagrangien/semiLagrangianTimeDist.cpp}{\code{semiLagrangianTimeDist}} function.
In the two functions developed in the test chapter, the analytical solution of the problem is known and compared to the numerical estimate obtained with the semi-Lagrangian method.
\begin{table}
\centering
\caption{ Which object \code{TransitionStepSemilagrang} to use depending on the grid used and the type of parallelization used.}
\scalebox{0.8}{
\begin{tabular}{|c|c|c|}
\hline
& Full grid & Sparse grid \\ \hline
Sequential & \code{TransitionStepSemilagrang} & \code{TransitionStepSemilagrang} \\ \hline
Parallelization on calculations& \code{TransitionStepSemilagrang} & \code{TransitionStepSemilagrang} \\
threads and MPI & & \\ \hline
Distribution of calculations & \code{TransitionStepSemilagrangDist} & Not available \\
and data (MPI) & & \\ \hline
\end{tabular}
}
\end{table}
\section{Simulation framework}
Once the optimal controls and value functions have been calculated, the optimal policy can be simulated using the function values (recalculate the optimal control for each simulation) or by directly using the optimal controls calculated in optimization
\begin{itemize}
\item \underline{Calculate the optimal strategy in simulation } \\ \underline{using the function values calculated in optimization}: \\
In order to simulate an optimal policy step, a \href{run:../StOpt/StOpt/semilagrangien/SimulateStepSemilagrangDist.h} {\code{SimulateStepSemilagrangDist}} object is provided with constructor
\begin{lstlisting}[style=CStyle]
SimulateStepSemilagrangDist(gs::BinaryFileArchive &p_ar, const int &p_iStep, const std::string &p_name ,
const std::shared_ptr<FullGrid> &p_gridNext, const std::shared_ptr<OptimizerSLBase > &p_pOptimize ,
const bool &p_bOneFile);
\end{lstlisting}
where
\begin{itemize}
\item \code{p\_ar} is the binary archive where the continuation values are stored,
\item \code{p\_iStep} is the number associated with the current time step (0 at the start date of the simulation, the number is increased by one at each simulated time step),
\item \code{p\_name} is the base name to search for in the archive,
\item \code{p\_GridNext} is the grid at the next time step (\code{p\_iStep+1}),
\item \code{p\_Optimize} is the Optimizer describing the passage from one time step to the next,
\item \code{p\_OneFile} is equal to \code{true} if only one archive is used to store continuation values.
\end{itemize}
\begin{Remark}
A version without data distribution but only multithreaded and parallel with MPI on data is available with the object \href{run:../StOpt/StOpt/semilagrangien/SimulateStepSemilagrang.h} {\code{SimulateStepSemilagrang}}.
\end{Remark}
This object implements the \code{oneStep} method
\begin{lstlisting}[style=CStyle]
void oneStep(const Eigen::ArrayXXd & p_gaussian,Eigen::ArrayXXd &p_statevector , Eigen::ArrayXi &p_iReg, Eigen::ArrayXd &p_phiInOuts)
\end{lstlisting}
where:
\begin{itemize}
\item \code{p\_gaussian} is a two-dimensional array (number of Brownian in the modeling by the number of Monte Carlo simulations).
\item \code{p\_statevector} store continuous state (size of continuous state per number of simulations)
\item \code{p\_iReg} for each simulation, gives the current regime number,
\item \code{p\_phiInOut} stores the gain/cost functions for all simulations: it is updated by the function call. The size of the array is $(nb, nbSimul)$ where $nb$ is given by the \code{getSimuFuncSize} method of the optimizer and $ nbSimul $ the number of Monte Carlo simulations.
\end{itemize}
\begin{Remark}
The previous object \code{SimulateStepSemilagrangDist} is used with MPI for high dimensional problems. In the case of small dimension (less than or equal to three), parallelization with MPI or the sequential calculations can be carried out by the object \code{SimulateStepSemilagrang}.
\end{Remark}
An example of using this method to simulate an optimal policy with distribution is given below:
\lstinputlisting[style=CStyle]{../StOpt/test/c++/tools/semilagrangien/semiLagrangianSimuDist.cpp}
A sequential or parallel version on the calculations of the previous example is given in the file \href{run:../StOpt/test/c++/tools/semilagrangien/semiLagrangianSimuDist.cpp}{\code{semiLagrangianSimuDist.cpp}}.
\item \underline{Calculate the optimal strategy in simulation} \\ \underline{ by interpolation of the optimal control calculated in optimization}:\\
In order to simulate an optimal policy step, a \href{run:../StOpt/StOpt/semilagrangien/SimulateStepSemilagrangControlDist.h} {\code{SimulateStepSemilagrangControlDist}} object is provided with constructor
\begin{lstlisting}[style=CStyle]
SimulateStepSemilagrangControlDist(gs::BinaryFileArchive &p_ar, const int &p_iStep, const std::string &p_name ,
const std::shared_ptr<FullGrid> &p_gridCur,
const std::shared_ptr<FullGrid> &p_gridNext,
const std::shared_ptr<OptimizerSLBase > &p_pOptimize ,
const bool &p_bOneFile)
\end{lstlisting}
where
\begin{itemize}
\item \code{p\_ar} is the binary archive where the continuation values are stored,
\item \code{p\_iStep} is the number associated with the current time step (0 at the start date of simulation, the number is increased by one at each simulated time step),
\item \code{p\_name} is the base name to search for in the archive,
\item \code{p\_GridCur} is the grid at the current time step (\code{p\_iStep}),
\item \code{p\_GridNext} is the grid at the next time step (\code{p\_iStep+1}),
\item \code{p\_Optimize} is the Optimizer describing the passage from one time step to the next,
\item \code{p\_OneFile} is equal to \code{true} if only one archive is used to store continuation values.
\end{itemize}
\begin{Remark}
The previous object \code{SimulateStepSemilagrangControlDist} is used with the MPI distribution of data for high dimensional problems. In the case of small dimension (less than or equal to three), the parallelization with MPI or the sequential calculations can be carried out by the object \code{SimulateStepSemilagrangControl}.
\end{Remark}
This object implements the method \code{oneStep}
\begin{lstlisting}[style=CStyle]
void oneStep((const Eigen::ArrayXXd & p_gaussian, Eigen::ArrayXXd &p_statevector , Eigen::ArrayXi &p_iReg, Eigen::ArrayXd &p_phiInOuts)
\end{lstlisting}
where:
\begin{itemize}
\item \code{p\_gaussian} is a two dimensional array (number of Brownian in the modeling by the number of Monte Carlo simulations).
\item \code{p\_statevector} store continuous state (size of continuous state per number of simulations)
\item \code{p\_iReg} for each simulation gives the current regime number,
\item \code{p\_phiInOut} stores the gain/cost functions for all simulations: it is updated by the function call. The size of the array is $(nb, nbSimul)$ where $nb$ is given by the \code{getSimuFuncSize} method of the optimizer and $ nbSimul $ the number of Monte Carlo simulations.
\end{itemize}
An example of using this method to simulate an optimal policy with distribution is given below:
\lstinputlisting[style=CStyle]{../StOpt/test/c++/tools/semilagrangien/semiLagrangianSimuControlDist.cpp}
The sequential version (or parallelized on calculations) of the preceding example is given in the file \href{run:../StOpt/test/c++/tools/semilagrangien/semiLagrangianSimuControl.cpp}{\code{semiLagrangianSimuControl.cpp}}.
\begin{Remark}
In the previous example, we assume that only one function is tracked in simulation, and that we return an average for that function value accordingly.
\end{Remark}
\end{itemize}
\begin{sidewaystable}
\centering
%\label{tabOptSim}
\caption{ Which simulation object to use depending on the TransitionStepSemilagrang object used.}
\scalebox{0.8}{
\begin{tabular}{|c|c|c|c|}
\hline
& \code{TransitionStepSemilagrang} & \code{TransitionStepSemilagrangDist} & \code{TransitionStepSemilagrangDist} \\
& & \code{bOneFile = true} & \code{bOneFile = false} \\ \hline
\code{SimulateStepSemilagrang} & Yes & Yes & No \\ \hline
\code{SimulateStepSemilagrangControl} & Yes & Yes & No \\ \hline
\code{SimulateStepSemilagrangDist} & No & Yes & Yes \\ \hline
\code{SimulateStepSemilagrangControlDist} & No & Yes & Yes \\ \hline
\end{tabular}
}
\end{sidewaystable}
\part{An example with both dynamic programming with regression and PDE}
\label{part:NonEm}
In this chapter we give an example where dynamic programming with regressions and PDE can be used. It allows to compare the resolution and the solution obtained by both methods.\\
In this example we take the following notations:
\begin{itemize}
\item $D_t$ is a demand process (in electricity) with an Ornstein--Uhlenbeck dynamic:
\beqs
dD_t = \alpha( m -D_t) dt + \sigma dW_t,
\enqs
\item $Q_t$ is the cumulative carbon emission due to the production of electricity to meet demand,
\beqs
d Q_t = (D_t-L_t)^{+} dt,
\enqs
\item $L_t$ the total investment capacity in non-emissive technology to produce electricity
\beqs
L_t = \int_0^t l_s ds
\enqs
where $l_s$ is an investment intensity in non-emissive technology at the date $s$,
\item $Y_t$ is the carbon price where
\beqs
Y_t = \E_t( \lambda 1_{Q_T \ge H}),
\enqs
with $\lambda$ and $H$ given.
\end{itemize}
We introduce the following functions:
\begin{itemize}
\item the function of the price of electricity which is a function of the demand and the global investment of non-emitting technology.
\beqs
p_t = (1+D_t)^2 -L_t,
\enqs
\item the profit function by selling electricity is given by
\beqs
\Pi(D_t,L_t)= p_t D_t - (D_t-L_t)^{+},
\enqs
\item $\tilde{c}(l_t,L_t)$ is the investment cost for new non-emissive technology capabilities.
\beqs
\tilde{c}(l,L) = \bar{\beta}(c_{\infty} + (c_0 -c_{\infty}) e^{\beta L}) (1+l)l
\enqs
\end{itemize}
The value of the company that sells electricity is given by $V(t,D_t,Q_t,L_t)$. It satisfies the coupling equations:
\begin{equation}
\left \{ \begin{array}{l}
\partial_t v + \alpha (m- D) \partial_Dv + \frac{1}{2} \sigma^2 \partial^2_{DD} v + (D-L)^{+} \partial_Q v + \Pi(D,L) \\
+ s L^{1-\alpha} - y (D-L)^{+} + \sup_l \{l \partial_L v - \tilde{c}(l,L) \} =0 \label{eqVal} \\
v_T =0
\end{array}
\right.
\end{equation}
and the carbon price $y(t,D_t,Q_t,L_t)$ is given by:
\begin{equation}
\left \{ \begin{array}{l}
\partial_t y + \alpha (m- D) \partial_Dy + \frac{1}{2} \sigma^2 \partial^2_{DD} y + (D-L)^{+} \partial_Q y + l^{*} \partial_L y =0 \\
y_T = \lambda 1_{Q_T\ge K} \end{array}
\right.
\end{equation}
and $l^{*}$ is the optimal control in equation \reff{eqVal}.
The preceding equation can be solved with the semi-Lagrangian method.\\
After a temporal discretization with a step $\delta t$ a dynamic programming equation can be given by
\begin{eqnarray}
v(T-\delta t,D,Q,L) & = & \sup_l (\Pi(D,L)+ s L^{1-\alpha} - y_{T- \delta t} (D-L)^{+} - \tilde{c}(l,L)) \delta t + \nonumber\\
& & \E_{T-\delta t}( V(T,D_T^{T-\delta t,D},Q+(D-L)^{+} \delta t ,L + l\delta t)) \label{eqPDV} \\
Y(T-\delta t,D,Q,L) & =& \E_{T-\delta t}( Y(T,D_T^{T-\delta t,D},Q+(D-L)^{+} \delta t ,L + l^{*} \delta t)) \label{eqPDY}
\end{eqnarray}
The previous equations \reff{eqPDV} and \reff{eqPDY} can be solved with regression methods.\\
In order to use the frameworks previously developed in parallel, we must define common variables for both method.
\begin{itemize}
\item The number of regimes to use (obtained by the \code{getNbRegime} method) is 2: one to store the value $v$, one for the value $y$,
\item In the example we want to follow during the simulations the values of the functions $v$ and $y$ so we fix the number of functions obtained by the \code{getSimuFuncSize} method to 2.
\item In order to test the controls in optimization and simulation we define a maximum investment intensity \code{lMax} and a discretization step to test the controls \code{lStep}.
\end{itemize}
In the following, we store the optimal functions in optimization and recalculate the optimal control in simulation.
\section{Dynamic programming with the regression approach}
All we have to do is specify an optimizer
(\href{run:../StOpt/test/c++/tools/dp/OptimizeDPEmissive.h}{\code{OptimizeDPEmissive}}) defining the methods used to optimize and simulate, and the \code{getCone} method for parallelization:
\lstinputlisting[style=CStyle]{../StOpt/test/c++/tools/dp/OptimizeDPEmissive.cpp}
This 2-dimensional case for inventories can be handled by interpolation on the full two-dimensional grid and on a two-dimensional sparse grid.
The two versions of the resolution are given in a test case (\href{run:../StOpt/test/c++/functional/functional/testDPNonEmissive.cpp}{\code{testDPNonEmissive.cpp}}).
\section{The PDE approach}
The same can be done with the PDE approach using a simulator for the OU demand (\href{run:../StOpt/test/c++/tools/simulators/AR1Simulator.h}{\code{AR1Simulator}}).
We then define an optimizer (\href{run:../StOpt/test/c++/tools/semilagrangien/OptimizeSLEmissive.h}{\code{OptimizeSLEmissive}}) and the methods used to optimize and simulate, and the method \code{getCone} for parallelization:
\lstinputlisting[style=CStyle]{../StOpt/test/c++/tools/semilagrangien/OptimizeSLEmissive.cpp}
The three dimensional grids used can be some full grids or some sparse grids. Both versions of the resolution can be
found in a test case (\href{run:../StOpt/test/c++/functional/testSLNonEmissive.cpp}{\code{testSLNonEmissive.cpp}}).
\part{Stochastic Dual Dynamic Programming}
\chapter{SDDP algorithm}
\label{chap:SDDP}
\section{Some general points about SDDP}
Stochastic Dual Dynamic Programming (SDDP) is an approximate dynamic programming algorithm developed by Pereira and Pinto in 1991~\cite{pereira1991multi}.
To describe the operation of SDDP, we will consider a class of linear programs which have steps $T+1$ stages denoted $\{0,1,\dots,t,\dots,T\}$. We limit our class of problems to linear programs with a relatively complete recourse: the feasible region of the linear program at each step is nonempty and bounded.
Let us formalize the variables and constraints used in the SDDP problem.
\paragraph{Notations used\\}
The notations described here are used in the general case.
\begin{itemize}
\item $x_t$ is the decision variable at time $t$. If the data process is step-independent, $x_t$ also designates the state at time $t+1$.
\item $\omega_t \in \Omega_t$ is the random data process at time $t$, where $\Omega_t$ is the random data set.
\item $c_t$ is the vector of cost at time $t$.
\item $A_t$ and $E_t$ denote matrices of constraints.
\item $Q_t(x_{t-1},\omega_t)$ is the expected value of the problem at time $t$, knowing the state $x_{t-1}$ and the random data $\omega_t$.
\item $ \mathscr{Q}_t(x_{t-1}) = \mathbb{E} \lbrack Q_t(x_{t-1},\omega_t) \rbrack $.
\end{itemize}
\paragraph{Decision process \\}
The random data process $\omega_t$ is discovered gradually. Thus from an initial state $x_0$, the state variables $(x_t)_{t \in \{0,1,\dots,T\}}$ are determined in a non-anticipatory manner. The scheme is as follows: \newline
$x_0$ $\rightarrow$ observation of $\omega_1$ $\rightarrow$ decision of $x_1$ \dots \newline
$\indent \indent \rightarrow$ decision of $x_{T-1}$ $\rightarrow$ observation of $\omega_T$ $\rightarrow$ decision of $x_T$ \\
A rigorous formulation of the multi-step stochastic linear program to solve is as follows:
\begin{equation}
\label{ProblemeGeneral}
V^* =
\min_{\substack{A_0x_0 = \omega_0 \\ x_0 \geq 0}}c_0^{\top}x_0 + \mathbb{E} \left \lbrack \min_{\substack{E_1x_0+A_1x_1 = \omega_1 \\ x_1 \geq 0}}c_1^{\top}x_1 + \mathbb{E} \left \lbrack \dots + \mathbb{E} \left\lbrack \min_{\substack{E_Tx_{T-1}+A_Tx_T = \omega_T \\ x_T \geq 0}} c_T^{\top}x_T \right\rbrack \right\rbrack\right\rbrack
\end{equation}
The deterministic equivalent of this problem (\ref{ProblemeGeneral}) is obtained by discretizing $\omega_t$ (or by directly using $\omega_t$ if discrete). The number of variables in this problem increases exponentially with the number of steps. It cannot be solved directly even if $T$ or $(\Omega_t)_{t \in \{0,1,\dots,T\}}$ are of reasonable size.
