File: FnCall.cpp

package info (click to toggle)
storm-lang 0.7.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 52,004 kB
  • sloc: ansic: 261,462; cpp: 140,405; sh: 14,891; perl: 9,846; python: 2,525; lisp: 2,504; asm: 860; makefile: 678; pascal: 70; java: 52; xml: 37; awk: 12
file content (599 lines) | stat: -rw-r--r-- 19,190 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
#include "stdafx.h"
#include "FnCall.h"
#include "Params.h"
#include "Asm.h"
#include "RemoveInvalid.h"
#include "Utils/Bitwise.h"
#include "../Exception.h"

namespace code {
	namespace arm64 {

		ParamInfo::ParamInfo(TypeDesc *desc, const Operand &src, Bool ref)
			: type(desc), src(src), ref(ref), lea(false) {}

		// Helper to handle mov of potentially large constant values.
		// Note: We can't load directly into the fp registers, so we always treat them as "large".
		static Instr *movConst(RemoveInvalid *tfm, Reg dest, const Operand &src) {
			if (src.type() == opConstant)
				if (!isIntReg(dest) || src.constant() > 0xFFFF)
					return mov(tfm->engine(), dest, tfm->largeConstant(src));

			return mov(tfm->engine(), dest, src);
		}

		// Create set of registers used for function parameters.
		static RegSet *dirtyRegs(Engine &e) {
			RegSet *r = new (e) RegSet();
			for (size_t i = 0; i < fnDirtyCount; i++)
				r->put(fnDirtyRegs[i]);
			return r;
		}

		// Any complex parameters?
		static Bool hasComplex(Array<ParamInfo> *params) {
			for (Nat i = 0; i < params->count(); i++)
				if (as<ComplexDesc>(params->at(i).type))
					return true;
			return false;
		}

		// Any parameters that need to be copied to memory?
		static Bool hasMemory(Params *params) {
			for (Nat i = 0; i < params->totalCount(); i++)
				if (params->totalParam(i).inMemory())
					return true;
			return false;
		}

		// Basic map of registers preserved in other registers.
		class PreservedRegs {
		public:
			PreservedRegs() {
				for (Nat i = 0; i < ARRAY_COUNT(preservedInt); i++)
					preservedInt[i] = noReg;
				for (Nat i = 0; i < ARRAY_COUNT(preservedFloat); i++)
					preservedFloat[i] = noReg;
			}

			Reg &operator [](Reg r) {
				if (isIntReg(r))
					return preservedInt[intRegNumber(r)];
				else
					return preservedFloat[vectorRegNumber(r)];
			}
		private:
			Reg preservedInt[32];
			Reg preservedFloat[32];
		};

		// Preserve registers for complex parameters.
		static void preserveComplex(Listing *dest, RegSet *used, Block block, Array<ParamInfo> *params, Params *layout) {
			PreservedRegs preserved;
			RegSet *dirtyRegs = code::arm64::dirtyRegs(dest->engine());

			// First: Look for operands that use register-relative addressing and preserve them in
			// registers. This means that we prioritize storing registers that might help us access
			// multiple values over ones that are read directly.
			Bool firstComplex = true;
			for (Nat i = 0; i < layout->totalCount(); i++) {
				Param p = layout->totalParam(i);
				if (p.empty())
					continue;

				ParamInfo &param = params->at(p.id());
				if (as<ComplexDesc>(param.type) != null && firstComplex) {
					// No need to worry about the first complex parameter!
					firstComplex = false;
					continue;
				}

				if (param.src.type() != opRelative)
					continue;
				Reg reg = param.src.reg();
				if (!dirtyRegs->has(reg))
					continue;

				Reg &movedTo = preserved[reg];
				if (movedTo == noReg)
					movedTo = preserveRegInReg(reg, used, dest);

				if (movedTo == noReg) {
					// This means no more registers were available. In this case, revert to loading
					// the value and storing it in a variable.
					Reg tmpReg = ptrr(16); // Should be free.
					Var v = dest->createVar(block, Size::sPtr);
					if (param.ref) {
						*dest << mov(tmpReg, param.src);
						*dest << mov(v, tmpReg);
					} else {
						*dest << lea(tmpReg, param.src);
						*dest << mov(v, tmpReg);
						param.ref = true;
					}
					param.src = Operand(v);
				} else {
					// Success, update the parameter.
					param.src = xRel(param.src.size(), movedTo, param.src.offset());
				}
			}

