File: Asm.cpp

package info (click to toggle)
storm-lang 0.7.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 52,004 kB
  • sloc: ansic: 261,462; cpp: 140,405; sh: 14,891; perl: 9,846; python: 2,525; lisp: 2,504; asm: 860; makefile: 678; pascal: 70; java: 52; xml: 37; awk: 12
file content (497 lines) | stat: -rw-r--r-- 11,699 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
#include "stdafx.h"
#include "Asm.h"
#include "../Listing.h"
#include "../Exception.h"

namespace code {
	namespace arm64 {

		// We map registers as follows:
		// ptrStack (1) <-> sp
		// ptrFrame (2) <-> x29
		// ptrA (3) <-> x0
		// ptrB (4) <-> x1
		// ptrC (5) <-> x2
		// 0x?30..0x?3F <-> x3..x18
		// 0x?40..0x?4F <-> x19..x28,x30,xzr,pc
		// 0x?50..0x?5F <-> q0..q15
		// 0x?60..0x?6F <-> q16..q31

		// Arm integer register to storm register.
		static Nat armIntToStorm(Nat arm) {
			if (arm <= 2)
				return 0x003 + arm;
			else if (arm <= 18)
				return 0x030 + arm - 3;
			else if (arm <= 28)
				return 0x040 + arm - 19;
			else if (arm == 29)
				return ptrFrame;
			else if (arm == 30)
				return 0x04A;
			else if (arm == 31)
				return 0x04B;
			else if (arm == 32)
				return ptrStack;
			else if (arm == 33)
				return 0x04C;
			else
				return noReg;
		}

		// Storm reg number to Arm int register.
		static Nat stormToArmInt(Reg stormReg) {
			Nat storm = stormReg & 0xFF;
			Nat type = storm >> 4;

			if (storm == 0x01) {
				return 32; // sp
			} else if (storm == 0x2) {
				// Reg. 29 is frame ptr.
				return 29;
			} else if (type == 0x0) {
				return storm - 0x3;
			} else if (type == 0x3) {
				return (storm & 0xF) + 3;
			} else if (type == 0x4) {
				if (storm < 0x4A)
					return storm - 0x40 + 19;
				else if (storm == 0x4A)
					return 30;
				else if (storm == 0x4B)
					return 31; // xzr
				else if (storm == 0x4C)
					return 33; // pc
			}

			return -1;
		}

		Reg xr(Nat id) {
			return Reg(armIntToStorm(id) | 0x800);
		}

		Reg wr(Nat id) {
			return Reg(armIntToStorm(id) | 0x400);
		}

		Reg ptrr(Nat id) {
			return Reg(armIntToStorm(id) | 0x000);
		}

		Reg dr(Nat id) {
			return Reg(0x850 + id);
		}

		Reg sr(Nat id) {
			return Reg(0x450 + id);
		}

		Reg br(Nat id) {
			return Reg(0x150 + id);
		}

		const Reg pc = Reg(0x04C);
		const Reg sp = ptrStack;
		const Reg pzr = Reg(0x04B);
		const Reg xzr = Reg(0x84B);
		const Reg zr = Reg(0x44B);

		Bool isIntReg(Reg r) {
			Nat cat = r & 0x0F0;
			return cat == 0x000 || cat == 0x030 || cat == 0x40;
		}

		Bool isVectorReg(Reg r) {
			Nat cat = r & 0x0F0;
			return cat == 0x050 || cat == 0x060;
		}

		Nat intRegNumber(Reg r) {
			return stormToArmInt(r);
		}

		Nat vectorRegNumber(Reg r) {
			Nat z = Nat(r) & 0xFF;
			if (z < 0x50 || z > 0x6F)
				return -1;
			return z - 0x50;
		}

#define ARM_REG_SPECIAL(NR, NAME)				\
		if (number == NR) {						\
			if (size == 0) {					\
				return S("px") S(NAME);			\
			} else if (size == 4) {				\
				return S("w") S(NAME);			\
			} else if (size == 8) {				\
				return S("x") S(NAME);			\
			} else if (size == 1) {				\
				return S("b") S(NAME);			\
			}									\
	}

