File: Binary.cpp

package info (click to toggle)
storm-lang 0.7.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 52,004 kB
  • sloc: ansic: 261,462; cpp: 140,405; sh: 14,891; perl: 9,846; python: 2,525; lisp: 2,504; asm: 860; makefile: 678; pascal: 70; java: 52; xml: 37; awk: 12
file content (463 lines) | stat: -rw-r--r-- 12,547 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
#include "stdafx.h"
#include "Binary.h"
#include "Exception.h"
#include "Core/StrBuf.h"

namespace code {

	Binary::Binary() {}

	Binary::Binary(Arena *arena, Listing *listing) {
		compileI(arena, listing, false);
	}

	Binary::Info Binary::compile(Arena *arena, Listing *listing) {
		Binary *b = new (arena) Binary();
		return b->compileI(arena, listing, false);
	}

	Binary::Info Binary::compileTransformed(Arena *arena, Listing *listing) {
		Binary *b = new (arena) Binary();
		return b->compileI(arena, listing, true);
	}

	Binary::Info Binary::compileI(Arena *arena, Listing *listing, Bool skipTransform) {
		flags = 0;
		if (listing->exceptionCleanup())
			flags |= ehClean;
		if (listing->exceptionCaught())
			flags |= ehCatch;
		if (listing->member)
			flags |= isMemberFn;

		Listing *tfm = listing;
		Array<Offset> *layout;
		if (skipTransform) {
			layout = new (this) Array<Offset>();
		} else {
			Arena::TransformInfo info = arena->transformInfo(listing);
			tfm = info.listing;
			layout = info.varLayout;
		}

		fillResultAndParams(tfm);
		fillBlocks(tfm);

		LabelOutput *labels = arena->labelOutput();
		arena->output(tfm, labels);

		fillTryBlocks(tfm, labels);

		if (tfm->meta().id < labels->offsets->count()) {
			metaOffset = labels->offsets->at(tfm->meta().id);
		} else {
			metaOffset = 0;
			WARNING(L"No metadata seems to have been generated by the backend.");
			WARNING(L"Exception cleanup will not work!");
		}

		CodeOutput *output = arena->codeOutput(this, labels);
		arena->output(tfm, output);

		runtime::codeUpdatePtrs(output->codePtr());
		set(output->codePtr(), output->tell());

#ifdef DEBUG
		// All backends should output the pointer to the binary like this.
		assert(codeBinary(output->codePtr()) == this);
#endif

		// Also, we should have an array in element 2. Replace it wit a plain GcArray for slightly
		// more compact representation, and to allow us to use the 'filled' member as we please.
		{
			GcCode *refs = runtime::codeRefs(output->codePtr());
#ifdef DEBUG
			assert(refs->refs[1].kind == GcCodeRef::ptrStorage);
			assert(as<Array<TObject *>>((RootObject *)refs->refs[1].pointer));
#endif
			Array<TObject *> *updaters = (Array<TObject *> *)refs->refs[1].pointer;
			GcArray<TObject *> *copy = runtime::allocArray<TObject *>(engine(), &pointerArrayType, updaters->count());
			for (Nat i = 0; i < copy->count; i++)
				copy->v[i] = updaters->at(i);
			// Mark it as unsorted.
			copy->filled = copy->count + 1;
			// Store it back.
			refs->refs[1].pointer = copy;
		}

		return Info(this, tfm, labels->offsets, layout);
	}

	void Binary::toS(StrBuf *to) const {
		*to << S("Binary object:");

		const nat columns = 16;
		const byte *code = (const byte *)address();
		if (!code) {
			*to << S(" <null>");
			return;
		}

		size_t size = runtime::codeSize(code);
		for (size_t i = 0; i < size; i++) {
			if (i % columns == 0) {
				*to << S("\n") << hex(i) << S(" -");
			}

			*to << S(" ") << hex(code[i]);
		}
	}

	void Binary::fillResultAndParams(Listing *src) {
		Array<code::Var> *params = src->allParams();

		resultAndParams = runtime::allocArray<TypeDesc *>(engine(), &pointerArrayType, params->count() + 1);
		resultAndParams->v[0] = src->result;

		for (Nat i = 0; i < params->count(); i++)
			resultAndParams->v[i + 1] = src->paramDesc(params->at(i));
	}

	TypeDesc *Binary::result() const {
		if (resultAndParams)
			return resultAndParams->v[0];
		return null;
	}