			// Then: Look for operands that read registers directly. These are not as bad to spill
			// to the stack, which is why we do this later.
			firstComplex = true;
			for (Nat i = 0; i < layout->totalCount(); i++) {
				Param p = layout->totalParam(i);
				if (p.empty())
					continue;

				ParamInfo &param = params->at(p.id());
				if (as<ComplexDesc>(param.type) != null && firstComplex) {
					// No need to worry about the first complex parameter!
					firstComplex = false;
					continue;
				}

				if (param.src.type() != opRegister)
					continue;
				Reg reg = param.src.reg();
				if (!dirtyRegs->has(reg))
					continue;

				Reg &movedTo = preserved[reg];
				if (movedTo == noReg)
					movedTo = preserveRegInReg(reg, used, dest);

				if (movedTo == noReg) {
					// No more registers available. Spill to stack.
					Var v = dest->createVar(block, param.src.size());
					*dest << mov(v, reg);
					param.src = Operand(v);
				} else {
					// Success, update the parameter.
					param.src = asSize(movedTo, param.src.size());
				}
			}
		}

		// Copy parameters to memory as needed.
		static Block copyToMemory(Listing *dest, RegSet *used, Array<ParamInfo> *params, Params *layout, Block currentBlock) {
			if (!hasMemory(layout))
				return Block();

			// Temporary registers we can use:
			Reg reg1 = ptrr(16);
			Reg reg2 = ptrr(17);

			Block block = dest->createBlock(currentBlock);
			*dest << begin(block);

			// First: copy simple parameters to the stack. This potentially frees up registers.
			for (Nat i = 0; i < layout->totalCount(); i++) {
				Param p = layout->totalParam(i);
				// Only worry about parameters that need to be in memory for now.
				if (p.empty() || !p.inMemory())
					continue;

				ParamInfo &info = params->at(p.id());

				// Note: We skip ComplexDesc for later. They require function calls!
				if (as<ComplexDesc>(info.type))
					continue;

				Var v = dest->createVar(block, info.type->size());

				if (info.ref) {
					if (info.src.type() == opRegister) {
						inlineMemcpy(dest, v, xRel(v.size(), info.src.reg(), Offset()), reg1, reg2);
					} else {
						*dest << mov(reg2, info.src);
						// TODO: In many cases we can probably find another register for this part.
						inlineSlowMemcpy(dest, v, xRel(v.size(), reg2, Offset()), reg1);
					}
				} else {
					if (info.src.type() == opRegister) {
						*dest << mov(v, info.src);
					} else {
						inlineMemcpy(dest, v, info.src, reg1, reg2);
					}
				}

				// Modify the parameter so that we know how to handle it later on.
				info.src = v;
				info.ref = false;
				info.lea = true;
			}

			// Now we can continue with the complex parameters! Start with preserving registers so
			// that we can call copy-ctors!
			preserveComplex(dest, used, currentBlock, params, layout);

			// Then we can actually copy parameters.
			for (Nat i = 0; i < layout->totalCount(); i++) {
				Param p = layout->totalParam(i);
				if (p.empty() || !p.inMemory())
					continue;

				ParamInfo &info = params->at(p.id());
				ComplexDesc *desc = as<ComplexDesc>(info.type);
				if (!desc)
					continue;

				if (info.ref)
					*dest << mov(ptrr(1), info.src);
				else
					*dest << lea(ptrr(1), info.src);

				// This is after moving 'src' to x1, that way we never need to worry about
				// preserving anything for the first complex parameter.
				Var v = dest->createVar(block, desc, freeDef | freeInactive);
				*dest << lea(ptrr(0), v);

				*dest << call(desc->ctor, Size());
				*dest << activate(v);

				// Modify the parameter accordingly.
				info.src = v;
				info.ref = false;
				info.lea = true;
			}

			return block;
		}

		static Nat pushParams(RemoveInvalid *tfm, Listing *dest, Array<ParamInfo> *params, Params *layout) {
			if (layout->stackCount() == 0)
				return 0;

			// Reserve space on the stack first.
			*dest << sub(ptrStack, ptrConst(layout->stackTotalSize()));

			// Now we can copy parameters! We need to be careful to not emit memory-memory moves, as
			// we are called inside "RemoveInvalid".