\paragraph{Dynamic programming principle \\}
Dynamic programming consists of dividing the problem (\ref{ProblemeGeneral}) into a series of subproblems delimited by a state variable. The goal is to calculate backwards the functions $Q_t$ and $\mathscr{Q}_{t}$. They fulfill the following equations:
\begin{eqnarray}\label{FctValInt}
{\mathcal [LP_t]}
\begin{cases}
&Q_t(x_{t-1},\omega_t) = \min c_t^{\top}x_t + \mathscr{Q}_{t+1}(x_{t}) \\
s.c. \qquad &\quad A_tx_t = \omega_t - E_t x_{t-1}, \quad \lbrack\pi_t(\omega_t)\rbrack\\
\qquad &\quad x_t\geqslant 0
\end{cases}
\end{eqnarray}
\begin{equation}
\label{FctBel}
\mathscr{Q}_t(x_{t-1}) = \mathbb{E} \lbrack Q_t(x_{t-1},\omega_t)\rbrack
\end{equation}
The function $Q(x_{t-1},\omega_t) $ represents the expected value of a future cost knowing the state $x_{t-1}$ and the random data $\omega_t$. $\mathscr{Q}_t(x_{t-1})$ is the expected value of the future cost knowing the state $x_{t-1}$. The dynamic programming principle guarantees that $V^* = \mathscr{Q}_1(x_0)$.
Given $\mathscr{Q}_T(\cdot)$, the successive computations are achieved backwards switching between the resolution of the linear sub-problem \eqref{FctValInt} and the computation of \eqref{FctBel}.
The implementation of dynamic programming consists in successively approximating the two value functions by equations (\ref{FctValInt} - \ref{FctBel}) by discretizing the state space and by solving the linear subproblems. The number of discretization points increases exponentially with the dimension of the state vector and becomes enormous for our applications (``curse of dimensionality''). Additionally, a linear approximation of $\mathscr{Q}_{t+1}(x_{t})$ must be available to convert the transition problem to LP.
\paragraph{SDDP algorithm \\}
SDDP is a method used to solve a multistep stochastic problem described in \cite{pereira1991multi}. SDDP is based on Benders decomposition described in \cite{benders2005partitioning}. Please note that SDDP was developed in order to solve hydro-thermal scheduling problem.
SDDP limits the curse of dimensionality by avoiding \textit{a priori} a complete discretization of the state space. Each SDDP iteration is a two-step process. The first step consists in generating a sequence of realistic states $x_t^*$ from which in the second step the value functions are estimated in their neighborhood. By repeating these two steps successively, the approximation of the value function becomes more and more precise. SDDP is also composed of two passes calculated alternately:
\begin{itemize}
\item one pass back: the objective is to improve the number of cut Benders in the vicinity of well-chosen candidate states. It alsoprovides a lower limit of the optimal cost.
\item a forward pass: the goal is to provide a set of new candidate states. An estimate of the upper bound of the optimal cost is also calculated.
\end{itemize}
On the other hand, the SDDP method is based on the form of the future value function $\mathscr{Q}_t(x_{t-1})$. Indeed within the framework of a linear problem with complete recourse, the function value is convex and linear by pieces. It can therefore be approached by taking the supremum of a family of minor affine functions. These affine functions are called \textit{optimality cuts} or \textit{Benders cuts}.
\section{A method, different algorithms}
The method implemented in this library is based on the different situations presented in a technical report of PSR program \cite{pereira1999application} where three different cases of the basic problem are solved by SDDP. All three cases are implemented in the library. Other cases could be added to those that exist in the future.
\paragraph{Notations \\}
These notations will be used to present the different algorithms of SDDP.
\begin{itemize}
\item $\bar{z}$ designates the optimal cost obtained in forward pass.
\item $\underline{z}$ denotes the optimal cost obtained in return.
\item $\beta_{t}^j$ denotes the slope of the $j^{th}$ Benders cut.
\item $\alpha_{t}^j$ denotes the intercept of the $j^{th}$ Benders cut.
\end{itemize}
\subsection{The basic case}
To describe this case, the notations above are used. We focus on multistep stochastic problems with the following properties.
\begin{itemize}
\item Random quantities at different stages are independent.
\item Random quantities at time $t$ are summarized in $\omega_t$.
\item At each step, the linear subproblem solution space is nonempty and bounded.
\end{itemize}
In this case, the functions $\mathscr{Q}_t(\cdot)$ are convex. The primal and dual solutions of the linear problem exist and define optimal cuts. We can now describe precisely how the implemented algorithm works.
\paragraph{Initialization \\}
\label{init}
The following values are fixed:
\begin{itemize}
\item $\{0,1,\dots,T\}$, the set of steps, where $T$ is the time horizon.
\item $n = 0$, is the counter of the number of iterations (\textit{backward-forward}). $n$ is incremented at the end of each iteration.
\item $p \in \mathbb{R}$, the precision to be reached for the convergence test.
\item $n_{step} \in \mathbb{N}$, the number of iterations performed between 2 convergence tests.
\item $n_{iterMax} \in \mathbb{N}$, the maximum number of iterations.
\item $x_0 \in \mathbb{R}_+^n$, the initial state of the vector.
\item $L \in \mathbb{N}$, the number of scenarios used in the backward pass.
\item $G \in \mathbb{N}$, the number of scenarios used in the forward pass. It also gives the number of new cuts calculated at each iteration (\textit{backward-forward}) and the number of states near which the Benders cuts are calculated.
\end{itemize}
\paragraph{Forward pass\\}
The purpose of this pass is to explore new feasible vector state and to obtain an estimate of the upper limit of the optimal cost. To this end, the current strategy is simulated for a set of $G$ scenarios. The set of scenarios can be historical chronicles or raffles.
The ~\ref{alg:forward} algorithm presents the forward pass at the $n$-th iteration of the SDDP method.
\begin{algorithm}[h!]
\begin{algorithmic}[1]
\State Simulate defines $\left\lbrace\left(\omega_t^g \right), t \in \lbrace 1,\dots,T \rbrace \right\rbrace$ ofscenarios also distributed: for $g \in \Omega^{\mathscr{G}} = \{1,\dots,G\}$. \;
\For{$g \in \Omega_{\mathscr{G}}$}
\State Solve the following linear subproblem. \;
\begin{eqnarray}
{\mathcal [AP_{0}^n]}
\begin{cases}
&Q_0 = \min\limits_{x_0,\theta_{1}} c_0^{\top}x_0 + \theta_{1}\\
u.c. \qquad &\quad A_0x_0 = \omega_0 , \quad\lbrack\pi_0(\omega_0)\rbrack\\
\qquad &\quad x_0\geqslant 0 \\
\qquad &\quad \theta_{1} + (\beta_{1}^j)^{\top} x_0 \geqslant \alpha_{1}^j, \quad j \in \{1,\dots, G,\dots, nG \}
\end{cases}
\end{eqnarray}
\State Store the primal solution $(x_0^g)$ of the problem $\mathcal [AP_{0,g}^n]$.
\For{$t \in \{1,\dots,T\}$}
\State Solve the following linear subproblem. \;
\begin{eqnarray}
{\mathcal [AP_{t,g}^n]}
\begin{cases}
&Q_t^g(x_{t-1}^g,\omega_t^g) = \min\limits_{x_t,\theta_{t+1}} c_t^{\top}x_t + \theta_{t+1}\\
s.c. \qquad &\quad A_tx_t = \omega_t^g - E_t x_{t-1}^g, \quad\lbrack\pi_t(\omega_t^g)\rbrack\\
\qquad &\quad x_t\geqslant 0 \\
\qquad &\quad \theta_{t+1} + (\beta_{t+1}^j)^{\top} x_t \geqslant \alpha_{t+1}^j, \quad j \in \{1,\dots, G,\dots, nG \}
\end{cases}
\end{eqnarray}
\State Store the primal solution $(x_t^g)$ of the problem $\mathcal [AP_{t,g}^n]$.
\EndFor
\State Calculate the cost of the scenario $g$, at iteration $n$: $\bar{z}^g_n = \sum_{t=0}^T c_t x_t^g$.\;
\EndFor
\State Calculate the total cost of the forward pass at iteration $n$: $\bar{z}_n = \frac{1}{G}\sum_{g=1}^G \bar{z}^g_n $.
\end{algorithmic}
\caption{Run of forward pass ($n^{th}$ iteration)}
\label{alg:forward}
\end{algorithm}
%
\paragraph{Backward pass\\}
The purpose of the backward pass is to add, at each stage, a set of new Benders cuts and to provide a new lower bound estimate of the optimal operational cost. For that, we have a set of scenarios of the random quantities (the dimension of the set is $L$) recorded during the initialization.
At each time step cuts $G$ are added using the states $G$ visited $(x_t^g)_{g=1,\dots,G}$ obtained during the passage forward.
The ~\ref{alg:backward} algorithm presents the backward pass.
\begin{algorithm}[h!]
\begin{algorithmic}[1]
\For{$t = T, T-1, \dots,1 $}
\For{$x_{t-1}^g$, $g \in \{1,\dots,G\}$}
\For{$\omega_t^l$, $l \in \{1,\dots,L\}$}
\longState{Solve the following linear subproblem. \;
\begin{eqnarray}
{\mathcal [AP_{t,l}^{n,g}]}
\begin{cases}
&Q_t^l(x_{t-1}^g,\omega_t^l) = \min\limits_{x_t,\theta_{t+1}} c_t^{\top}x_t + \theta_{t+1}\\
s.c. \qquad &\quad A_tx_t = \omega_t^l - E_t x_{t-1}^g, \quad\lbrack\pi_t(\omega_t^l)\rbrack\\
\qquad &\quad x_t\geqslant 0 \\
\qquad &\quad \theta_{t+1} + (\beta_{t+1}^j)^{\top} x_t \geqslant \alpha_{t+1}^j, \quad j \in \{1,\dots, G,\dots, (n+1)G \}
\end{cases}
\end{eqnarray}
}
\longState{Store the dual solution $\pi_t(\omega_t^l)$ and the primal solution $Q_t^l(x_{t-1}^g,\omega_t^l)$ of the linear subproblem $\mathcal [AP_{t,l}^{n,g}]$.}
\State Calculate the cutoff that goes with the $l^{th}$ hazard draw:
\begin{eqnarray}
\begin{cases}
&\alpha_{t,l}^g = Q_t^l(x_{t-1}^g,\omega_t^l) + \pi_t(\omega_t^l)^{\top} E_{t} x_{t-1}^g \\
&\beta_{t,l}^g = E_{t}^{\top} \pi_t(\omega_t^l)
\end{cases}
\end{eqnarray}
\EndFor
\longState{Calculate the $g^{th}$ new Benders cut at time $t$ at iteration $n$. It is defined as the average value of the cuts obtained before:}
\begin{equation}
\begin{cases}
&\alpha_t^k = \frac{1}{L}\displaystyle \sum_{l=1}^L \alpha_{t,l}^g \\
&\beta_t^k = \frac{1}{L}\displaystyle \sum_{l=1}^L \beta_{t,l}^g
\end{cases} \quad \text{ where } k = nG + g
\end{equation}
\EndFor
\EndFor
\State Solve the following linear subproblem:
\begin{eqnarray}
{\mathcal [AP_0^n]}
\begin{cases}
&Q_0 = \min\limits_{x_0,\theta_{1}} c_0^{\top}x_0 + \theta_{1}\\
s.c. \qquad &\quad A_0x_0 = \omega_0 , \quad\lbrack\pi_0(\omega_0)\rbrack\\
\qquad &\quad x_0\geqslant 0 \\
\qquad &\quad \theta_{1} + (\beta_{1}^j)^{\top} x_0 \geqslant \alpha_{1}^j, \quad j \in \{1,\dots,G,\dots,(n+1)G \}
\end{cases}
\end{eqnarray}
\State Save the cost \textit{backward} $\underline{z}_n = Q_0$.
\end{algorithmic}
\caption{Run of backward pass}
\label{alg:backward}
\end{algorithm}
\paragraph{Stopping test \\}
In the literature about SDDP lots of stopping criterion were used and their efficiency has been proved. However a criterion is suitable for each particular problem. Thus it is tough to bring out one which is generic. Due to genericity requirements, two classical criterion are implemented in the library. These can be customized by the user. The first one defines a maximal number of iterations $n_{iterMax}$ (an iteration is made of the succession of \textit{backward-forward} passes) which shall not be exceeded. The second one is a test of convergence towards each other between the forward and the backward cost. The convergence test uses the following indicator:
\begin{equation}
\psi_{n_{step}i} = \left | \frac{\bar{z}_{n_{step}i} - \underline{z}_{n_{step}i}}{\bar{z}_{n_{step}i}} \right |, \quad \text{with } i \in \mathbb{N}
\end{equation}
This is calculated every $n_{step}$ iterations. If it is less than a $p$ threshold, the process stops, otherwise it continues. The threshold is set by the user.
\subsection{Dependence of random quantities}
In the previous case, we limit our problem to independent random quantities in the different stages. The resolution of the SDDP was obtained on the state vector $x_t$ in the basic case.
But sometimes, in real life, the random quantities can be temporarily correlated. In a hydraulic problem, for example, there is a time dependence of the results. Time dependencies may also exist in the request. However, with time-bound random quantities, Bellman's recurrence formula (\ref{FctValInt} - \ref{FctBel}) does not hold and classical SDDP can not be applied.
However if the Bellman functions are convex with respect to the temporal random quantities, it suffices to increase the dimension of the state vector by the dimension of the temporal random quantities to find ourselves in the configuration of the base case. In this case, the resolution of a linear program of reasonable size for each random draw is sufficient to calculate new calculations of Benders cuts in the vicinity of a candidate state.
There are a few options for representing the time dependence of random quantities. However, in order to not increase the size of the problem too much, an ARMA process of order 1 is often chosen. In the random data vector $\omega_t$ two different parts must be distinguished from now on:
\begin{itemize}
\item $\omega^{\ind}_t$ is the vector of random data corresponding to independent random quantities.
\item $\omega^{\dep}_t$is the vector of random data corresponding to the time-related random quantities.
\end{itemize}
And $\omega^{\dep}_t$ fulfills the following recurrence equation:
\begin{equation}
\frac{\omega^{\dep}_t - \mu_{\omega,t}}{\sigma_{\omega,t}} = \psi_1 \frac{\omega^{\dep}_{t-1} - \mu_{\omega,t-1}}{\sigma_{\omega,t-1}} + \psi_2 \epsilon_t
\end{equation}
To apply Bellman's recurrence formula, the state of the vector must consist of the decision variable $x_t$ and the time-bound random quantities $\omega^{\dep}_{t}$. The dimension of the vector state is then increased. $x^{\dep}_t =(x_t,\omega^{\dep}_{t})^{\top}$ designates the new state vector. The Bellman function now satisfies the following two-step linear problem at time $t$:
\begin{eqnarray}
{\mathcal [LP'_t]}
\begin{cases}
\label{FctValInt2}
&Q_t(x_{t-1},\omega^{\dep}_{t-1},\omega_t) = \min c_t^{\top}x_t + \mathscr{Q}_{t+1}(x_{t},\omega^{\dep}_{t}) \\
u.c. \qquad &\quad A_tx_t = P \omega_t^{\dep} - E_t x_{t-1}, \qquad \lbrack\pi_t(\omega_t)\rbrack\\
\qquad &\quad x_t\geqslant 0
\end{cases}
\end{eqnarray}
with P the matrix such that $\omega_{t} = P \omega^{\dep}_{t}$.
The variable $\omega^{\dep}_{t}$ is a random process. Thus, the above problem is solved by using specific $\omega^l_t$ values of this variable. To get them, we apply a Markov process, i.e. we simulate different values of white noise $\epsilon_t^l$.
The new shape of the state vector involves changes in the sensitivity of the Bellman function. It is therefore a function depending on the decision variable $x_t$ but also on the vector of random quantity linked to time $\omega^{\dep}_{t}$. The calculation of the Benders cuts is then a little different:
\begin{equation}
\begin{split}
\frac{\partial Q_t(x_{t-1},\omega^{\dep}_{t-1},\omega_{t})}{\partial \omega^{\dep}_{t-1}} & = \frac{\partial Q_t(x_{t-1},\omega^{\dep}_{t-1},\omega_{t})}{\partial \omega^{\dep}_{t}} \frac{\partial \omega^{\dep}_{t}}{\partial \omega^{\dep}_{t-1}} \\
& = \pi_t(\omega_t)^{\top} P \psi_1 \frac{\sigma_{\omega,t}}{\sigma_{\omega,t-1}},
\end{split}
\end{equation}
The backward passage should be changed as shown in the ~\ref{alg:backward_time_related} algorithm. Some new calculation steps must be taken into account.\\
{\small
\begin{algorithm}[htbp!]
\begin{algorithmic}[1]
\State Take the following set of pairs: $\{x_t^g,\omega_t^{\dep,g}\}$ for $g \in \{1,\dots,G\}$, $t \in \lbrace 1,\dots,T \rbrace$.