#define ARM_REG_CASE(NR)						\
		ARM_REG_SPECIAL(NR, #NR)

#define ARM_VEC(NR)										\
		if (number == NR) {								\
			if (size == 1) {							\
				return S("b") S(#NR);					\
			} else if (size == 4) {						\
				return S("s") S(#NR);					\
			} else if (size == 8) {						\
				return S("d") S(#NR);					\
			} else {									\
				return S("q") S(#NR) S("(invalid)");	\
			}											\
		}

		const wchar *nameArm64(Reg r) {
			Nat size = r >> 8;

			if (isIntReg(r)) {
				Nat number = stormToArmInt(r);
				ARM_REG_CASE(0);
				ARM_REG_CASE(1);
				ARM_REG_CASE(2);
				ARM_REG_CASE(3);
				ARM_REG_CASE(4);
				ARM_REG_CASE(5);
				ARM_REG_CASE(6);
				ARM_REG_CASE(7);
				ARM_REG_CASE(8);
				ARM_REG_CASE(9);
				ARM_REG_CASE(10);
				ARM_REG_CASE(11);
				ARM_REG_CASE(12);
				ARM_REG_CASE(13);
				ARM_REG_CASE(14);
				ARM_REG_CASE(15);
				ARM_REG_CASE(16);
				ARM_REG_CASE(17);
				ARM_REG_CASE(18);
				ARM_REG_CASE(19);
				ARM_REG_CASE(20);
				ARM_REG_CASE(21);
				ARM_REG_CASE(22);
				ARM_REG_CASE(23);
				ARM_REG_CASE(24);
				ARM_REG_CASE(25);
				ARM_REG_CASE(26);
				ARM_REG_CASE(27);
				ARM_REG_CASE(28);
				ARM_REG_CASE(29);
				ARM_REG_CASE(30);
				ARM_REG_SPECIAL(31, "zr");
				if (number == 33)
					return S("pc");
			} else if (isVectorReg(r)) {
				Nat number = vectorRegNumber(r);
				ARM_VEC(0);
				ARM_VEC(1);
				ARM_VEC(2);
				ARM_VEC(3);
				ARM_VEC(4);
				ARM_VEC(5);
				ARM_VEC(6);
				ARM_VEC(7);
				ARM_VEC(8);
				ARM_VEC(9);
				ARM_VEC(10);
				ARM_VEC(11);
				ARM_VEC(12);
				ARM_VEC(13);
				ARM_VEC(14);
				ARM_VEC(15);
				ARM_VEC(16);
				ARM_VEC(17);
				ARM_VEC(18);
				ARM_VEC(19);
				ARM_VEC(20);
				ARM_VEC(21);
				ARM_VEC(22);
				ARM_VEC(23);
				ARM_VEC(24);
				ARM_VEC(25);
				ARM_VEC(26);
				ARM_VEC(27);
				ARM_VEC(28);
				ARM_VEC(29);
				ARM_VEC(30);
				ARM_VEC(31);
			}

			return null;
		}

		Nat condArm64(CondFlag flag) {
			switch (flag) {
			case ifAlways:
				return 0xE;
			case ifNever:
				return 0xF;
			case ifOverflow:
				return 0x6;
			case ifNoOverflow:
				return 0x7;
			case ifEqual:
				return 0x0;
			case ifNotEqual:
				return 0x1;

				// Unsigned compare:
			case ifBelow:
				return 0x3;
			case ifBelowEqual:
				return 0x9;
			case ifAboveEqual:
				return 0x2;
			case ifAbove:
				return 0x8;

				// Singned comparision.
			case ifLess:
				return 0xB;
			case ifLessEqual:
				return 0xD;
			case ifGreaterEqual:
				return 0xA;
			case ifGreater:
				return 0xC;