			Reg reg1 = ptrr(16);
			Reg reg2 = ptrr(17);

			for (Nat i = 0; i < layout->stackCount(); i++) {
				ParamInfo &info = params->at(layout->stackParam(i).id());
				Size sz = info.type->size();
				if (info.lea == info.ref) {
					Operand dst = xRel(sz, sp, Offset(layout->stackOffset(i)));
					if (info.src.type() == opRelative || info.src.type() == opVariable) {
						inlineMemcpy(dest, dst, info.src, reg1, reg2);
					} else if (info.src.type() == opConstant) {
						Reg r = asSize(reg1, sz);
						*dest << movConst(tfm, r, info.src);
						*dest << mov(dst, r);
					} else {
						// We can copy it natively.
						*dest << mov(dst, info.src);
					}
				} else if (info.lea) {
					*dest << lea(reg1, info.src);
					*dest << mov(ptrRel(sp, Offset(layout->stackOffset(i))), reg1);
				} else if (info.ref) {
					Reg tmpReg = noReg;
					if (info.src.type() == opRegister) {
						tmpReg = info.src.reg();
					} else {
						// TODO: If we have an additional register available, we could use that as
						// 'tmpReg' here and avoid calling the slow version of memcpy below.
						tmpReg = reg2;
						reg2 = noReg;
						*dest << mov(tmpReg, info.src);
					}
					Operand dst = xRel(sz, sp, Offset(layout->stackOffset(i)));
					Operand src = xRel(sz, tmpReg, Offset(0));

					if (reg2 != noReg)
						inlineMemcpy(dest, dst, src, reg1, reg2);
					else
						inlineSlowMemcpy(dest, dst, src, reg1);
				}
			}

			return layout->stackTotalSize();
		}

		// Parameters passed around while assigning contents to registers.
		struct RegEnv {
			// Output listing.
			Listing *dest;
			// Transform.
			RemoveInvalid *tfm;
			// All parameters.
			Array<ParamInfo> *src;
			// Layout we want to produce.
			Params *layout;
			// Currently computing an assignment of parameter #x?
			Bool active[17];
			// Finished assigning to a register?
			Bool finished[17];
			// Recursion depth.
			Nat depth;
		};

		static void setRegister(RegEnv &env, Nat i);

		// Make sure any content inside 'reg' is used now, so that 'reg' can be reused for other purposes.
		static void vacateRegister(RegEnv &env, Reg reg) {
			for (Nat i = 0; i < env.layout->registerCount(); i++) {
				Param p = env.layout->registerParam(i);
				if (p.empty())
					continue;

				const Operand &src = env.src->at(p.id()).src;
				if (src.hasRegister() && same(src.reg(), reg)) {
					// We need to set this register now, otherwise it will be destroyed!
					if (env.active[i]) {
						// Cycle detected. If level is 1, then this just means that the data is
						// already in the right location, so we don't need to do anything.
						if (env.depth > 1) {
							// Cycle detected. Store it in x16 as a temporary and make a note of it.
							*env.dest << mov(asSize(ptrr(16), src.size()), src);
							env.active[i] = false;
						}
					} else {
						setRegister(env, i);
					}
				}
			}
		}

		// Set a register to what it is supposed to be, assuming 'src' is the actual value.
		static void setRegisterVal(RegEnv &env, Reg target, Param param, const Operand &src) {
			if (param.offset() == 0 && src.size().size64() <= 8) {
				if (src.type() == opRegister && same(src.reg(), target)) {
					// Already done!
				} else {
					Reg to = asSize(target, src.size());
					if (to == noReg) {
						// Unsupported size, 'src' must be a variable, so we'll simply copy slightly
						// more data than what we actually need.
						Size s = src.size() + Size::sInt.alignment();
						*env.dest << mov(asSize(target, s), xRel(s, src.var(), Offset()));
					} else {
						*env.dest << movConst(env.tfm, to, src);
					}
				}
			} else if (src.type() == opVariable) {
				Size s(param.size());
				*env.dest << mov(asSize(target, s), xRel(s, src.var(), Offset(param.offset())));
			} else {
				throw new (env.dest) InvalidValue(S("Can not pass non-variables larger than 8 bytes to functions."));
			}
		}