\For{$t = T, T-1, \dots,1 $}
\For{$(x_{t-1}^g, \omega_{t-1}^{\dep,g})$, $g \in \{1,\dots,G\}$}
\For{$l \in \{1,\dots,L\}$}
\State Produce a value for white noise $\epsilon_t^l$.
\State calculate the element $\hat{\omega}^{l}_t$ knowing the previous random quantity $\omega_{t-1}^{\dep,g}$:
\begin{equation}
\hat{\omega}^{l}_t = {\sigma_{\omega,t}}\left( \psi_1 \frac{\omega^{\dep,g}_{t-1} - \mu_{\omega,t-1}}{\sigma_{\omega,t-1}} + \psi_2 \epsilon_t^l \right) + \mu_{\omega,t}
\end{equation}
\State Solve the following linear subproblem.
\begin{eqnarray}
{\mathcal [AP_{t,l}^{' n,g}]}
\begin{cases}
&Q_t^l(x_{t-1}^g,\omega_{t-1}^{\dep,g},\hat{\omega}^l_t) = \min\limits_{x_t,\theta_{t+1}} c_t^{\top}x_t + \theta_{t+1}\\
u.c. \qquad &\quad A_tx_t = P \hat{\omega}^{l}_t - E_t x_{t-1}^g, \quad\lbrack\pi_t(\hat{\omega}^{l}_t)\rbrack\\
\qquad &\quad x_t\geqslant 0 \\
\qquad &\quad \theta_{t+1} + (\beta_{t+1}^j)^{\top} x_t + (\gamma_{t+1}^j)^{\top}\hat{\omega}^{l}_t \geqslant \alpha_{t+1}^j, \quad j \in \{1,\dots, G,\dots, (n+1)G \}
\end{cases}
\end{eqnarray}
\longState{Store the dual solution $\pi_t(\omega_t^l)$ and the primal solution $Q_t^l(x_{t-1}^g,\omega_{t-1}^{\dep,g},\hat{\omega}_t^l)$ of the primal problem $\mathcal [AP_{t,l}^{' n,g}]$.}
\longState{Calculate the cutoff that goes with the draw $l^{th}$:
\begin{eqnarray}
\begin{cases}
\alpha_{t,l}^g = Q_t^l(x_{t-1}^g, \omega_{t-1}^{\dep,g},\hat{\omega}^{l}_t) + \pi_t(\hat{\omega}_t^l)^{\top} \left( E_{t} x_{t-1}^g - \psi_1 \frac{\sigma_{\omega,t}}{\sigma_{\omega,t-1}} P \omega_{t-1}^{\dep,g} \right) \\
\beta_{t,l}^g = E_{t}^{\top} \pi_t(\hat{\omega}^{l}_t)\\
\gamma_{t,l}^g = \psi_1 \frac{\sigma_{\omega,t}}{\sigma_{\omega,t-1}} P^{\top} \pi_t(\hat{\omega}^{l}_t)
\end{cases}
\end{eqnarray}
}
\EndFor
\longState{Calculate the $g^{th}$ new Benders cut at time $t$ at iteration $n$ defined as the average value of the cuts obtained before for $ k = nG + g$:}
\begin{align*}
\alpha_t^k = \frac{1}{L}\displaystyle \sum_{l=1}^L \alpha_{t,l}^g \ , \quad
\beta_t^k = \frac{1}{L}\displaystyle \sum_{l=1}^L \beta_{t,l}^g \ , \quad
\gamma_t^k = \frac{1}{L}\displaystyle \sum_{l=1}^L \gamma_{t,l}^g
\end{align*}
\EndFor
\EndFor
\State Solve the following linear subproblem.
\begin{eqnarray}
{\mathcal [AP_{ 0}^{' n}]}
\begin{cases}
&Q_0 = \min\limits_{x_0,\theta_{1}} c_0^{\top}x_0 + \theta_{1}\\
u.c. \qquad &\quad A_0x_0 = \omega_0 , \quad\lbrack\pi_0(\omega_0)\rbrack\\
\qquad &\quad x_\geqslant 0 \\
\qquad &\quad \theta_{1} + (\beta_{1}^j)^{\top} x_0 + (\gamma_{1}^j)^{\top} \omega_0^{\dep} \geqslant \alpha_{1}^j, %\\
\quad j \in \{1,\dots, G,\dots, (n+1)G \}
% \qquad &\qquad \quad j \in \{1,\dots, G,\dots, (n+1)G \}
\end{cases}
\end{eqnarray}
\State Save the back cost $\underline{z}_n = Q_0$.
\end{algorithmic}
\caption{Execution of the backward pass with time-bound random quantities (AR1 process)}
\label{alg:backward_time_related}
\end{algorithm}
}
\subsection{Non-convexity and conditional cuts}
Some random quantities can introduce non-convexity preventing us from applying the classical SDDP algorithm. Indeed when the random quantities appear on the left side of the linear constraints or in the cost function (typically $A_t$ and/or $c_t$ become random) the property of convexity of the Bellman functions with respect to the random quantities is not no longer observed.
In the context of a production management problem, the situation often arise. For example, sometimes the unit running cost of plants is random. It is also observed when we deal with the uncertainty of spot prices for use in stochastic mid-term scheduling.
In a technical report, Pereira, Campodonico, and Kelman~\cite{pereira1999application} suggested a new algorithm to efficiently approximate Bellman functions by explicitly using the dependence of Bellman functions on these random quantities. This new algorithm is based on a combination of SDDP and ordinary stochastic dynamic programming. The SDP part deals with the non-convex random quantities, while the other random quantities are dealt with in the SDDP part. It is an extension of the classic SDDP algorithm. It is described in detail in \cite{pereira1999application} and in \cite{gjelsvik1999algorithm}.
In the library, we propose two approaches to deal with this non convexity:
\subsubsection{A tree approach}
In \cite{gjelsvik1999algorithm}, the spot price $p_t$ is considered a state. The set of achievable spot prices is discretized into a set of $M$ points $\zeta_1,\dots,\zeta_M$. The following Markov model is then used:
$$\mathbb{P}\left(p_t = \zeta_j | p_{t-1} = \zeta_i\right) = \rho_{ij}(t),$$
This model makes easier the implementation of the SDP. But it implies discretization mistakes that are hard to quantify. It is also tough to discretize with efficiency a random process when only a small number of scenarios is available.
However when the dimension of the non convex uncertainties is low, it is an approach to consider. The finite number of states , and the probabilities linking states between two successive time step leads to a tree representation of the uncertainties.
As the approach is classical, we don't detail this version of the algorithm. We only detail the second approach which is in fact in spirit very similar.
\subsubsection{A regression based approach}
In this case the modeling used in the library is somewhat different from that described in the two articles.
In order to avoid the discretization with trees in this second approach, the evolution of non-convex random quantities is decided by Monte Carlo simulations. At each stage, a fixed number of Monte-Carlo simulations is provided. Anyway, despite this difference, the overall view of this brand new algorithm is similar to that described in two articles:
\begin{itemize}
\item The non-convex random quantities depend on the realization of the previous one according to a mathematical model (Markov chain).
\item
At each step, the Bellman functions are approximated by the conditional realization of these random quantities.
\item We have used conditional cuts to give an estimate of the Bellman functions. These conditional cuts are calculated using the methods of the \ref{sec::regression} section: two methods are available in the library. Both use adaptive support. The first uses a constant approximation per cell while the second uses a linear approximation per cell.
\end{itemize}
In our algorithm the characteristics of the conditional cuts are revealed thanks to a conditional expectation calculation.
However, conditional expectation calculations are not easy when the exact distribution of the random variable is not known. Some techniques exist but in the library a specific one is used and described above in chapter \ref{sec::regression}: it is based on local linear regression.
\paragraph{Regression, dynamic stochastic programming and SDDP \\}
The execution of the backward pass in the new algorithm combining SDDP and SDP using local linear regression is described below.
Before describing this algorithm in detail , let's introduce some notations:
\begin{itemize}
\item $S$ is the space of the non-convex random quantities.
\item $d$ is the dimension of the space of non-convex random quantities $S$
\item At each step, $U$ Monte Carlo simulations in $S$ are provided. We thus obtain scenarios $U$ denoted by $s_t^u$ at each step $t$
\item $\tilde{I}$ is a partition of the space of non-convex random quantities $S$. $$\tilde{I} = \left\lbrace \underline{I} = \left(i_1,\dots,i_d\right), i_1 \in \lbrace 1,\dots,I_1\rbrace, \dots, i_d \in \lbrace 1,\dots,I_d\rbrace \right\rbrace$$
\item $\lbrace D_{\underline{I}}\rbrace_{\underline{I} \in \tilde{I}}$ is the set of meshes of the set of scenarios.
\item $M_M = \displaystyle\prod_{k=1}^d I_k$ designate the number of meshes at each step.
\end{itemize}
The backward step with both random time-related and non-convex quantities is presented in the algorithm~\ref{alg:backward_time_related_conditional_cuts}.
\begin{algorithm}[H] %[htbp!]
\begin{algorithmic}[1]
\State Pick up the set of the following pairs: $\{x_t^g,\omega_t^{\dep,g} \}$ for $g \in \{1,\dots,G\}$, $t \in \lbrace 1,\dots, T \rbrace$.
\For{$t = T, T-1, \dots,1 $}
\longState{Generate values for the non-convex random quantities at time $t$ knowing the scenarios at time $t-1$: $s_t^u$, $u \in \{1,\dots,U\}$.}
\For{$(x_{t-1}^g, \omega_{t-1}^{\dep,g})$, $g \in \{1,\dots,G\}$}
\For{$u \in \{1,\dots,U\}$}
\State Consider a scenario $s_{t}^u$ in the mesh $D_{\underline{I}}$.
\For{$l \in \{1,\dots,L\}$}
\State Produce a value for the white noise $\epsilon_t^l$.
\State Compute the element $\hat{\omega}_t^l$ knowing the previous random quantity $\omega^{\dep,g}_{t-1}$:
\begin{equation}
\hat{\omega}^{l}_t = {\sigma_{\omega,t}}\left( \psi_1 \frac{\omega^{\dep,g}_{t-1} - \mu_{\omega,t-1}}{\sigma_{\omega,t-1}} + \psi_2 \epsilon_t^l \right) + \mu_{\omega,t}
\end{equation}
\longState{Pick up the cuts corresponding the mesh $D_{\underline{I}}$: $\left\lbrace \alpha_{t+1}^{\underline{I},j}(s),\beta_{t+1}^{\underline{I},j}(s), \gamma_{t+1}^{\underline{I},j}(s)\right\rbrace$, $ j \in \left\lbrace 1, \dots, (n+1)G \right\rbrace$.}
\longState{Solve the following linear sub-problem:
\begin{eqnarray}
\small
{\mathcal [AP_{t,l}^{' n,g}]}
\begin{cases}
&Q_t^l(x_{t-1}^g,\omega_{t-1}^{\dep,g},\hat{\omega}_t^l, s_{t}^u) = \min\limits_{x_t,\theta_{t+1}} c_t(s_t^u)^{\top}x_t + \theta_{t+1}(s_t^u)\\
s.c. \qquad &\quad A_t(s_t^u)x_t = P\hat{\omega}_t^l - E_t x_{t-1}^g, \quad\lbrack\pi_t(\hat{\omega}_t^l,s_t^u)\rbrack\\
\qquad &\quad x_t\geqslant 0 \\
\qquad &\quad \theta_{t+1}(s_t^u) + (\beta_{t+1}^{\underline{I},j}(s_t^u))^{\top} x_t + (\gamma_{t+1}^{\underline{I},j}(s_t^u))^{\top}\hat{\omega}_t^l \geqslant \alpha_{t+1}^{\underline{I},j}(s_t^u), \\
\qquad &\qquad \quad j \in \{1,\dots, G,\dots, nG \}
\end{cases}
\end{eqnarray}
}
\longState{Store the dual solution $\pi_t(\hat{\omega}_t^l)$ and the primal solution $Q_t^l(x_{t-1}^g,\omega_{t-1}^{\dep,g},\hat{\omega}_t^l,s_{t}^u)$ of the problem $\mathcal [AP_{t,l}^{' n,g}]$.}
\longState{Calculate the corresponding cut at the $l^{th}$ draw of uncertainties:
\begin{align*}
\hat{\alpha}_{t,l}^{g,\underline{I}}(s_t^u) &= Q_t^l(x_{t-1}^g, \omega_{t-1}^{\dep,g},\hat{\omega}_t^l) + \pi_t(\hat{\omega}_t^l)^{\top} \left( E_{t} x_{t-1}^g - \psi_1 \frac{\sigma_{\omega,t}}{\sigma_{\omega,t-1}} P \omega_{t-1}^{\dep,g} \right) \\
\hat{\beta}_{t,l}^{g,\underline{I}}(s_t^u) &= E_{t}^{\top} \pi_t(\hat{\omega}_t^l) \\
\hat{\gamma}_{t,l}^{g,\underline{I}}(s_t^u) &= \psi_1 \frac{\sigma_{\omega,t}}{\sigma_{\omega,t-1}} P^{\top} \pi_t(\hat{\omega}_t^l)
\end{align*}
}
\EndFor
\algstore{condCut}
\end{algorithmic}
\caption{Run of the backward pass with time-related (AR1) and non-convex random quantities}
\label{alg:backward_time_related_conditional_cuts}
\end{algorithm}
\begin{algorithm}[H]
\begin{algorithmic}[1]
\algrestore{condCut}
\longState{Compute the cut for a non-convex random quantity $s_t^u$ at time $t$ at iteration $n$: it is defined as the weighted average on the $L$ Benders cut obtained before:}
\begin{align*}
\hat{\alpha}_{t}^{g,\underline{I}}(s_{t}^u) &= \frac{1}{L}\displaystyle \sum_{l=1}^L \hat{\alpha}_{t,l}^{g,\underline{I}}(s_t^u) \\
\hat{\beta}_{t}^{g,\underline{I}}(s_t^u) &= \frac{1}{L}\displaystyle \sum_{l=1}^L \hat{\beta}_{t,l}^{g,\underline{I}}(s_t^u), \qquad j = nG + g \\
\hat{\gamma}_{t}^{g,\underline{I}}(s_t^u) &= \frac{1}{L}\displaystyle \sum_{l=1}^L \hat{\gamma}_{t,l}^{g,\underline{I}}(s_t^u)
\end{align*}
\EndFor
\For{${\underline{I}}_i, i \in \lbrace 1,\dots, M_M \rbrace$}
\longState{Compute the $g^{th}$ new cut of the mesh $D_{{\underline{I}}_i}$ at time $t$ at iteration $n$ defined as the conditional expectation with respect to the scenario $u$ at time $t$:}
\begin{eqnarray}
\begin{cases}
&\alpha_t^{j,I}(s_{t-1}^u) = \mathbb{E} \left[\hat{\alpha}_{t}^{g,\underline{I}}(s_t^u)|s_{t-1}^u\right], \\
&\beta_t^{j,I}(s_{t-1}^u) = \mathbb{E} \left[ \hat{\beta}_{t}^{g,\underline{I}}(s_t^u)|s_{t-1}^u\right], \qquad j = nG + g\\
&\gamma_t^{j,I}(s_{t-1}^u) = \mathbb{E} \left[\hat{\gamma}_{t}^{g,\underline{I}}(s_t^u)|s_{t-1}^u \right]
\end{cases}
\end{eqnarray}
\EndFor
\EndFor
\EndFor
\State Solve the initial linear sub problem $[AP_{0}^{' n}]$.
\State Save the backward cost $\underline{z}_n = Q_0$.
\end{algorithmic}
\end{algorithm}
\clearpage
\section{C++ API}
\renewcommand{\labelitemi}{\textbullet}
The SDDP part of the stochastic library is in \verb!C++! code. This unit is a classic black box: specific inputs must be provided to obtain the expected results. In the SDDP unit, the backward and forward passes are performed successively until the stop criterion is reached. In this unit, the succession of passes is carried out by
\begin{itemize}
\item the \code{backwardForwardSDDPTree} class for the tree method,
\item the \code{backwardForwardSDDP} class for the regression-based approach.
\end{itemize}
These classes takes three non-defined classes as input.
\subsection{Inputs \\}
The user must implement three classes.
\begin{itemize}
\item \uline{A class where the transition problem is described} which is shown in the example \code{TransitionOptimizer}. This class is at the core of the problem resolution.
Therefore, great flexibility is left to the user to implement this class.
The class is used with both the tree approach and the regression-based approach.\\
In a way, this class is where the technical aspects of the problem are adjusted. This class describes backward and forward passes. Four methods must be implemented:
\begin{itemize}
\item \code{updateDates}: establish the new set of dates: $(t, t+dt)$.
%\item \code{oneStepForward}: solves the different transition linear problems during the forward pass for a particle, a random vector and an initial state:
%\begin{itemize}
%\item the state $(x_{t},w^{\dep}_t)$ is given as input of the function.
%\item the $s_t$ values are restored by the simulator.
%\item the LP is solved between dates $t$ and $t+dt$ for the given $s_t$ and the constraints due to $w^{\dep}_{t}$ (demand, flow constraints) and permits to get
%the optimal $x_{t+dt}$.