				// Float comparision.
			case ifFBelow:
				return 0x3;
			case ifFBelowEqual:
				return 0x9;
			case ifFAboveEqual:
				return 0xA;
			case ifFAbove:
				return 0xC;
			}

			return 0xE;
		}

		Reg unusedReg(RegSet *used) {
			Reg r = unusedRegUnsafe(used);
			if (r == noReg)
				throw new (used) InvalidValue(S("We should not run out of registers on ARM64."));
			return r;
		}

		Reg unusedReg(RegSet *used, Size size) {
			return asSize(unusedReg(used), size);
		}

		Reg unusedRegUnsafe(RegSet *used) {
			static const Reg candidates[] = {
				ptrr(0), ptrr(1), ptrr(2), ptrr(3), ptrr(4), ptrr(5), ptrr(6), ptrr(7), ptrr(8),
				ptrr(9), ptrr(10), ptrr(11), ptrr(12), ptrr(13), ptrr(14), ptrr(15), ptrr(16), ptrr(17),
				ptrr(19), ptrr(20), ptrr(21), ptrr(22), ptrr(23), ptrr(24), ptrr(25), ptrr(26), ptrr(27),
				ptrr(28),
			};
			for (Nat i = 0; i < ARRAY_COUNT(candidates); i++)
				if (!used->has(candidates[i]))
					return candidates[i];
			return noReg;
		}

		Reg unusedVectorReg(RegSet *used) {
			for (Nat i = 0; i < 32; i++) {
				Reg r = sr(i);
				if (!used->has(r))
					return r;
			}

			throw new (used) InvalidValue(S("Out of vector registers!"));
		}

		Reg unusedVectorReg(RegSet *used, Size size) {
			return asSize(unusedVectorReg(used), size);
		}

		static const Reg dirtyRegs[] = {
			ptrr(0), ptrr(1), ptrr(2), ptrr(3), ptrr(4), ptrr(5), ptrr(6), ptrr(7), ptrr(8),
			ptrr(9), ptrr(10), ptrr(11), ptrr(12), ptrr(13), ptrr(14), ptrr(15), ptrr(16), ptrr(17),
			 // Not technically in the set of dirty registers, but we always save them anyway to
			 // make sure they are not saved/preserved twice.
			ptrFrame, ptrr(30),
			dr(0), dr(1), dr(2), dr(3), dr(4), dr(5), dr(6), dr(7),
		};
		const Reg *fnDirtyRegs = dirtyRegs;
		const size_t fnDirtyCount = ARRAY_COUNT(dirtyRegs);


		Reg preserveRegInReg(Reg reg, RegSet *used, Listing *dest) {
			Reg targetReg = noReg;
			if (isIntReg(reg)) {
				for (Nat i = 19; i < 29; i++) {
					if (used->has(ptrr(i)))
						continue;

					targetReg = ptrr(i);
					break;
				}
			} else {
				for (Nat i = 8; i < 16; i++) {
					if (used->has(dr(i)))
						continue;

					targetReg = dr(i);
					break;
				}
			}

			used->remove(reg);

			if (targetReg != noReg) {
				targetReg = asSize(targetReg, size(reg));
				used->put(targetReg);
				*dest << mov(targetReg, reg);
				return targetReg;
			}

			return noReg;
		}

		Operand preserveReg(Reg reg, RegSet *used, Listing *dest, Block block) {
			Reg targetReg = preserveRegInReg(reg, used, dest);
			if (targetReg != noReg)
				return targetReg;

			// Store on the stack.
			Var to = dest->createVar(block, size(reg));
			*dest << mov(to, reg);
			return to;
		}

		// Get a pointer-sized offset into whatever "operand" represents.
		Operand opPtrOffset(Operand op, Nat offset) {
			return opOffset(Size::sPtr, op, offset);
		}