		// Set a register to what it is supposed to be, assuming the address of 'src' shall be used.
		static void setRegisterLea(RegEnv &env, Reg target, Param param, const Operand &src) {
			assert(param.size().size64() == 8);
			*env.dest << lea(asSize(target, Size::sPtr), src);
		}

		// Set a register to what it is supposed to be, assuming 'src' is a pointer to the actual value.
		static void setRegisterRef(RegEnv &env, Reg target, Param param, const Operand &src) {
			assert(src.size() == Size::sPtr);
			Size s(param.size());
			Offset o(param.offset());

			// If 'target' is a floating-point register, we can't use that as a temporary.
			if (isVectorReg(target)) {
				// However, since they are always assigned last, we know we can use ptr17, as that
				// will be clobbered by the function call anyway.
				*env.dest << mov(ptrr(17), src);
				*env.dest << mov(asSize(target, s), xRel(s, ptrr(17), o));
			} else {
				// We need to ensure that the source is in a register. If it already is in a
				// register, use that. Otherwise, use the register we shall fill as a temporary.
				Reg tempReg = asSize(target, Size::sPtr);
				if (src.type() == opRegister)
					tempReg = src.reg();
				else
					*env.dest << mov(tempReg, src);

				Reg to = asSize(target, s);
				if (to == noReg) {
					// Unsupported size, upgrade to the next larger supported one.
					s += Size::sInt.alignment();
					to = asSize(target, s);
				}
				*env.dest << mov(to, xRel(s, tempReg, o));
			}
		}

		// Try to assign the proper value to a single register (other assignments might be performed
		// beforehand to vacate registers).
		static void setRegister(RegEnv &env, Nat i) {
			Param param = env.layout->registerParam(i);
			// Empty?
			if (param.empty())
				return;
			// Already done?
			if (env.finished[i])
				return;

			env.depth++;

			Reg target = env.layout->registerSrc(i);
			ParamInfo &p = env.src->at(param.id());

			// See if 'target' contains something that is used by other parameters.
			env.active[i] = true;
			vacateRegister(env, target);
			if (!env.active[i]) {
				// Stored in tmp register, update our knowledge of its source.
				p.src = asSize(ptrr(16), p.src.size());
			}
			env.active[i] = false;

			// Set the register.
			if (p.ref == p.lea)
				setRegisterVal(env, target, param, p.src);
			else if (p.ref)
				setRegisterRef(env, target, param, p.src);
			else if (p.lea)
				setRegisterLea(env, target, param, p.src);

			// Done!
			env.finished[i] = true;
			env.depth--;
		}

		static void setRegisters(Listing *dest, RemoveInvalid *tfm, Array<ParamInfo> *src, Params *layout) {
			RegEnv env = {
				dest,
				tfm,
				src,
				layout,
				{ false },
				{ false },
				0,
			};

			for (Nat i = 0; i < layout->registerCount(); i++) {
				setRegister(env, i);
			}
		}

		static Operand preserveResultReg(Listing *to, Operand resultPos, Reg resultTempReg, RegSet *used) {
			Reg resultReg = resultPos.reg();
			if (isIntReg(resultReg) && intRegNumber(resultReg) >= 19) {
				// No need to preserve. Already safe.
				return resultPos;
			} else {
				used->remove(resultReg);
				used->put(resultTempReg);
				*to << mov(resultTempReg, resultReg);

				if (resultPos.type() == opRegister) {
					return Operand(resultTempReg);
				} else {
					return xRel(resultPos.size(), resultTempReg, resultPos.offset());
				}
			}
		}

		// Actual entry-point.
		void emitFnCall(RemoveInvalid *tfm, Listing *dest, Operand toCall, Operand resultPos, TypeDesc *resultType,
						Bool resultRef, Block currentBlock, RegSet *used, Array<ParamInfo> *params) {
			Engine &e = dest->engine();