%\item Using iid sampling, $w^{\dep}_{t+dt}$ is estimated
%\item return $(x_{t+dt},w^{\dep}_{t+dt})$ as the following state and $(x_{t+dt},w^{\dep}_{t})$ that will be used as the state to visit during next backward resolution.
%\end{itemize}
\item
\code{oneStepForward}: solves the various linear transition problems during the forward pass for a particle, a random vector and an initial state:
\begin{itemize}
\item the state $(x_{t-dt},w^{\dep}_t)$ is given as input to the function.
\item the $s_t$ values are restored by the simulator.
\item the LP is solved between the dates $t$ and $t+dt$ for the given $s_t$ and the constraints due to $w^{\dep}_{t}$ (demand, flow constraints) and allows to get the optimum $x_{t}$.
\item Using iid sampling, $w^{\dep}_{t+dt}$ is estimated.
\item return $(x_{t},w^{\dep}_{t+dt})$ as next state and $(x_{t},w^{\dep}_{t})$ which to be used as a state to visit in the next backward resolution.
\end{itemize}
%\item \code{oneStepBackward}: solves the different transition linear problems during the backward pass for a particle, a random vector and an initial state.
%\begin{itemize}
%\item The state $(x_{t+dt},w^{\dep}_{t})$ is given as input if $t \ge 0$ otherwise input is $(x_0,w^{\dep}_0)$.
%\item If $t\ge 0$, sample to calculate $w^{\dep}_{t+dt}$ in order to get the state $(x_{t+dt},w^{\dep}_{t+dt})$ at the beginning of the period of resolution of the LP.
%\item Solve the LP from date $t+dt$ to next date $t+2dt$ (if equally spaced periods).
%\item Return the function value and the dual that will be used for cuts estimations.
%\end{itemize}
\item
\code{oneStepBackward}: solves different linear transition problems during the backward pass for a particle, a random vector and an initial state.
\begin{itemize}
\item The vector $(x_{t},w^{\dep}_{t})$ is given as input if $t \ge 0$; otherwise, the input is $(x_{-dt},w^{\dep}_0)$.
\item If $t\ge 0$, sample to calculate $w^{\dep}_{t+dt}$ to obtain the state $(x_{t},w^{\dep}_{t+dt})$ at the start of the LP resolution period.
If $t < 0$, the state is $(x_{-dt},w^{\dep}_0)$.
\item Solve the LP from date $t$ to next date $t+dt$ (if equally spaced periods) for the variable $x_{t+dt}$.
\item Return the value of the function and the dual that will be used for the cut estimates.
\end{itemize}
\item \code{oneAdmissibleState}: returns an admissible state at time $t$ (respect only the constraints).
\end{itemize}
\code{TransitionOptimizer} must derive from the \code{OptimizerSDDPBase} class defined below.
\end{itemize}
\lstinputlisting[style=CStyle]{../StOpt/StOpt/sddp/OptimizerSDDPBase.h}
\begin{itemize}
\item \uline{A forward pass simulator}: \code{SimulatorSim}
\item \uline{A backward pass simulator}: \code{SimulatorOpt}. This simulator can use an underlying process to generate scenarios, a set of historical chronicles, or a discrete set of scenarios. Often, in the case of a test carried out, a Boolean is enough to distinguish the forward and the backward simulator.
\end{itemize}
At the opposite of the class where the transition is described, the simulator is of course different for the tree approach and the regression approach because the first gives only a finite number of states.
An abstract class for simulators using the regression-based methods is defined below:
\lstinputlisting[style=CStyle]{../StOpt/StOpt/sddp/SimulatorSDDPBase.h}
An abstract class derived from the previous class for simulators using tree-based methods is defined below:
\lstinputlisting[style=CStyle]{../StOpt/StOpt/sddp/SimulatorSDDPBaseTree.h}
\newpage
\subsection{Architecture}
We only detail the SDDP architecture for the regression based approach because the tree approach uses the same algorithm.\\
The SDDP management part of the library is built following the scheme described below. \\ \\
In the following pseudo-code, you have to keep in mind that some small shortcuts were used in order to make reading friendly (e.g. linear subproblem in the initial case $(t=0)$ should be a little different from that of the other time steps, the entries \code{forwardSDDP}, \code{backwardSDDP}, \code{backwardForwardSDDP} have been omitted for simplicity). A more rigorous theoretical explanation is available in the previous part.
\begin{Remark}
To use the tree method,\\
\code{forwardSDDP}, \code{backwardSDDP}, \code{backwardforwardSDDP}
can be replaced with specialized version for trees called \\ \code{forwardSDDPTree}, \code{backwardSDDPTree}, \code{backwardforwardSDDPTree} in the library.
\end{Remark}
Three colors have been used: the blue parts correspond to the use of the functions implemented in the \textbf{TransitionOptimizer} class,the red parts correspond to the use of the \textbf{Simulator} (Sim or Opt) functions while the grey parts correspond to generic functions totally handled by the library. To be more precise, what you need to implement as a StOpt user is only the \textbf{TransitionOptimizer} and the \textbf{Simulator} (blue and red parts), other functions and loops described are already implemented and managed by the library.\\
\begin{algorithm}[h!]
\begin{algorithmic}[1]
\State \BLUE{{Init}: $x_{t}^g =$ \textbf{TransitionOptimizer.\textcolor{blue}{oneAdmissibleState($t$)}}, for $g \in \{1,\dots, G\}$ and $t \in \{1,\dots, T-1\}$, $n = 0$, $\psi = \infty$. }
\While{$\psi>\epsilon$ and $n<n_{max}$}
\State \textbf{\textcolor{gray}{StOpt}}
\longState{$V_{b}=$ backwardSDDP() \textit{Using the previously computed set $(x_{t}^g)_{t,g}$ and create
a set of cuts.}}
\longState{$V_{f}=$ forwardSDDP() \textit{Simulation using the cuts created in all the backward passes and update the set $(x_{t}^g)_{t,g}$.}}
\State $$ \psi = \frac{V_f-V_b}{V_f} $$
\State $$ n=n+1$$
\EndWhile
\end{algorithmic}
\caption{Run of backwardforwardSDDP(),the main function)}
\end{algorithm}
\begin{algorithm}[h!]
\begin{algorithmic}[1]
\For {$g \in \Omega_{\mathscr{G}}$}
\State $iStep=0$: index of the date stored in the simulator
\For{$t \in \{0,\dots,T\}$}
\State \BLUE{\textbf{TransitionOptimizer.\textcolor{blue}{updateDates($t,t+1$)}}: update the required data following the current time step (iterator over current time step, average demand,\dots)}
\State \RED{\textbf{SimulatorSim.\textcolor{red}{updateDateIndex($iStep$)}}: give the random quantities $\left(\omega_t^g \right)$ for the scenario $g$ at time $t$ }
\State \GREY{\textbf{\textcolor{gray}{StOpt}} Read the previously computed files to gather $\alpha_{t+1}^j,\beta_{t+1}^j$, for $j \in \{1,\dots, G,\dots, nG \}$}
\State \BLUE{\textbf{TransitionOptimizer.\textcolor{blue}{oneStepForward():}} \\ Solve the following linear sub-problem. \;
\begin{eqnarray}
{\mathcal [AP_{t,g}^n]}
\begin{cases}
&Q_t^g(x_{t-1}^g,\omega_t^g) = \min\limits_{x_t,\theta_{t+1}} c_t^{\top}x_t + \theta_{t+1}\\
s.c. \qquad &\quad A_tx_t = \omega_t^g - E_t x_{t-1}^g, \quad\lbrack\pi_t(\omega_t^g)\rbrack\\
\qquad &\quad x_t\geqslant 0 \\
\qquad &\quad \theta_{t+1} + (\beta_{t+1}^j)^{\top} x_t \geqslant \alpha_{t+1}^j, \quad j \in \{1,\dots, G,\dots, nG \}
\end{cases}
\end{eqnarray}\\
Compute the cost for current time step $c_t^{\top} x_t^g$ \\
\textbf{Return}: the primal solution $(x_t^g)$ of the problem
}
\State \GREY{\textbf{\textcolor{gray}{StOpt}}{ Store the primal solution $(x_t^g)$ of the problem $\mathcal [AP_{t,g}^n]$}}
\State $iStep = iStep+1$
\EndFor
\State \GREY{\textbf{\textcolor{gray}{StOpt}}{ Compute the cost for scenario $g$, at iteration $n$: $\bar{z}^g_n = \sum_{t=0}^T c_t x_t^g$\;}}
\EndFor
\State \GREY{\textbf{\textcolor{gray}{StOpt}}{ Compute the total cost in forward pass at iteration $n$: $\bar{z}_n = \frac{1}{G}\sum_{g=1}^G \bar{z}^g_n $ }}
\end{algorithmic}
\caption{Run of \code{forwardSDDP} ($n^{th}$ iteration)}
\end{algorithm}
\begin{algorithm}[h!]
\begin{algorithmic}[1]
\State $iStep = NbStep$: update the simulator time index to give the uncertainty at $T$
\For{$t = T, T-1, \dots,0 $}
\State \GREY{\textbf{\textcolor{gray}{StOpt}} Read the previously computed files to gather $x_{t-1}^g$, for $g \in \{1,\dots, G, \}$}
\State\BLUE{\textbf{TransitionOptimizer.\textcolor{blue}{updateDates($t-1,t$)}}: update the required data following the current time step (iterator over current time step, average demand,\dots)}
\State \RED{ \textbf{SimulatorOpt.\textcolor{red}{updateDateIndex($iStep$)}}: give the random quantities for the $L$ scenarios at time $t$ } \
\State \GREY{\textbf{\textcolor{gray}{StOpt}} Read the previously computed files to gather $\alpha_{t+1}^j,\beta_{t+1}^j$, for $j \in \{1,\dots, G,\dots, nG \}$}
\For{$x_{t-1}^g$, $g \in \{1,\dots,G\}$}
\For{$\omega_t^l$, $l \in \{1,\dots,L\}$}
\State \BLUE{ \textbf{TransitionOptimizer.\textcolor{blue}{oneStepBackward()}} \\
Solve the following linear sub-problem. \;
\begin{eqnarray}
{\mathcal [AP_{t,l}^{n,g}]}
\begin{cases}
&Q_t^l(x_{t-1}^g,\omega_t^l) = \min\limits_{x_t,\theta_{t+1}} c_t^{\top}x_t + \theta_{t+1}\\
s.c. \qquad &\quad A_tx_t = \omega_t^l - E_t x_{t-1}^g, \quad\lbrack\pi_t(\omega_t^l)\rbrack\\
\qquad &\quad x_t\geqslant 0 \\
\qquad &\quad \theta_{t+1} + (\beta_{t+1}^j)^{\top} x_t \geqslant \alpha_{t+1}^j, \ j \in \{1,\dots, G,\dots, (n+1)G \}
\end{cases}
\end{eqnarray}
\textbf{Return}: the dual solution $\pi_t(\omega_t^l)$ and the primal one $Q_t^l(x_{t-1}^g,\omega_t^l)$ of the linear sub-problem $\mathcal [AP_{t,l}^{n,g}]$
}
\State $iStep= iStep+1$,
\EndFor
\State \GREY{\textbf{StOpt} Compute the $g^{th}$ new Benders cut at time $t$ at iteration $n$: $\alpha_{t}^j,\beta_{t}^j$, for $j \in \{(n-1)G ,(n-1)G+1 ,\dots, nG \} $}
\EndFor
\EndFor
\State \GREY{\textbf{StOpt}{ Save the cost \textit{backward} $\underline{z}_n = Q_0$ }}
\end{algorithmic}
\caption{Run of \code{backwardSDDP}}
\end{algorithm}
\subsection{Implement your problem}
In the next section, some tips and explanations will be given to help you implementing your problem in the library. It is advisable to consult the examples provided by the library.
This will give you a better understanding of what is needed to calculate the SDDP method via StOpt ( \code{test/c++/tools/sddp} folder for the optimization examples, \code{test/c++/tools/simulators} for the one simulators, and \code{test/c++/functional} for the main instances).
\subsubsection{Implement your own \textbf{TransitionOptimizer} class}
As described above, your \textbf{TransitionOptimizer} class must be specific to your problem (it is given as an argument to the \code{backwardForwardSDDP} function). Therefore, you must implement it yourself under certain constraints in order to adapt it to the requirements of the library. \\
First, make sure your \textbf{TransitionOptimizer} class inherits from the \code{OptimizerSDDPBase} class.
You will then need to implement the following functions. \\
\begin{itemize}
\item The \code{updateDates} function is used to update the data stored by the optimizer, by adjusting the times indicated in argument.
\lstinputlisting[style=CStyle,firstline=52,lastline=58]{../StOpt/StOpt/sddp/OptimizerSDDPBase.h} % updatedate
If your transition problem is time dependant, for example, you should store the value of these arguments. Depending on your needs, you can also update data such as the average demand at the current stage and at next time step of a gas storage problem. \\ The \code{p\_dateNext} argument is used as the current time step in the backward pass. Therefore, you should store the values of the current and next time step arguments.
\item The \code{oneAdmissibleState} function gives an admissible state (i.e. a state respecting all the constraints) for the time step given in argument.
\lstinputlisting[style=CStyle,firstline=62,lastline=62]{../StOpt/StOpt/sddp/OptimizerSDDPBase.h} % one admissible state
\item The \code{oneStepBackward} function is used to compute a step of the backward pass.
\lstinputlisting[style=CStyle,firstline=40,lastline=40]{../StOpt/StOpt/sddp/OptimizerSDDPBase.h} % backward
The first argument is the cuts already selected for the current time step. They are easy to manage, just use the \code{getCutsAssociatedToAParticle} function as described in the examples you can find in the test folder (\code{OptimizeReservoirWithInflowsSDDP.h} without regression or \code{OptimizeGasStorageSDDP.h} with regression). You will then have the necessary cuts in the form of an array $cuts$ that you can link to the values described in the theoretical part at the time step $t$ by $cuts(0,j)=\alpha_{t+1}^j$, $cuts(i,j)=\beta_{i-1,t+1}^j$ $j \in \{1,\dots, G,\dots, (n+1)G \}$ ,$i \in \{1,\dots,nb_{state}\}$. \\ You will need to add the cuts to your constraints yourself, using this table and your solver features.
\\ In addition, as an argument, you have the object containing the state at the start of the time step \code{p\_astate} (\textbf{keep in mind that this argument is given as an Eigen array}), \code{p\_particle} contains the random quantities on which the regression on the expectation of the value function will be based (the computational cost is high so take a look at the theoretical part to know when you really need to use), finally the last argument is an integer indicating in which scenario index the resolution will be performed.
\\ The function returns a one-dimensional array of size $nb_{state}+1$ containing as first argument the value of the objective function to the solution, then for $i \in \{1,\dots,nb_{state}\}$ it contains the derivatives of the objective function with respect to each of the dimensions $i$ of the state (we must find a way to have it using the dual solution for example).
\item The \code{oneStepForward} function allows you to compute a step of the forward pass.
\lstinputlisting[style=CStyle,firstline=48,lastline=48]{../StOpt/StOpt/sddp/OptimizerSDDPBase.h} %
As you can see, the \code{oneStepForward} is quite similar to the \code{oneStepBackward}. A trick, used in the examples and which you should use, is to build a function generating and solving the linear problem $\mathcal [AP_{t,g}^n]$ (for a given scenario $g$ and a given time step $t$) which appears for both the forward and the backward pass. This function creating and generating the linear problem will be called in our two functions \code{oneStepForward} and \code{oneStepBackward}. Make sure that in the forward pass, the current time step is given via the function \code{updateDates}(current date,next date) by the current date argument while in the backward pass the current time is given via the next date argument (this is a necessary requirement to compute the regressions exposed in the theoretical part). Finally note that the two functions previously described are \code{const} functions and that you must take them into account during your implementation.
\item The other functions that you must implement are simple functions (accessors) that are easy to understand.
\end{itemize}
\subsubsection{Implement your own \textbf{Simulator} class}
This simulator must be the object that will allow you to build random quantities according to a desired law. It must be given as an argument of your optimizer. You can implement it yourself, but a set of simulators (gaussian, AR1, MeanReverting,\dots) is given in the test folder, you can use it directly if it meets your problem requirements. \\
\subsubsection{A simulator for the regression based method}
An implemented \textbf{Simulator} deriving from the \code{SimulatorSDDPBase} class must implement these functions:
\begin{itemize}
\item The \code{getNbSimul} function returns the number of simulations of random quantities used in the regression part. This is the $U$ mentioned in the theoretical part.
\lstinputlisting[style=CStyle,firstline=27,lastline=27]{../StOpt/StOpt/sddp/SimulatorSDDPBase.h} %
\item The \code{getNbSample} function returns the number of simulations of random quantities that are not used in the regression part. This is the $G$ mentioned in the theoretical part. For example, in some cases we need a Gaussian random quantity to calculate the noise when we are in the ``dependence of random quantities'' part.