		Operand opOffset(Size sz, Operand op, Nat offset) {
			switch (op.type()) {
			case opRelative:
				return xRel(sz, op.reg(), op.offset() + Offset(offset));
			case opVariable:
				return xRel(sz, op.var(), op.offset() + Offset(offset));
			case opRegister:
				if (offset == 0)
					return asSize(op.reg(), sz);
				assert(false, L"Offset in registers are not supported.");
				break;
			default:
				assert(false, L"Unsupported operand passed to 'opOffset'!");
			}
			return Operand();
		}

		void inlineMemcpy(Listing *dest, Operand to, Operand from, Reg tmpA, Reg tmpB) {
			Nat size = from.size().size64();
			if (size <= 8) {
				*dest << mov(asSize(tmpA, from.size()), from);
				*dest << mov(to, asSize(tmpA, from.size()));
				return;
			}

			// Make them pointer-sized.
			tmpA = asSize(tmpA, Size::sPtr);
			tmpB = asSize(tmpB, Size::sPtr);

			Nat offset = 0;
			while (offset + 16 <= size) {
				// The backend will make this into a double-load.
				*dest << mov(tmpA, opPtrOffset(from, offset));
				*dest << mov(tmpB, opPtrOffset(from, offset + 8));

				// The backend will make this into a double-store.
				*dest << mov(opPtrOffset(to, offset), tmpA);
				*dest << mov(opPtrOffset(to, offset + 8), tmpB);

				offset += 16;
			}

			// Copy remaining 8 bytes (up to machine alignment, typically OK).
			if (offset < size) {
				*dest << mov(tmpA, opPtrOffset(from, offset));
				*dest << mov(opPtrOffset(to, offset), tmpA);
			}
		}

		void inlineSlowMemcpy(Listing *dest, Operand to, Operand from, Reg tmpReg) {
			Nat size = from.size().size64();
			if (size <= 8) {
				*dest << mov(asSize(tmpReg, from.size()), from);
				*dest << mov(to, asSize(tmpReg, from.size()));
				return;
			}

			tmpReg = asSize(tmpReg, Size::sPtr);

			Nat offset = 0;
			while (offset < size) {
				*dest << mov(tmpReg, opPtrOffset(from, offset));
				*dest << mov(opPtrOffset(to, offset), tmpReg);

				offset += 8;
			}
		}

		Nat encodeBitmask(Word bitmask, bool use64) {
			if (!use64) {
				// Pretend that the bitmask was 64-bit by mirroring the existing data. That makes
				// the algorithm the same for both cases (until we encode the result).
				bitmask = (bitmask & 0xFFFFFFFF) | (bitmask << 32);
			}

			// If it is all ones or all zeroes, we can't encode it (that value is reserved).
			if (bitmask == 0 || ~bitmask == 0)
				return 0;

			// Shift it to the right until we have a one in the least significant position, and a
			// zero in the most significant position.
			Nat shift = 0;
			while ((bitmask & 0x1) != 1 || (bitmask >> 63) != 0) {
				// This is a rotate right operation.
				bitmask = ((bitmask & 0x1) << 63) | (bitmask >> 1);
				shift++;
			}

			// Count the number of ones in the sequence.
			Nat ones = 0;
			for (Word mask = bitmask; mask & 0x1; mask >>= 1)
				ones++;

			// Try different possible pattern lengths.
			for (Nat length = 2; length <= 64; length *= 2) {
				if (length <= ones)
					continue;

				Word pattern = (Word(1) << ones) - 1;
				for (Nat offset = length; offset < 64; offset *= 2)
					pattern |= pattern << offset;

				if (pattern == bitmask) {
					// Found it! Encode its representation.
					Nat immr = length - shift;
					Nat imms = (Nat(0x80) - (length * 2)) | (ones - 1);
					imms ^= 0x40; // the N bit is inverted. Note: due to our setup in the start, the
								  // N bit will never be set when we are in 32-bit mode.
					return ((imms & 0x40) << 6) | (immr << 6) | (imms & 0x3F);
				}
			}

			return 0;
		}

		Bool allOnes(Word mask, bool use64) {
			if (!use64)
				mask |= mask << 32;
			return ~mask == 0;
		}

	}
}