			// Don't modify the RegSet, or our params.
			used = new (e) RegSet(*used);
			params = new (e) Array<ParamInfo>(*params);

			// Find a register to use for the result.
			Reg resultTempReg = noReg;
			for (Nat i = 19; i < 29; i++) {
				if (!used->has(ptrr(i))) {
					resultTempReg = ptrr(i);
					break;
				}
			}

			// If we are asked to store an empty result somewhere, we ignore that entirely.
			if (resultType->size() == Size()) {
				resultRef = false;
				resultPos = Operand();
			}

			// If we are asked to store the result in memory as indicated by a register, then we
			// need to preserve the register. We can store it in 'resultTempReg' if that is the
			// case. We must also ensure that the register is preserved when we emit parameter code.
			if (resultPos.type() == opRelative) {
				resultPos = preserveResultReg(dest, resultPos, resultTempReg, used);
			} else if (resultRef && resultPos.type() == opRegister) {
				resultPos = preserveResultReg(dest, resultPos, resultTempReg, used);
			}

			// Figure out parameter layout.
			Params *paramLayout = new (e) Params();
			paramLayout->result(resultType);
			for (Nat i = 0; i < params->count(); i++) {
				paramLayout->add(i, params->at(i).type);

				// Also check so that registers 16 and 17 are not used (we may use them as temporaries).
				const Operand &op = params->at(i).src;
				if (op.hasRegister() && isIntReg(op.reg())) {
					Nat regId = intRegNumber(op.reg());
					if (regId == 16 || regId == 17)
						throw new (dest) InvalidValue(S("Registers x16 and x17 can't be used for function calls."));
				}
			}

			Result resultLayout = paramLayout->result();

			// Start by copying parameters to memory as needed.
			Block block = copyToMemory(dest, used, params, paramLayout, currentBlock);

			// Put parameters onto the stack (if required).
			Nat extraStack = pushParams(tfm, dest, params, paramLayout);

			// Start copying parameters into registers.
			setRegisters(dest, tfm, params, paramLayout);

			// Set x8 to a pointer to the result if required.
			if (resultLayout.memoryRegister() != noReg) {
				if (resultRef) {
					*dest << mov(ptrr(8), resultPos);
				} else {
					*dest << lea(ptrr(8), resultPos);
				}
			}

			// Call the function! (We don't need accurate information about registers, so it is OK to pass Size()).
			*dest << call(toCall, Size());

			// Restore stack if needed.
			if (extraStack > 0) {
				*dest << add(ptrStack, ptrConst(extraStack));
			}

			// Handle the result if required.
			if (!resultLayout.memoryRegister() != noReg && resultPos != Operand()) {
				Operand store = resultPos;
				if (resultRef) {
					Reg r = ptrr(2); // always safe here
					if (store.type() == opRegister)
						r = store.reg();
					else
						*dest << mov(r, store);
					store = xRel(resultType->size(), r, Offset());
				}

				// Already in the right location?
				if (store.type() == opRegister &&
					resultLayout.registerCount() == 1 &&
					same(resultLayout.registerAt(0), store.reg())) {
					// Nothing to do.
				} else {
					// Copy to destination. If count == 1, result might be a register.
					for (Nat i = 0; i < resultLayout.registerCount(); i++) {
						Reg r = resultLayout.registerAt(i);
						Nat off = resultLayout.registerOffset(i).v64();
						*dest << mov(opOffset(size(r), store, off), r);
					}
				}
			}

			// Disable the block if we used it.
			if (block != Block()) {
				// If no complex parameters, then we know that the block will only consist of simple
				// types that execute no destructors.
				if (!hasComplex(params)) {
					*dest << end(block);
				} else if (resultPos.type() == opRegister) {
					assert(resultTempReg != noReg, L"Failed to find a free register for storing function result.");
					Reg src = asSize(resultPos.reg(), Size::sPtr);
					*dest << mov(resultTempReg, src);
					*dest << end(block);
					*dest << mov(src, resultTempReg);
				} else {
					*dest << end(block);
				}
			}
		}

	}
}