\lstinputlisting[style=CStyle,firstline=29,lastline=29]{../StOpt/StOpt/sddp/SimulatorSDDPBase.h} %
\item The \code{updateDateIndex} function is very similar to that of the optimizer. However you have one argument (the index of the time step ) here. It is also where you need to generate new random amounts for solving.
\lstinputlisting[style=CStyle,firstline=31,lastline=31]{../StOpt/StOpt/sddp/SimulatorSDDPBase.h} %
\item The \code{getOneParticle} and the \code{getParticles} functions should return the quantities used in regression part.
\lstinputlisting[style=CStyle,firstline=36,lastline=36]{../StOpt/StOpt/sddp/SimulatorSDDPBase.h} %
\lstinputlisting[style=CStyle,firstline=38,lastline=38]{../StOpt/StOpt/sddp/SimulatorSDDPBase.h} %
\item The two last functions \code{resetTime} and \code{updateSimulationNumberAndResetTime} are quite explicit.
\end{itemize}
\subsubsection{A simulator for the tree approach}
A simulator using tree must be derived from the \code{SimulatorSDDPBaseTree} class.
Since the \code{SimulatorSDDPBaseTree} class is derived from the \code{SimulatorSDDPBase} class, all of the previously described methods must be given.\\
Besides a geners archive is used to load:
\begin{itemize}
\item The dates used by the simulator to estimate the set of possible states,
\item At each date, a set of $d$ dimensional points defining the set of discrete values of the state in the tree,
\item At each date a two-dimensional array giving the probability of transition in the tree to go from a node $i$ on the current date to a node $j$ on the following date.
\end{itemize}
Then the implemented simulator must call the based constructor loading the archive:
\lstinputlisting[style=CStyle,firstline=39,lastline=45]{../StOpt/StOpt/sddp/SimulatorSDDPBaseTree.h} %
Then the user must have generated such an archive. An example of using a trinomial tree method for an AR1 class is given in the c++ test cases in the simulator directory by the \code{MeanRevertingSimulatorTree} class.\\
The necessary methods to be implemented are as follows:
\begin{itemize}
\item The \code{getNodeAssociatedToSim} method gives for a simulation identified by the particle number the node in the visited tree.
\lstinputlisting[style=CStyle,firstline=109,lastline=112]{../StOpt/StOpt/sddp/SimulatorSDDPBaseTree.h} %
\item The \code{stepForward} method updates the simulation date index by one, and samples visited nodes in forward resolution.
\lstinputlisting[style=CStyle,firstline=136,lastline=139]{../StOpt/StOpt/sddp/SimulatorSDDPBaseTree.h} %
\end{itemize}
\subsection{Set of parameters\\}
\subsubsection{Implementing some regression-based method}
The base function \code{backwardForwardSDDP} must be called to use the SDDP part of the library with conditional cuts calculated by regressions. This function is modeled by the regressor used:
\begin{itemize}
\item \code{LocalConstRegressionForSDDP} The regressor allows to use a constant approximation by mesh of SDDP cuts,
\item \code{LocalLinearRegressionForSDDP} The regressor allows to use a linear approximation by mesh of SDDP cuts.
\end{itemize}
\lstinputlisting[style=CStyle,firstline=29,lastline=54]{../StOpt/StOpt/sddp/backwardForwardSDDP.h} %
Most of the arguments are pretty straightforward (you can see examples in \code{test/c++/functional}). The strings correspond to the names which will be given by the files which will store cuts, visited states or regressor data. \code{p\_nbSimulCheckForSimu} corresponds to the number of simulations (number of forward passes called) when it is necessaary to check the convergence by comparing the result given by the forward pass and that given by the backward pass. \code{p\_nStepConv} indicates when the convergence is verified (each \code{p\_nStepConv} iteration). \code{p\_finalCut} corresponds to the cut used at the last time step: when the function of final value is zero, the last cut is given by an all zero array of size $nb_{state}+1$. \code{p\_dates} is an array made up with all the time steps of the study period given as doubles, \code{p\_iter} corresponds to the maximum number of iterations. Finally, \code{p\_stringStream} is a \code{ostringstream} in which the result of the optimization will be stored.
\subsubsection{Implementing a tree based method}
The base function \code{backwardForwardSDDPTree} must be called to use the SDDP part of the library with conditional cuts calculated with trees.
\lstinputlisting[style=CStyle,firstline=29,lastline=54]{../StOpt/StOpt/sddp/backwardForwardSDDPTree.h} %
%\subsection{Set of parameters\\}
%We have seen above that providing a set of parameters in the initialization phase was necessary (convergence criterion, initial state vector, \ldots). They depend on each problem and are based on technical skills.
%Suggestion to the intention of the user: provide a \textit{main} where all these parameters are defined and where the sequence of computations to achieve is described. Basic class \code{backwardForwardSDDP} should be called.
\subsection{The black box\\}
The algorithms described above are applied. As stated earlier, the user controls the implementation of the business side of the problem (transition problem).
But in the library some things are handled automatically and the user should be aware of:
\begin{itemize}
\item The \textbf{Parallelization} When solving the problem is handled automatically. During compilation, if the compiler detects a problem with the MPI (Message Passing Interface) library, the resolution will be carried out in a parallelized manner.
\item The \textbf{cut management}. All the cuts added with each iteration are currently serialized and stored in an archive initialized by the user. No cut is pruned. In the future, we can consider working on \cite{pfeiffer2012two} cut management.
\item A \textbf{double stop criterion} is hardly used by the library: a convergence test and a maximum number of iterations. If either of the two criteria exceeds the user-defined thresholds, the resolution stops automatically. Once again further work could be considered on this subject.
\end{itemize}
\subsection{Outputs \\}
SDDP library outputs are not currently defined. Thus during the resolution of an SDDP problem, only the number of iterations, the evolution of the backward and forward costs and of the convergence criterion are recorded.
However, while iterating backwards and forwards the value of the Bellman functions and the associated Benders cuts , the different states visited during the forward pass and the evolution of costs are stored at each moment of the time horizon. This information is useful for users and easy to enter.\\
Once the convergence has been achieved, the user must restart certain simulations by adding a flag to store the results necessary for the application (distribution cost etc.): these results will be post-processed by the user.
\begin{figure}
\begin{center}
\hspace{-2cm}
\includegraphics[scale=0.55]{CommonUnit.png}
\caption{Current architecture of the generic SDDP unit}
\label{archi}
\end{center}
\end{figure}
\section{Python API (only for regression-based methods)}
A high level Python mapping is also available in the SDDP part.
The backward-forward \verb!C++! function is exposed in Python by the SDDP \code{StOptSDDP} module.
In this mapping, only the linear per mesh regressor is used.
\begin{lstlisting}[style=PStyle]
import StOptSDDP
dir(StOptSDDP)
\end{lstlisting}
that should give {\tiny $$ ['OptimizerSDDPBase', 'SDDPFinalCut', 'SimulatorSDDPBase', '\_\_doc\_\_', '\_\_file\_\_', '\_\_name\_\_', '\_\_package\_\_', 'backwardForwardSDDP']$$}
The \code{backwardForwardSDDP} performs the forward and backward SDDP sweep giving an SDDP optimizer and an SDDP uncertainty simulator.
The initial final cuts for the last time steps are provided by the \code{SDDPFinalCut} object.\\
Perform the mapping of SDDP optimizers and simulators written in \verb!C++! it is necessary to create a Boost Python wrapper.
In order to expose the \verb!C++! optimization class \code{OptimizeDemandSDDP} used in the test case \code{testDemandSDDP.cpp}, the following wrapper can be found in \\ \code{StOpt/test/c++/python/Pybind11SDDPOptimizers.cpp}\\
\lstinputlisting[style=CStyle]{../StOpt/test/c++/python/Pybind11SDDPOptimizers.cpp}
The wrapper used to expose the SDDP simulator is given in
\\ \code{StOpt/test/c++/python/Pybind11Simulators.cpp}\\
Then it is possible to use the mapping to write a Python version of \code{testDemandSDDP.cpp}
\lstinputlisting[style=PStyle]{../StOpt/test/python/functional/testDemandSDDP.py}
\part{Nesting Monte Carlo for general nonlinear PDEs}
\label{part:nesting}
The described method has been studied in \cite{warin2018nesting}, \cite{warin2018monte} and uses some ideas in \cite{henry2016branching}, \cite{warin2017variations}.\\
Our goal is to solve the complete nonlinear equation
\begin{flalign}
\label{eqPDEFull}
(-\partial_tu-\Lc u)(t,x) & = f(t,x,u(t,x),Du(t,x),D^2u(t,x)), \nonumber \\
u_T&=g, \quad t<T,~x\in\R^d,
\end{flalign}
with
\begin{flalign*}
\Lc u(t,x) := \mu Du(t,x) + \frac{1}{2} \sigma \sigma^{\top} \!:\! D^2 u(t,x)
%\label{eq:gen*}
\end{flalign*}
so that $\Lc $ is the generator associated with
\begin{flalign*}
X_t = x + \mu t+ \sigma dW_t,
%\label{eq:sde}
\end{flalign*}
with $\mu \in \R^d$, and $\sigma \in \M^d$ is a constant matrix.\\
Throughout the article, $\rho$ is the density of a general random variable following a gamma law so that
\begin{align}
\rho(x)= \lambda^\alpha x^{\alpha-1} \frac{e^{-\lambda x}}{\Gamma(\alpha)}, 1 \ge \alpha >0.
\label{rho}
\end{align}
The associated cumulative distribution function is $$F(x) =\frac{\gamma(\alpha,\lambda x)}{\Gamma(\alpha)}$$
where $\gamma(s, x) = \int_0^x t^{s-1} e^{-t} dt$ is the incomplete gamma function and $\Gamma(s)= \int_0^\infty t^{s-1} e^{-t} dt$ is the gamma function.\\
The methodology follows the ideas of \cite{warin2018nesting} and \cite{warin2017variations}.\\
It is assumed here that $\sigma$ is not degenerate so that $\sigma^{-1}$ exists.\\
Let set $p \in \N^{+}$.
For $(N_0,\dots, N_{p-1}) \in \N^p$, we introduce the sets of i-tuple,
$Q_i = \{ k=(k_1, \dots,k_i)\}$ for $i \in \{1,\dots,p\}$ where all components $k_j \in [1, N_{j-1}]$.
Besides we define $Q^p= \cup_{i=1}^p Q_i$.\\
We construct the sets $Q^o_i$ for $i = 1, \dots, p$, such that
$$Q^o_1= Q_1$$ and
the set $Q^o_i$ for $i>1$ are defined by recurrence:
\begin{flalign*}
Q^o_{i+1} = \{ (k_1,\dots,k_i, k_{i+1}) / (k_1,\dots,k_i) \in Q^o_{i}, k_{i+1} \in \{ 1,\dots,N_{i+1}, 1_{1},\dots, (N_{i+1})_1, 1_2,\dots,(N_{i+1})_2 \} \}
\end{flalign*}
so that to a particle noted $(k_1, \dots, k_i) \in Q_i^o$ such that $k_i \in \N$, we associate two fictitious particles noted $ k^1 = (k_1,\dots,k_{i-1}, (k_i)_{1})$ and
$ k^2 = (k_1,\dots,k_{i-1}, (k_i)_{2})$. \\
To a particle $k=(k_1, \dots, k_i) \in Q^o_i$ we associate its original particle $o(k) \in Q_i$ such that $o(k)= (\hat k_1,\dots, \hat k_i)$ where $\hat k_j = l$ if $k_j = l$, $l_{1}$ or $l_2$.\\
For $k=(k_1, \dots, k_i) \in Q^o_i$ we introduce the set of its non fictitious sons
\begin{align*}
\tilde Q(k) = \{ l =(k_1,\dots,k_i, m )/ m \in \{1,\dots, N_i\} \} \subset Q_{i+1}^o,
\end{align*}
and the set of all sons
\begin{align*}
\hat Q(k) = \{ l =(k_1,\dots,k_i, m )/ m \in \{1,\dots, N_i, 1_1,\dots, (N_i)_1,1_2,\dots,(N_i)_2 \} \} \subset Q_{i+1}^o.
\end{align*}
By convention $\tilde Q(\emptyset) = \{ l =( m )/ m \in \{1,\dots, N_0\} \} = Q_{1}.$
Reciprocally the ancestor $k$ of a particle $\tilde k$ in $\tilde Q(k)$ is noted $\tilde k^{-}$.\\
We define the order of a particle $k \in Q^o_{i}$, $i \ge 0$, by the function $\kappa$:
\begin{align*}
\kappa(k) =& 0 \mbox{ for } k_i \in \N, \\
\kappa(k) = & 1 \mbox{ for } k_i = l_1, l \in \N \\
\kappa(k) = & 2 \mbox{ for } k_i = l_2 , l \in \N
\end{align*}
We define the sequence $\tau_{k}$ of switching increments i.i.d. random density variables $\rho$
for $k\in Q^p$.
The switching dates are defined as follows:
\begin{equation}
\left\{
\begin{array}{lll}
T_{(j)} & =& \tau_{(j)} \wedge T, j \in \{ 1,., N_{0}\} \\
T_{ \tilde k} & =& ( T_{k} + \tau_{ \tilde k}) \wedge T, k =( k_1,\dots,k_i) \in Q_i, \tilde k \in \tilde Q(k)
\end{array}
\right.
\end{equation}
By convention $T_k = T_{o(k)}$ and $ \tau_k = \tau_{o(k)}$.
For $k = (k_1,\dots,k_i) \in Q^o_i$ and $\tilde k =(k_1,\dots,k_i, k_{i+1}) \in \hat Q(k)$ we define the following trajectories:
\begin{flalign}\label{eq:brownRenorm}
W^{\tilde k}_s
~:=~&
W^{k}_{T_{k}}
~+~
\1_{ \kappa( \tilde k) =0}
\bar W^{o(\tilde k)}_{s - T_{k}}
~-~
\1_{ \kappa(\tilde k)=1}
\bar W^{o(\tilde k)}_{s - T_{k}},
~~~\mbox{and}~~\\
X^{\tilde k}_s := &x +\mu s +\sigma W^{\tilde k}_s,
~~~\forall s \in [T_{k}, T_{\tilde k}],
\end{flalign}
where the $\bar W^{ k}$ for $k$ in $Q^p$ are independent $d$-dimensional Brownian motions, independent of the $(\tau_{k})_{k \in Q^p}$.\\
To understand what these different trajectories represent, suppose that $d=1$, $\mu= 0$, $\sigma =1$ and consider the original particle $k= (1,1,1)$ such that $T_{(1,1,1)}=T$.\\
Following equation \eqref{eq:brownRenorm},
\begin{align*}
X^{(1,1,1)}_T = & \bar W^{(1)}_{T_{(1)}} + \bar W^{(1,1)}_{T_{(1,1)}-T_{(1)}} + \bar W^{(1,1,1)}_{T-T_{(1,1)}} \\
X^{(1_{1},1,1)}_T= & -\bar W^{(1)}_{T_{(1)}} + \bar W^{(1,1)}_{T_{(1,1)}-T_{(1)}} + \bar W^{(1,1,1)}_{T-T_{(1,1)}} \\
X^{(1,1_{1},1)} = & \bar W^{(1)}_{T_{(1)}} - \bar W^{(1,1)}_{T_{(1,1)}-T_{(1)}} + \bar W^{(1,1,1)}_{T-T_{(1,1)}} \\
X^{(1_{2},1_{1},1)}_T = & - \bar W^{(1,1)}_{T_{(1,1)}-T_{(1)}} + \bar W^{(1,1,1)}_{T-T_{(1,1)}} \\
...&
\end{align*}
such that all particles are generated from the $\bar W^k$ used to define $X^{(1,1,1)}_T$.\\
Using the previous definitions,
we consider the estimator defined by:
\begin{empheq}[left=\empheqlbrace] {align}
\bar u_\emptyset^p = & \frac{1}{N_0} \sum_{j=1}^{N_0} \phi\big( 0, T_{(j)}, X^{(j)}_{T_{(j)}}, \bar u_{(j)}^p, D \bar u_{(j)}^p, D^2 \bar u_{(j)}^p\big) , \nonumber\\
\bar u_{k}^p = & \frac{1}{N_i} \sum_{\tilde k \in \tilde Q(k)} \frac{1}{2} \big( \phi\big(T_k,T_{\tilde k},X^{\tilde k}_{T_{\tilde k}},\bar u_{\tilde k}^p, D\bar u_{\tilde k}^p, D^2\bar u_{\tilde k}^p\big) + \nonumber \\
& \quad \quad \phi\big(T_k,T_{\tilde k}, X^{\tilde k^{1}}_{T_{\tilde k}}, \bar u_{\tilde k^{1}}^p D\bar u_{\tilde k^{1}}^p, D^2\bar u_{\tilde k^{1}}^p\big) \big), \quad \mbox{ for } k =( k_1,\dots,k_i) \in Q^o_i, 0 < i <p, \nonumber \\
D \bar u_{k}^p = & \frac{1}{N_i} \sum_{\tilde k \in \tilde Q(k)} \V^{\tilde k} \frac{1}{2} \big( \phi\big(T_k,T_{\tilde k},X^{\tilde k}_{T_{\tilde k}},\bar u_{\tilde k}^p, D\bar u_{\tilde k}^p, D^2\bar u_{\tilde k}^p\big) -\nonumber \\
& \quad \quad \phi\big(T_k,T_{\tilde k}, X^{\tilde k^{1}}_{T_{\tilde k}}, \bar u_{\tilde k^{1}}^p D\bar u_{\tilde k^{1}}^p, D^2\bar u_{\tilde k^{1}}^p\big) \big), \quad \mbox{ for } k =( k_1,\dots,k_i) \in Q^o_i, 0 < i < p, \nonumber \\
D^2\bar u_{k}^p = & \frac{1}{N_i} \sum_{\tilde k \in \tilde Q(k)} \W^{\tilde k} \frac{1}{2} \big( \phi\big(T_k,T_{\tilde k },X^{\tilde k}_{T_{\tilde k}}, \bar u_{\tilde k}^p, D\bar u_{\tilde k}^p, D^2\bar u_{\tilde k}^p\big) + \nonumber \\
& \quad \quad \phi\big(T_k,T_{\tilde k}, X^{\tilde k^{1}}_{T_{\tilde k}}, \bar u_{\tilde k^{1}}^p, D\bar u_{\tilde k^{1}}^p, D^2\bar u_{\tilde k^{1}}^p\big) - \nonumber \\
& \quad \quad 2 \phi\big(T_k,T_{\tilde k}, X^{\tilde k^{2}}_{T_{\tilde k}}, \bar u_{\tilde k^{2}}^p, D\bar u_{\tilde k^{2}}^p, D^2\bar u_{\tilde k^{2}}^p\big) \big), \quad \mbox{ for } k =( k_1,\dots,k_i) \in Q^o_i, 0 < i <p, \nonumber \\
\bar u_{k}^p = & g(X^{k}_{T_{k}}), \quad \mbox{for } k \in Q_p^o, \nonumber \\
D\bar u_{k}^p = & D g(X^{ k}_{T_{k}}), \quad \mbox{for } \tilde k \in Q_p^o, \nonumber \\
D^2\bar u_{k}^p = & D^2 g(X^{k}_{T_{ k}}), \quad \mbox{for } \tilde k \in Q_p^o
\label{eq:estimFull1}
\end{empheq}
where $\phi $ is defined by:
\begin{flalign}
\label{defPhi}
\phi(s, t,x,y,z,\theta) &:= \frac{\1_{\{t\ge T\}}}{ \Fb(T-s)} g(x)\!+\! \frac{\1_{\{t<T\}}}{\rho(t -s)} f(t,x,y,z,\theta).
\end{flalign}
and
\begin{align*}
\V^{k} = \sigma^{-\top} \frac{\bar W_{ T_{k}- T_{k^{-}}}^{k}}{T_{ k}- T_{ k^{-}}}
\end{align*},
\begin{align}
\W^{k} =
(\sigma^{\top})^{-1} \frac{\bar W^{k}_{T_{k}- T_{k^{-}}}(\bar W^{ k}_{T_{ k}- T_{k^{-}}})^{\top} - (T_{ k}- T_{k^{-}}) I_d}{(T_{ k}- T_{k^{-}})^2} \sigma^{-1}
\end{align}
As explained previously, the terms $u$ and $Du$ in $f$ are treated as explained in \cite{warin2018nesting} and only the $D^2u$ treatment is new to this scheme.
\begin{Remark}
In practice, we just have the value $g$ at the deadline $T$ and we want to apply the scheme even if the derivatives of the final solution is not defined.
We can close the system for $k$ in $Q_p^o$ by replacing $\phi$ with $g$ and taking a value for $N_{p+1}$:
\begin{align*}
\bar u_{k}^p = & \frac{1}{N_{p+1}} \sum_{\tilde k \in \tilde Q(k)} \frac{1}{2} \big( g\big(X^{\tilde k}_{T_{\tilde k}}\big) + g \big( X^{\tilde k^{1}}_{T_{\tilde k}}\big) \big) , \\
D\bar u_{ k}^p = & \frac{1}{N_{p+1}} \sum_{\tilde k \in \tilde Q(k)} \V^{\tilde k} \frac{1}{2} \big( g\big(X^{\tilde k}_{T_{\tilde k}}\big) -g\big( X^{\tilde k^{1}}_{T_{\tilde k}},\big) \big), \\
D^2\bar u_{k}^p = & \frac{1}{N_{p+1}} \sum_{\tilde k \in \tilde Q(k)}
\W^{\tilde k} \frac{1}{2} \big( g \big(X^{\tilde k}_{T_{\tilde k}},\big) +
g \big( X^{\tilde k^{1}}_{T_{\tilde k}}\big) - 2 g\big( X^{\tilde k^{2}}_{T_{\tilde k}}\big) \big)
\end{align*}
\end{Remark}
\begin{Remark}
In the case where the coefficient are not constant, some Euler scheme can be added as explained in \cite{warin2018nesting}.
\end{Remark}
An efficient algorithm for this scheme has these two functions:
\begin{algorithm}[h]
\caption{\label{algoMC1} External Monte Carlo algorithm ($V$ generates unit Gaussian RV, $\tilde V$ generates an RV with gamma law density)}
\begin{algorithmic}[1]
\Procedure{PDEEval}{$\mu$, $\sigma$, $g$, $f$, $T$, $p$, $x_0$, $\{N_0,\dots, N_{p+1}\}$, $V$, $\tilde V$}
\State $u_M = 0$
\State $x(0,:)= x_0(:)$ \Comment{$x$ is a matrix of size $1 \times n$}
\For{$i = 1, N_0$}
\State $(u,Du,D^2u)=$ EvalUDUD2U$(x_0,\mu, \sigma,g, T,V,\tilde V,p,1, 0,0)$
\State $u_M = u_M + u(0)$
\EndFor \\
\Return $\frac{U_M}{N_0}$
\EndProcedure
\end{algorithmic}
\end{algorithm}
\begin{algorithm}[h]
\caption{\label{algoMC2} Internal Monte Carlo algorithm where $t$ is the current time, $x$ the array of particles positions of size $m \times d$, and $l$ the nesting level.}
\begin{algorithmic}[1]
\Procedure{EvalUDUD2U}{$x,\mu, \sigma,g, T,V,\tilde V,p,m,t,l$}
\State $\tau = \min ( \tilde V(),T-t)$, \Comment{Sample the time step}
\State $G=V()$ \Comment{Sample the $n$ dimensional Gaussian vector}
\State $xS(1:m,:) = x(:)+ \mu \tau + \sigma G \sqrt{\tau}$
\State $xS(m+1:2m,:)= x(:)+ \mu \tau $
\State $xS(2m+1:3m,:)= x(:)+ \mu \tau -\sigma G \sqrt{\tau}$
\State $tS =t + \tau$ \Comment{New date}
\If {$ ts \ge T $ or $l = p$}
\State $g_1 = g(xS(1:m,:)) ; g_2 = (xS(m+1:2m,:)) ; g_3 = g(xS(2m+1:3m,:)) $
\State $ u(:)= \frac{1}{2} (g_1+g_3)$
\State $ Du(:,:)= \frac{1}{2} (g_1-g_3) \quad \sigma^{- \top} G$
\State $D^2u(:,:,:)= \frac{1}{2} (g_1+g_3-2g_2) \sigma^{- \top} \frac{GG^{\top}- \I_d}{\tau} \sigma^{-1}$
\If { $l \ne p$}
\State $(u(:),Du(:,:), D^2u(:,:,:)) /= \frac{1}{\bar F(\tau)}$
\EndIf
\Else
\State $ y(:)= 0; z(:,:) = 0; \theta(:,:,:) =0$
\For {$j=1, N_{l+1}$}
\State $(y,z, \theta)+=$EvalUDUD2U$(xS,\mu,\sigma,g,T,V,\tilde V,p,3m,tS,l+1)$
\EndFor
\State $(y,z,\theta) /= N_{l+1}$
\For {$q= 1, m$}
\State $f_1 = f(ts,xS(q),y(q),z(q,:),\theta(q,:,:))$
\State $f_2 = f(ts,xS(m+q),y(m+q),z(m+q,:),\theta(m+q,:,:))$
\State $f_3 = f(ts,xS(2m+q),y(2m+q),z(2m+q,:),\theta(2m+q,:,:))$
\State $u(i)= \frac{1}{2}(f_1+f_3)$
\State $Du(i,:)= \frac{1}{2}(f_1-f_3) \sigma^{- \top} G $
\State $D^2u(i,:,:)= \frac{1}{2}(f_1+f_3-2f_2) \sigma^{- \top} \frac{GG^{\top}- \I_d}{\tau} \sigma^{-1} $
\EndFor
\EndIf \\
\Return $(u,Du,D^2u)$
\EndProcedure
\end{algorithmic}
\end{algorithm}
\part{Some test cases description}
{Description of some test cases in C++}
In this part, we describe the functional test cases of the library.
The C++ version of these test cases can be found in \code{test/c++/functional} while their python equivalent (if it exists) is in \code{test/python/functional}.
We describe the C++ test cases in detail here.
\section{American option}
The library gives some test cases for the Bermudean options problem (\cite{bouchard2017numerical} for more details on the Bermudean option problem).
All Bermudean test cases use a basket option payoff. The reference for converged methods can be found in \cite{bouchard2017numerical}.
\subsection{testAmerican}
The test case in this file makes it possible to test during the Dynamic Programming resolution different regressors:
\begin{itemize}
\item either by using some local functions with the same size support:
\begin{itemize}
\item Either by using a constant representation by mesh of the function (\code{LocalSameSizeConstRegression} regressor)
\item Either by using a linear representation by mesh of the function (\code{LocalSameSizeLinearRegression} regressor)
\end{itemize}
\item either using some function basis with adaptive support (\cite{bouchard2017numerical})
\begin{itemize}
\item Either by using a constant representation per mesh of the function (\code{LocalConstRegression} regressor)
\item Either by using a linear representation by mesh of the function (\code{LocalLinearRegression} regressor)
\end{itemize}
\item Either using the global polynomial regressor:
\begin{itemize}
\item Either using Hermite polynomials,
\item Either using Canonical polynomials (monomes),
\item Either using Tchebychev polynomials.
\end{itemize}
\item Either using a sparse regressor,
\item Either using kernel regressors:
\begin{itemize}
\item either using a constant kernel regressor,
\item either using linear kernel regressor.
\end{itemize}
\end{itemize}
\subsubsection*{testAmericanLinearBasket1D}
Test 1D problem with \code{LocalLinearRegression} regressor.
\subsubsection*{testAmericanConstBasket1D}
Test 1D problem with \code{LocalConstRegression} regressor.
\subsubsection*{testAmericanSameSizeLinearBasket1D}
Test 1D problem with \code{LocalSameSizeLinearRegression} regressor.
\subsubsection*{testAmericanSameSizeConstBasket1D}
Test 1D problem with \code{LocalSameSizeConstRegression} regressor.
\subsubsection*{testAmericanGlobalBasket1D}
Test 1D problem with global Hermite, Canonical and Tchebychev regressor.
\subsubsection{testAmericanGridKernelConstBasket1D}
Test 1D problem with classical kernel regression
\subsubsection{testAmericanGridKernelLinearBasket1D}
Test 1D problem with linear kernel regression
\subsubsection*{testAmericanLinearBasket2D}
Test 2D problem with \code{LocalLinearRegression} regressor.
\subsubsection*{testAmericanConstBasket2D}
Test 2D problem with \code{LocalConstRegression} regressor.
\subsubsection*{testAmericanSameSizeLinearBasket2D}
Test 2D problem with \code{LocalSameSizeLinearRegression} regressor.
\subsubsection*{testAmericanSameSizeConstBasket2D}
Test 2D problem with \code{LocalSameSizeConstRegression} regressor.
\subsubsection*{testAmericanGlobalBasket2D}
Test 2D problem with global Hermite, Canonical and Tchebychev regressor.
\subsubsection*{testAmericanGridKernelConstBasket2D}
Test 2D problem with classical kernel regression
\subsubsection*{testAmericanGridKernelLinearBasket1D}
Test 2D problem with linear kernel regression
\subsubsection*{testAmericanBasket3D}
Test 3D problem with \code{LocalLinearRegression} regressor.
\subsubsection{testAmericanGlobalBasket3D}
Test 3D problem with global Hermite, Canonical and Tchebychev regressor.
\subsubsection*{testAmericanGridKernelLinearBasket3D}
Test 3D problem with linear kernel regression.
\subsubsection*{testAmericanBasket4D}
Test 4D problem with \code{LocalLinearRegression} regressor.
\subsection{testAmericanConvex}
Three test cases with basket American options are implemented trying to keep the convexity of the solution
\subsubsection*{testAmericanLinearConvexBasket1D}
Linear regression adapted in1D preserving the convexity at each time step.
\subsubsection*{testAmericanLinearConvexBasket2D}
Linear regression adapted in 2D trying to preserve the convexity at each time step.
\subsubsection*{testAmericanLinearConvexBasket3D}
Linear regression adapted in 3D trying to preserve the convexity at each time step.
\subsection{testAmericanForSparse}
This test case is there to test sparse grid regressors (see section \ref{sec::Sparse}). As described earlier, we can use linear, quadratic or cubic representation on each cell. The reference is the same as in the testAmerican subsection thus linked to a Bermudean basket option.
\subsubsection*{testAmericanSparseBasket1D}
Use sparse 1D grids (thus equivalent to a full grid) for linear, quadratic or cubic representation.
\subsubsection*{testAmericanSparseBasket2D}
Use sparse 2D grids for linear, quadratic or cubic representation.
\subsubsection*{testAmericanSparseBasket3D}
Use sparse in 3D grids for linear, quadratic or cubic representation.
\subsubsection*{testAmericanSparseBasket4D}
Use sparse 4D grids for linear, quadratic or cubic representation.
\subsection{testAmericanOptionCorrel}
Same case as before but with correlations between assets. Used to test that the rotation due to the PCA analysis is working correctly.
\subsubsection*{testAmericCorrel}
Check in 2D that
\begin{itemize}
\item Local Constant by mesh regression with and without rotation gives the same result,
\item Local Linear regression by mesh with and without rotation gives the same result,
\item Global regression with and without rotation gives the same result.
\end{itemize}
\subsection{testAmericanOptionTree}
Simple 1D test case, to test the tree method on American options.
An Ornstein--Uhlenbeck process using an average return parameter close to zero is used to be close to the BS model. The OU model is approximated by a trinomial tree.
\section{testSwingOption}
\label{sec:testSwingOption}
The swing option problem is the generalization of the American option using a Black Scholes model for the underlying asset: on a set of dates \code{nStep} (chosen equal to 20 here), we can choose N dates (N equal to three) to exercise the option. At each exercise date $t$ , we get the pay-off $(S_t-K)^{+}$ where $S_t$ is the value of the underlying asset on the date $t$.
See \cite{jaillet2004valuation} for a description of the swing problem and backward solving techniques.
Due to the classic results on the Snell envelop for the European payoff, the analytical value of this problem is the sum of the payoff $N$ at the last dates $N$ where we can exercise (remember that the value of an American call is the European value).
The Markov state of the problem at a given date $t$ is given by the value of the underlying (Markov) and the number of exercises already performed on the date $t$.
This test case can be run in parallel with MPI.
In all test cases, we use a \code{LocalLinearRegression} to evaluate the conditional expectations used during the Dynamic Programming approach.
\subsubsection*{testSwingOptionInOptimization}
After having calculated the analytical solution of this problem,
\begin{itemize}
\item a first resolution is provided using the \code{resolutionSwing} function. For this simple problem, only a regressor is needed to decide wether to exercise on the current date of not.
\item a second resolution is provided in the \code{resolutionSwingContinuation} function using the \code{Continuation} object (see chapter \ref{sec:continuation})
allowing to store continuation values for a value of the underlying and for a stock level.
This example is provided here to show how to use this object on a simple test case. This approach is not optimal here because obtaining the continuation value of an asset value
and a stock level (only discrete here) means an unnecessary interpolation on the stock grids (here we choose a \code{RegularSpaceGrid} to describe the stock level and interpolate linearly between stock grids). In the case of the swing with varying amounts to exercise \cite{jaillet2004valuation} or the gas storage problem, this object is very useful,
\item A final resolution is provided using the general framework described and the \code{DynamicProgrammingByRegressionDist} function described in the \ref{subsec:framework} subsection.
Again, the framework is needed for this simple test case, but it shows that it can be used even for some very simple cases.
\end{itemize}
\subsection{testSwingOption2D}
\label{subsec:swing2D}
Here we assume that we have two swing options similar to valuate and we solve the problem by ignoring that the stocks are independent: this means that we are solving the problem on a two-dimensional grid (for the stocks) instead of twice the same problem on a grid with a stock.
\begin{itemize}
\item we start with an evaluation of the solution for a single swing with the \code{resolutionSwing} function giving a value $A$.
\item then we solve the two-dimensional problem (in stock) giving a value $B$ with our framework with the function \code{DynamicProgrammingByRegressionDist} .
\end{itemize}
Next, we check that $B=2A$.
\subsection{testSwingOption3}
We do the same as before, but the management of three similar swing options is achieved by solving as a three dimensional stock problem.
\subsection{testSwingOptimSimu / testSwingOptimSimuMpi}
This test case takes the problem described in the \ref{sec:testSwingOption} section, resolves it using the framework \ref{subsec:framework}.
Once the optimization using the regression (\code{LocalLinearRegression} regressor) has been performed, a simulation part is used using the previously calculated Bellman values.
We check that the values obtained in optimization and simulation are close.
The two files of test cases (\code{testSwingOptimSimu/testSwingOptimSimuMpi}) use the two versions of MPI parallelization distributing or not the data on the processors.
\subsection{testSwingOptimSimuWithHedge}
The test case takes up the problem described in the section \ref{sec:testSwingOption}, solves it using the regression (\code{LocalLinearRegression} regressor) when calculating the optimal coverage by the conditional tangent method as explained in \cite{warin2012gas}.
After optimization, a simulation part implements the optimal control and the associated optimal hedging policy.
We verify:
\begin{itemize}
\item That the optimization and simulation values are close
\item That the simulated hedge has an average almost equal to zero,
\item That the hedged swing simulations yield a reduced standard deviation from the value of the unhedged option obtained by the unhedged simulation.
\end{itemize}
This test case shows that the multiple regimes introduced in the \ref{subsec:framework} framework can be used to calculate and store the optimal hedging policy.
This is achieved by creating a dedicated \code{OptimizeSwingWithHedge} optimizer.
\subsection{testSwingOptimSimuND / testSwingOptimSimuNDMpi}
The test case takes the problem described in the \ref{sec:testSwingOption} section, suppose we have two similar options to value and we ignore that the options are independent giving a problem to solve with two stocks managed jointly as in subsection \ref{subsec:swing2D}.
After optimizing the problem using regression (\code{LocalLinearRegression} regressor)
We simulate the optimal control for this two-dimensional problem and check that the optimization and simulation values are close.
In \code{testSwingOptimSimuND} MPI parallelization, if enabled, parallelize only the calculation, while in \code{testSwingOptimSimuNDMpi} the data is also distributed on processors.
In the latter, two options are tested,
\begin{itemize}
\item in \code{testSwingOptionOptim2DSimuDistOneFile} the Bellman values are distributed on the different processors but before being dumped, they are recombined to give a single file for the simulation.
\item in \code{testSwingOptionOptim2DSimuDistMultipleFile} Bellman values are distributed across different processors but each processor dumps its own Bellman Values. During simulation, each processor reads back its own Bellman values.
\end{itemize}
The same large-dimensional problem may only be achievable with the second approach.
\section{Gas Storage}
\subsection{testGasStorage / testGasStorageMpi}
\label{sec:testGasStorage}
The model used is a mean return model similar to the one described in \cite{warin2012gas}. We keep only one factor in equation (8) in \cite{warin2012gas}.
The problem consists in maximizing the gain of a gas storage by the methodology described in \cite{warin2012gas}.
All test cases are composed of three parts:
\begin{itemize}
\item an optimization is performed by regression (\code{LocalLinearRegression} regressor),
\item a first simulation of the optimal control using the continuation values stored during the optimization part,
\item a second simulation using directly the optimal controls stored during the optimization part.
\end{itemize}
We check that the three previously calculated values are close. \\
Using a dynamic programming method, we need to interpolate in the stock grid to get the Bellman values at a stock point.
Usually, a simple linear interpolator is used (giving a monotone scheme). As explained in \cite{warin2016some}, it is possible to use still monotonous higher order schemes.
We are testing different interpolators.
In all test cases, we use a \code{LocalLinearRegression} to evaluate conditional expectations.
The MPI version makes it possible to test the distribution of data when using parallelization.
\subsubsection*{testSimpleStorage}
We use a classic regular grid with equally spaced points to discretize the gas stock and a linear interpolator to interpolate in the stock.
\subsubsection*{testSimpleStorageLegendreLinear}
We use a Legendre grid with linear interpolation, so the result should be the same as above.
\subsubsection*{testSimpleStorageLegendreQuadratic}
We use a quadratic interpolator for the stock level.
\subsubsection*{testSimpleStorageLegendreCubic}
We use a cubic interpolator for the stock level.
\subsubsection*{testSimpleStorageSparse}
We use a sparse grid interpolator (equivalent to a full grid interpolator because it is a one dimensional problem).
We only test the sparse grid with a linear interpolator.
\subsection{testGasStorageCut / testGasStorageCutMpi}
We take the previous gas storage problem and solve the transition problem without discretizing the command using an LP solver (see section \ref{sec:withCuts})
The test cases are composed of an optimization part followed by a simulation part comparing the results obtained.
\subsubsection{testSimpleStorageCut}
Test case without MPI distribution of stocks points.
A simple Regular grid object is used and conditional cuts are calculated using Local Linear Regressions.
\subsubsection{testSimpleStorageCutDist}
Test using MPI distribution. In all cases a Local Linear Regressor is used.
A file is used to store the conditional cuts.
\begin{itemize}
\item A first case uses a Regular grid,
\item A second case uses a RegularLegendre grid.
\end{itemize}
\subsubsection{testSimpleStorageMultipleFileCutDist}
Test using MPI distribution. A Local Linear Regressor is used for cuts and a Regular grid is used.
Bender cuts are stored locally by each processor.
\subsection{testGasStorageTree/testGasStorageTreeMpi}
Optimizing storage for the price of gas modeled by a HJM model approximated by a tree.
The grids are simple regular grids.
In MPI, Bellman values are either stored in one file or in multiple files.
\subsection{testGasStorageTreeCut/testGasStorageTreeCutMpi}
Gas storage is optimized and simulated using cuts and trees for uncertainties. Gas price modeled by a HJM model approximated by a trinomial tree. The grids are simple regular grids.
In MPI, Bellman values are either stored in one file or in multiple files.
\subsection{testGasStorageKernel}
The model used is a mean reverting model similar to the one described in \cite{warin2012gas}. We keep only one factor in equation (8) in \cite{warin2012gas}.
The problem consists in maximizing the gain of a gas storage by the methodology described in \cite{warin2012gas}.
The specificity here is that a kernel regression method is used.
\subsubsection{testSimpleStorageKernel)}
Use the linear kernel regression method to solve the Gas Storage problem using the Epanechnikov kernel.
\subsection{testGasStorageLaplacianLinearKernel}
The model used is a mean reverting model similar to the one described in \cite{warin2012gas}.
We keep only one factor in equation (8) in \cite{warin2012gas}.The problem consists in maximizing the gain of a gas storage by the methodology described in \cite{warin2012gas}.
The specificity here is that a Laplacian kernel regression method is used.
\subsubsection{testSimpleStorageLaplacianLinearKernel}
Use the linear kernel regression method to solve the Gas Storage problem using the Laplacian kernel using the divide and conquer method.
\subsection{testGasStorageLaplacianConstKernel}
The model used is a mean reverting model similar to the one described in \cite{warin2012gas}.
We keep only one factor in equation (8) in \cite{warin2012gas}.The problem consists in maximizing the gain of a gas storage by the methodology described in \cite{warin2012gas}.
The specificity here is that a Laplacian kernel regression method is used.
\subsubsection{testSimpleStorageLaplacianConstKernel}
Use the constant kernel regression method to solve the Gas Storage problem using the Laplacian kernel using the divide and conquer method.
\subsection{testGasStorageLaplacianGridKernel}
The model used is a mean reverting model similar to the one described in \cite{warin2012gas}. We keep only one factor in equation (8) in \cite{warin2012gas}.The problem consists in maximizing the gain of a gas storage by the methodology described in \cite{warin2012gas}.
The specificity here is that a Laplacian kernel regression method is used.
\subsubsection{testSimpleStorageLaplacianGridKernel}
Use the constant kernel regression method to solve the Gas Storage problem using the Laplacian kernel using the fast summation method.
\subsection{testGasStorageVaryingCavity}
The stochastic model is the same as in the section \ref{sec:testGasStorage}.
As before, all test cases are composed of three parts:
\begin{itemize}
\item an optimization is performed by regression (\code{LocalLinearRegression} regressor),
\item a first simulation of the optimal control using the continuation values stored during the optimization part,
\item a second simulation using directly the optimal controls stored during the optimization part.
\end{itemize}
We check that the three previously calculated values are close on this test case where the grid describing the gas storage constraint is variable in time.
This makes it possible to check the splitting of the grids during the parallelization.
\subsection{testGasStorageSwitchingCostMpi}
The test case is similar to that of the \ref{sec:testGasStorage} section (therefore using regression methods): we added an extra cost when switching from one regime to another.
The additional cost results in the fact that the Markov state is composed of the asset price, the level of stock and the current regime in which we are (the latter
is not present in another test case on the gas storage).
This test case shows that our framework solves regime switching problems.
As before, all test cases are composed of three parts:
\begin{itemize}
\item an optimization is performed by regression (\code{LocalLinearRegression} regressor),
\item a first simulation of the optimal control from the sequence values stored during the optimization part,
\item a second simulation using directly the optimal controls stored during the optimization part.
\end{itemize}
We check that the three previously calculated values are close.
\subsection{testGasStorageSDDP}
Modeling the asset is similar to the other test case.
We assume that we have $N$ similar independent storages. So solving the problem with $N$ stocks should yield $N$ times the value of a stock.
\begin{itemize}
\item First, the storage value is calculated by dynamic programming giving the value $A$,
\item Then the SDDP method (chapter \ref{chap:SDDP}) is used to value the problem giving the $B$ value. Benders cuts must be made subject to price level.
\end{itemize}
We check that $B$ is close to $N A$.
\subsubsection*{testSimpleStorageSDDP1D}
Test the case $N=1$.
\subsubsection*{testSimpleStorageSDDP2D}
Test the case $N=2$.
\subsubsection*{testSimpleStorageSDDP10D}
Test the case $N=10$.
\subsection{testGasStorageSDDPTree}
\subsubsection{testSimpleStorageDeterministicCutTree}
The volatility is set to zero to obtain a deterministic problem.
\begin{itemize}
\item First by Dynamic Programming, the optimal control is calculated and tested in simulation.
\item Then backward part of SDDP and forward part are tested using a point grid for storage
\end{itemize}
\subsubsection{testSimpleStorageCutTree}
In stochastics, the backward and forward resolution of the SDDP solver with tree are tested using points defined on a grid.
Convergence is checked by comparing results from a DP solver with regressions.
\subsubsection{testSimpleStorageSDDPTree1D1Step}
In stochastics, the global SDDP solver iterating forward and backward is used to value the gas storage.
The comparison with dynamic programming methods with regressions is carried out.
\section{testLake / testLakeMpi}
This is the case of a reservoir with inflows following an AR1 model.
We can withdraw water from the reservoir (maximum withdrawal rate given) to produce energy by selling it at a given price (taken equal to 1 per unit of volume).
We wish to maximize the expected gains obtained by optimal management of the lake.
The problem allows to show how some stochastic flows can be taken into account with dynamic programming with regression (\code{LocalLinearRegression} regressor used).\\
The test case is composed of three parts:
\begin{itemize}
\item an optimization is performed by regression (\code{LocalLinearRegression} regressor),
\item a first simulation of the optimal control from the contination values stored during the optimization part,
\item a second simulation using directly the optimal controls stored during the optimization part.
\end{itemize}
We check that the three previously calculated values are close.
\section{testOptionNIGL2}
In this test case we assume that the log of an asset value follows a NIG process \cite{barndorff1997processes}. We want to price a call option assuming that we use the mean variance criterion using the algorithm developed in chapter \ref{chap:variance}.\\
First, an optimization is carried out then in a simulation part, the optimal hedging strategy is tested.
\section{testDemandSDDP}
This test case is the simplest using the SDDP method.
We assume that we have a demand according to an AR 1 model
\begin{equation*}
D^{n+1} = k (D^n-D) + \sigma_d g + k D ,
\end{equation*}
where $D$ is the average demand, $\sigma_d$ the standard deviation of the demand on a time step, $k$ the average reverting coefficient, $D^0=D$, and $g$ a centered Gaussian variable on the unit.
We have to meet demand by buying energy at a $P$ price.
We want to calculate the next expected value
\begin{eqnarray*}
V & = & P \E\left[ \sum_{i=0}^N D_i \right] \\
& = & (N+1)D_0 P
\end{eqnarray*}
This can be done (artificially) using SDDP.
\subsubsection*{testDemandSDDP1DDeterministic}
It takes $\sigma_d =0$.
\subsubsection*{testDemandSDDP1D}
It solves the stochastic problem.
\section{testThermalAsset}
Solve a switching problem estimating the value of a thermal asset described in paragraph \ref{parthermalSwitching}.
The two assets follow an HJM model with one factor each.
The objective function consists in maximizing the gain in expectation managing the asset that can be switch on or off with some specific minimal time in each regime.
A switching cost switching on the asset is also added.
\section{Reservoir variations with SDDP}
\subsection{testReservoirWithInflowsSDDP}
\label{sec:testReservoirWithInflowsSDDP}
For this SDDP test case, we assume that we have $N$ similar independent reservoirs with inflows given at all times by independent centered Gaussian variables with standard deviation $\sigma_i$.
We suppose that we must satisfy the dates $M$ a demand given by independent Gaussian variables centered with a standard deviation $\sigma_d$.
In order to meet the demand, we can buy water in the amount $q_t$ at a deterministic price $S_t$ or withdraw water from the reservoir at a pace lower than a withdrawal rate.
Under the demand constraint, we want to minimize:
\begin{equation*}
\E\left[ \displaystyle{\sum_{i=0}^M} q_t S_t \right]
\end{equation*}
Each time we check that the forward and backward methods converge to the same value.
Due to the independence of uncertainties, the dimension of the Markov state is equal to $N$.
\subsubsection*{testSimpleStorageWithInflowsSDDP1DDeterminist}
$\sigma_i=0$ for inflows and $\sigma_d= 0.$ for demand. $N$ taken equal to 1.
\subsubsection*{testSimpleStorageWithInflowsSDDP2DDeterminist}
$\sigma_i=0$ for inflows and $\sigma_d= 0.$ for demand. $N$ taken equal to 2.
\subsubsection*{testSimpleStorageWithInflowsSDDP5DDeterminist}
$\sigma_i=0$ for inflows and $\sigma_d= 0.$ for demand. $N$ taken equal to 5.
\subsubsection*{testSimpleStorageWithInflowsSDDP1D}
$\sigma_i= 0.6$, $\sigma_d= 0.8$ for demand. $N=1$
\subsubsection*{testSimpleStorageWithInflowsSDDP2D}
$\sigma_i= 0.6$ for inflows, $\sigma_d= 0.8$ for demand. $N=2$
\subsubsection*{testSimpleStorageWithInflowsSDDPD}
$\sigma_i= 0.6$ for inflows, $\sigma_d= 0.8$ for demand. $N=5$.
\subsection{testStorageWithInflowsSDDP}
\label{sec:testStorageWithInflowsSDDP}
For this SDDP test case, we assume that we have similar independent reservoirs $N$ with inflows following an AR1 model:
\begin{equation*}
X^{n+1} = k (X^n-X) + \sigma g + X ,
\end{equation*}
with $X^0=X$, $\sigma$ the associated standard deviation, $g$ a Gaussian variable centered on the unit.
We suppose that we have to satisfy at $M$ dates a demand following an AR1 process too.
In order to satisfy the demand, we can buy some water with quantity $q_t$ at a deterministic price $S_t$ or withdraw water from the reservoir at a pace lower than a withdrawal rate.
Under the demand constraint, we want to minimize:
\begin{equation*}
\displaystyle \E \left[ {\sum_{i=0}^M} q_t S_t \right]
\end{equation*}
Each time we check that the forward and backward methods converge to the same value.
Due to the structure of uncertainties the dimension of the Markov state is equal to $2N+1$ ($N$ storage, $N$ inflows, and demand).
\subsubsection*{testSimpleStorageWithInflowsSDDP1DDeterministic}
All parameters $\sigma$ are set to 0. $N=1$.
\subsubsection*{testSimpleStorageWithInflowsSDDP2DDeterministic}
All parameters $\sigma$ are set to 0. $N=2$.
\subsubsection*{testSimpleStorageWithInflowsSDDP5DDeterministic}
All parameters $\sigma$ are set to 0. $N=5$.
\subsubsection*{testSimpleStorageWithInflowsSDDP10DDeterministic}
All parameters $\sigma$ are set to 0. $N=10$.
\subsubsection*{testSimpleStorageWithInflowsSDDP1D}
$\sigma= 0.3$ for inflows, $\sigma= 0.4$ for demand. $N=1$.
\subsubsection*{testSimpleStorageWithInflowsSDDP5D}
$\sigma= 0.3$ for inflows, $\sigma= 0.4$ for demand. $N=5$.
\subsection{testStorageWithInflowsAndMarketSDDP}
This is the same problem as \ref{sec:testStorageWithInflowsSDDP}, but the price $S_t$ follow an AR 1 model.
We use an SDDP approach to solve this problem.
Due to price dependencies, the reduction of SDDP must be effected conditionally on the price level.
\subsubsection*{testSimpleStorageWithInflowsAndMarketSDDP1DDeterministic}
All volatilities set to 0. $N=1$.
\subsubsection*{testSimpleStorageWithInflowsAndMarketSDDP2DDeterministic}
All volatilities set to 0. $N=2$.
\subsubsection*{testSimpleStorageWithInflowsAndMarketSDDP5DDeterministic}
All volatilities set to 0. $N=5$.
\subsubsection*{testSimpleStorageWithInflowsAndMarketSDDP10DDeterministic}
All volatilities set to 0. $N=10$.
\subsubsection*{testSimpleStorageWithInflowsAndMarketSDDP1D}
$\sigma= 0.3$ for inflows, $\sigma= 0.4$ for demand, $\sigma=0.6$ for the spot price. $N=1$.
\subsubsection*{testSimpleStorageWithInflowsAndMarketSDDP5D}
$\sigma= 0.3$ for inflows, $\sigma= 0.4$ for demand, $\sigma=0.6$ for the spot price. $N=5$.
\section{Semi-Lagrangian}
\subsection{testSemiLagrangCase1/testSemiLagrangCase1}
Test Semi-Lagrangian deterministic methods for HJB equation.
This corresponds to the second test case without control in \cite{warin2016some} (2 dimensional test case).
\subsubsection*{TestSemiLagrang1Lin}
Test the Semi-Lagrangian method with the linear interpolator.
\subsubsection*{TestSemiLagrang1Quad}
Test the Semi-Lagrangian method with the quadratic interpolator.
\subsubsection*{TestSemiLagrang1Cubic}
Test the Semi-Lagrangian method with the cubic interpolator.
\subsubsection*{TestSemiLagrang1SparseQuad}
Test the sparse grid interpolator with a quadratic interpolation.
\subsubsection*{TestSemiLagrang1SparseQuadAdapt}
Test the sparse grid interpolator with a quadratic interpolation and some adaptation in the meshing.
\subsection{testSemiLagrangCase2/testSemiLagrangCase2}
Test Semi-Lagrangian deterministic methods for HJB equation.
This corresponds to the first case without control in \cite{warin2016some} (2 dimensional test case).
\subsubsection*{TestSemiLagrang2Lin}
Test the Semi-Lagrangian method with the linear interpolator.
\subsubsection*{TestSemiLagrang2Quad}
Test the Semi-Lagrangian method with the quadratic interpolator.
\subsubsection*{TestSemiLagrang2Cubic}
Test the Semi-Lagrangian method with the cubic interpolator.
\subsubsection*{TestSemiLagrang2SparseQuad}
Test the sparse grid interpolator with a quadratic interpolation.
\subsection{testSemiLagrangCase2/testSemiLagrangCase2}
Test Semi-Lagrangian deterministic methods for HJB equation.
This corresponds to the stochastic target test case 5.3.4 in \cite{warin2016some}.
\subsubsection*{TestSemiLagrang3Lin}
Test the Semi-Lagrangian method with the linear interpolator.
\subsubsection*{TestSemiLagrang3Quad}
Test the Semi-Lagrangian method with the quadratic interpolator.
\subsubsection*{TestSemiLagrang3Cubic}
Test the Semi-Lagrangian method with the cubic interpolator.
\section{Non emimissive test case}
\subsection{testDPNonEmissive}
Solve the problem described in part \ref{part:NonEm} by dynamic programming and regression.
\begin{itemize}
\item first an optimization is realized,
\item the an simulation part permit to test the controls obtained.
\end{itemize}
\subsection{testSLNonEmissive}
Solve the problem described in part \ref{part:NonEm} by the Semi-Lagrangian method.
\begin{itemize}
\item first an optimization is realized,
\item the an simulation part permit to test the controls obtained.
\end{itemize}
\section{Nesting for Non Linear PDE's}
\subsection{Some HJB test}
The control problem where $\mathcal{A}$ is the set of adapted integrable processes.
\begin{align*}
dX = 2 \sqrt{\theta} \alpha dt + \sqrt{2} dW_t, \\
V= \inf_{\alpha \in \mathcal{A}} E[ \int_0^T | \alpha_s|^2 dt + g(X_T)]
\end{align*}
The HJB equation corresponding
\[
(-\partial_t u-{\cal L} u)(t,x) = f(Du(t,x))
\]
\begin{flalign}
\Lc u(t,x) := & \mu Du(t,x) + \frac{1}{2} \sigma \sigma^{\top} \!:\! D^2 u(t,x), \\
f(z) =& -\theta ||z||^2_2 \
\end{flalign}
such that a solution is
\begin{align}
\label{eq:semiAnal}
u(t,x) =- \frac{1}{\theta} \log \big( \E[ e^{ - \theta g(x + \sqrt{2} W_{T-t})}]\big).
\end{align}
We use the nesting method with $\mu=0 $, $\sigma = \sqrt{2} I_d $.
These test cases are in the \code{test/c++/unit/branching} directory.
\subsubsection{testHJCConst}
In this test case, we use a special resolution function assuming that the parameters of the PDE are constant: this allows us to precompute the inverse of some matrices.
\subsubsection{testHJCExact}
We test here the particular case where the SDE can be exactly simulated with a scheme
\begin{align*}
X_{t+dt} = A(t,dt) X_t + B(t,dt) + C(t,dt) g
\end{align*}
with a $g$ Gaussian-centered unit vector.
\subsubsection{testHJBEuler}
We use a resolution function assuming that the SDE is discretized by an Euler scheme.
\subsection{Some Toy example: testUD2UTou}
We want to solve:
\begin{align*}
(-\partial_t u-{\cal L} u)(t,x) = f(u,Du(t,x),D^2u(t,x))
\end{align*}
with
\[
\begin{array}{ll}
\mu= & \frac{\mu_0}{d} \un_d,\\
\sigma = & \frac{\sigma_0}{\sqrt{d}} \I_d, \\
f(t,x,y,z,\theta)=& \cos(\sum_{i=1}^d x_i) (\alpha +\frac{1}{2}\sigma_0^2)
e^{\alpha (T-t)}+ \sin(\sum_{i=1}^d x_i) \mu_0 e^{\alpha (T-t)} +
a \sqrt{d} \cos(\sum_{i=1}^d x_i)^2 e^{2\alpha (T-t)} \\
& + \frac{a}{\sqrt{d}} ( - e^{2\alpha (T-t)} ) \vee ( e^{2\alpha (T-t)} \wedge ( y \sum_{i=1}^d \theta_{i,i})),
\end{array}
\]
with a solution
\[
u(t,x)= e^{\alpha (T-t)} \cos( \sum_{i=1}^d x_i)
\]
\subsection{Some Portfolio optimization}
We assume that we dispose of $d=4$ securities all of them being defined by a Heston model:
\begin{align*}
dS_t^i =& \mu^i S_t^i dt + \sqrt{Y^i_t} S^i_t dW_t^{(2i-1)} \\
dY_t^i =& k^i (m^i-Y_t^i)dt + c^i \sqrt{Y^i_t} dW_t^{(2i)},
\end{align*}
where $W=(W^{(1)}, \dots , W^{(2d)})$ is a Brownian motion in $\R^{2d}$.\\
The non-risky asset $S^0$ has a $0$ return so $dS^0_t=0$, $t\in[0,1]$.\\
The investor chooses an adapted process $\{\kappa_t,t\in[0,T]\}$ with values in $\R^n$, where $\kappa^i_t$ is the amount he decides to invest into asset $i$.\\
The portfolio dynamic is given by:
\begin{align*}
dX^\kappa_t
=
\kappa_t\cdot \frac{dS_t}{S_t} +(X^\kappa_t-\kappa_t\cdot \1)\frac{d S^0_t}{S^0_t}
=
\kappa_t\cdot \frac{dS_t}{S_t}.
\end{align*}
Let $\Ac$ be the collection of all adapted processes $\kappa$ with values in $\R^d$ and which are integrable with respect to $S$. Given an absolute risk aversion coefficient $\eta>0$, the portfolio optimization problem is defined by:
\begin{align}
\label{prob-portefeuille}
v_0
:=&
\sup_{\kappa\in\Ac} \E\left[-\exp\left(-\eta X^\kappa_T\right)\right].
\end{align}
The problem doesn't depend on the $s^i$.
As in \cite{zariphopoulou2001solution}, we can guess that the solution can be expressed as
$$
v(t,x,y^1,\dots,y^d) = e^{-\eta x} u(y^1,\dots, y^d)
$$
and using Feyman Kac it is easy to see that a general solution can be written
\begin{align}
\label{zariphopoulouND}
v(t,x,y)=-e^{-\eta x} \E[\prod_{i=1}^d \exp\left(-\frac{1}{2}\int_t^T \frac{(\mu^i)^2}{\tilde Y^i_s}ds \right) ]
\end{align}
with
\begin{align*}
\tilde Y_t^i=y^i \quad
&\mbox{ and}&
d\tilde Y_t^i = k^i (m^i-\tilde Y_t^i)dt + c^i\sqrt{\tilde Y^i_t} dW^i_t,
\end{align*}
where $y^i$ is the initial volatility value on the date $0$ for the asset $i$.\\
We assume, in our example, that all the assets have the same parameters which are equal to the parameters taken in the two-dimensional case. We also assume that the initial conditions are the same as before.\\
By choosing $ \bar \sigma >0$, we can write the problem as the equation \eqref{eqPDEFull} in dimension $d+1$ where
\begin{align*}
\mu = & ( 0, k^1 (m^1-y^1), \dots,k^d (m^d-y^d) )^{\top}, \qquad
\sigma = \left( \begin{array}{lllll}
\bar \sigma & 0 & \dotsb & \dotsb & 0 \\
0 & c \sqrt{m^1} & 0 & \dotsb & 0 \\
0 & \dotsb & \ddots & \dotsb & 0 \\
0 & \dotsb & \dotsb & \ddots & 0 \\
0 & \dotsb & \dotsb & 0 & c \sqrt{m^d}
\end{array} \right)
\end{align*}
always with the same terminal condition
\begin{align*}
g(x) = - e^{-\eta x}
\end{align*}
and
\begin{align}
f(x,y,z,\theta)= &
-\frac{1}{2} \bar{\sigma}^2 \theta_{11} +\frac{1}{2} \sum_{i=1}^d (c^i)^2 ((y^i)^2-m^i) \theta_{i+1,i+1} - \sum_{i=1}^d \frac{\mu^i z_1 }{2 y^i \theta_{11}}.
\end{align}
In order to have $f$ Lipschitz, we truncate the control limiting the amount invested by taking
\begin{align*}
f_{M}(y,z,\theta) = &
-\frac{1}{2} \bar \sigma^2 \theta_{11} +\frac{1}{2} \sum_{i=1}^d (c^i)^2 ((y^i)^2-m^i) \theta_{2,2} + \\
&
\sup_{ \begin{array}{c}
\eta = (\eta^1,\dots,\eta^d) \\
0 \le \eta^i\le M, i=1,d
\end{array}} \sum_{i=1}^d \left(\frac{1}{2}(\eta^i)^2 y^i \theta_{11}+(\eta^i) \mu^i z_1\right).
\end{align*}
\subsubsection{testPortfolioExact}
The Ornstein--Uhlenbeck process used as a driving process is simulated exactly.
\subsubsection{testPortfolioEuler}
The Ornstein--Uhlenbeck process used as a driving process is simulated using an Euler scheme.
\chapter{Some python test cases description}
This part is devoted to some test cases only available in python. These examples uses the low level python interface.
\section{Microgrid Management}
\subsection{testMicrogridBangBang}
\label{sec:testMicrogridBangBang}
A microgrid is a collection of renewable energy sources, a diesel generator, and a battery for energy storage. The objective is to match the residual demand (difference between the demand of electricity and supply from renewables) while minimizing the total expected cost of running the microgrid. In particular a penalty is assessed for insufficient supply that leads to blackouts. The setup is similar to the one described in [\cite{ludkovski2018simulation}, Section 7]. We take the diesel generator as the only control $d_t$; output/input from/into the battery is then a function of the residual demand $X_t$ (exogenous stochastic process), inventory level of the battery $I_t$, and $d_t$. The diesel generator operates under two regimes: OFF and ON. When it is OFF it does not supply power $d_t = 0$, however when it is ON the power output is a deterministic function of the state $d_t = d(X_t,I_t)$. As a result, the problem is a standard stochastic control model with switching-type bang-bang control.
We parameterize the algorithm to easily switch between multiple approximation schemes for the conditional expectation at the core of the Dynamic Programming equation. Particularly the following schemes are implemented:
\begin{itemize}
\item Regularly spaced grid for $I_t$ and local polynomial basis in $X_t$ for each level of the grid.
\item Adaptive piecewise-defined polynomial basis in -2D for $(X_t,I_t)$.
\item Global 2D polynomial basis on $(X_t,I_t)$.
\item Bivariate Kernel regression on $(X_t,I_t)$.
\end{itemize}
\subsection{testMicrogrid}
\label{sec:testMicrogrid}
We extend the previous example to include the recent work \cite{alasseur2018regression} where the action space for the control is $d_t \in \{0\}\cup[1,10]$ kW, rather than being bang-bang. As a result, the optimal control is chosen in two steps: first the controller picks the regime: ON or OFF; if ON, she then decides the optimal, continuous level of the diesel output. Due to the additional flexibility available to the controller compared to the previous example, we expect to observe lower cost compared to Section \ref{sec:testMicrogridBangBang}. The user can switch between this and the previous setting by changing the parameter \code{controlType} in the \code{parameters.py} file.
\section{Dynamic Emulation Algorithm (DEA)}
\subsection{testMicrogridDEA}
\label{sec:DEA}
In this section we discuss the implementation of the Dynamic Emulation Algorithm developed in \cite{ludkovski2018simulation}. In that paper the authors reformulate the stochastic control problem as an ``iterative sequence of machine learning tasks''. The philosophy of DEA is to combine together Regression Monte Carlo (RMC) with Design of Experiments. The algorithm has the following properties:
\begin{itemize}
\item The learning for the continuation value function at each step in the backward-iteration of the Dynamic Programming Equation is completely modularized. As a result, the user can seamlessly switch between different regression schemes (for example: adaptive local polynomial basis in -2D or -1D, multivariate kernel regression, etc.) across different time-steps;
\item The empirical approximation uses distinct designs $\mathcal{D}_t$ at each $t$; thus the user can have design sites independently chosen for different $t$'s, which also eliminates the requirement to store the full history of the simulated paths of $(X_t)$. One-step paths can now replace the full history. In Figure \ref{fig:designSpecification} we present examples of two possible designs we use in the implementation. The image in the left panel represents a space-filling design using a Sobol sequence in -2D. This design is appropriate for a bivariate regression over $(X_t, I_t)$. On the right, we present another space-filling design in -1D with a regularly spaced grid in $I_t$ (y-axis) and a -1D Sobol sequence in $X_t$ (x-axis). In \cite{ludkovski2018simulation} the authors discuss several further designs which can be easily implemented.
\item Batched designs, i.e. a partially nested scheme that generates multiple $X_t$-paths from the same unique design site, can be accommodated.
\item Simulation budget (i.e.~the size of $\mathcal{D}_t$) can vary through the time-steps and need not be fixed as in standard RMC.
\end{itemize}
\begin{figure}[!ht]
\centering
\begin{subfigure}[b]{0.45\textwidth}
\includegraphics[width=\textwidth]{sobol2D.png}
\caption{Sobol-2D QMC sequence}
\label{fig:sobol2D}
\end{subfigure}
\quad
\begin{subfigure}[b]{0.45\textwidth}
\includegraphics[width=\textwidth]{sobol1d.png}
\caption{Gridded design }
\label{fig:sobol1D}
\end{subfigure}
\caption{Illustration of two simulation designs. In both panels the $X_t$-coordinate is on the x-axis and $I_t$ on the y-axis.}
\label{fig:designSpecification}
\end{figure}
Several different experiments have confirmed the significant effect of the design $\mathcal{D}_t$ on the performance of the RMC algorithms. DEA allows us to test for this effect by allowing the user to easily specify $\mathcal{D}_t$. The structure of this library allows for easy implementation of such modular algorithms. As a proof of concept, we re-implement the microgrid example of Section \ref{sec:testMicrogridBangBang} with the following specifications:
\begin{itemize}
\item The 10 time-steps (25\% of the total of 40 time-steps) closest to maturity use adaptive local polynomial basis in -1D with gridded design similar to the Figure \ref{fig:sobol1D}. Moreover, for these $t$'s we used $|\mathcal{D}_t| = 22,000 = N_t$ unique design sites;
\item The other 30 steps (first 75\%) use design sites allocated according to Sobol-2D as in figure \ref{fig:sobol2D} with a global polynomial basis regression scheme. For these, we build a batched design of 1000 unique sites, each replicated 10 times for a total simulation budget of $N_t = 1000 \times 10 =10^4$.
\end{itemize}
\bibliographystyle{plain}
\bibliography{MyBib}
\end{document}
|