	Array<TypeDesc *> *Binary::params() const {
		Array<TypeDesc *> *result = new (this) Array<TypeDesc *>();
		if (resultAndParams) {
			result->reserve(Nat(resultAndParams->count - 1));
			for (size_t i = 1; i < resultAndParams->count; i++)
				result->push(resultAndParams->v[i]);
		}
		return result;
	}

	const GcType Binary::blockType = {
		GcType::tArray,
		null,
		null,
		sizeof(Variable),
		1,
		{ OFFSET_OF(Variable, varInfo) },
	};

	const GcType Binary::tryInfoArrayType = {
		GcType::tArray,
		null,
		null,
		sizeof(TryInfo),
		1,
		{ OFFSET_OF(TryInfo, type) },
	};

	void Binary::fillBlocks(Listing *src) {
		Array<code::Block> *srcBlocks = src->allBlocks();

		blocks = runtime::allocArray<Block *>(engine(), &pointerArrayType, srcBlocks->count());

		for (Nat i = 0; i < srcBlocks->count(); i++) {
			code::Block block = srcBlocks->at(i);
			Array<Var> *vars = src->allVars(block);

			// Count variables that need finalization, and variables with VarInfo.
			// We only need variables that need finalization for unwinding, we need
			// variables with VarInfo for hot reloading.
			size_t count = 0;
			for (Nat j = 0; j < vars->count(); j++) {
				const Var &v = vars->at(j);
				if (src->varInfo(v) || (src->freeOpt(v) & freeOnException))
					count++;
			}

			Block *b = (Block *)runtime::allocArray(engine(), &blockType, count);
			blocks->v[i] = b;
			b->parent = src->parent(block).key();

			size_t at = 0;
			for (Nat j = 0; j < vars->count(); j++) {
				const Var &v = vars->at(j);
				Nat flags = src->freeOpt(v);
				Listing::VarInfo *varInfo = src->varInfo(v);

				// We only include the ones we actually need.
				if (varInfo == null && (flags & freeOnException) == 0)
					continue;

				if (flags & freePtr) {
					// No additional flags needed, but we set sPtr for good measure.
					flags |= Variable::sPtr;
				} else if (v.size() == Size::sPtr) {
					flags |= Variable::sPtr;
				} else if (v.size() == Size::sByte) {
					flags |= Variable::sByte;
				} else if (v.size() == Size::sInt) {
					flags |= Variable::sInt;
				} else if (v.size() == Size::sLong) {
					flags |= Variable::sLong;
				} else {
					flags |= Variable::sUnknown;
					if (flags & freeOnException) {
						throw new (this) InvalidValue(S("Can only use bytes, integers, longs and pointers for ")
													S("variable cleanup. Specify 'freePtr' to get a pointer to ")
													S("the value instead!"));
					}
				}

				if (src->isParam(v))
					flags |= (1 + src->paramIndex(v)) << Variable::sParamShift;

				b->vars[at].id = v.key();
				b->vars[at].flags = flags;
				b->vars[at].varInfo = varInfo;
				at++;
			}
		}
	}

	void Binary::fillTryBlocks(Listing *src, LabelOutput *labels) {
		Nat count = 0;

		Array<code::Block> *blocks = src->allBlocks();
		for (Nat i = 0; i < blocks->count(); i++) {
			if (Array<Listing::CatchInfo> *info = src->catchInfo(blocks->at(i)))
				count += info->count();
		}

		if (count == 0) {
			tryBlocks = null;
			return;
		}

		tryBlocks = runtime::allocArray<TryInfo>(engine(), &tryInfoArrayType, count);
		Nat at = 0;
		for (Nat i = 0; i < blocks->count(); i++) {
			code::Block b = blocks->at(i);
			if (Array<Listing::CatchInfo> *info = src->catchInfo(b)) {
				for (Nat j = 0; j < info->count(); j++) {
					tryBlocks->v[at].blockId = code::Block(b).key();
					tryBlocks->v[at].resumeOffset = labels->offsets->at(info->at(j).resume.id);
					tryBlocks->v[at].type = info->at(j).type;
					at++;
				}
			}
		}
	}

	void Binary::cleanup(StackFrame &frame) {
		for (size_t i = frame.block; i != code::Block().key(); i = blocks->v[i]->parent) {
			Block *b = blocks->v[i];

			// Reverse order is common.
			for (size_t j = b->count; j > 0; j--) {
				cleanup(frame, b->vars[j - 1]);
			}
		}
	}

	Nat Binary::cleanup(StackFrame &frame, Nat until) {
		for (size_t i = frame.block; i != code::Block().key(); i = blocks->v[i]->parent) {
			Block *b = blocks->v[i];

			// Reverse order is common.
			for (size_t j = b->count; j > 0; j--) {
				cleanup(frame, b->vars[j - 1]);
			}

			// Done?
			if (i == until)
				return Nat(blocks->v[i]->parent);
		}

		// Outside of all blocks.
		return code::Block().key();
	}

	VarCleanup *Binary::cleanupInfo() {
		// Element #0 is the total size, then VarCleanup-instances start.
		byte *data = (byte *)address() + metaOffset + sizeof(void *);
		return (VarCleanup *)data;
	}

	MAYBE(Reference *) Binary::findReferenceByOffset(Nat offset) {
		GcCode *refs = runtime::codeRefs((void *)address());

		size_t refSlot = 0;
		for (size_t i = 0; i < refs->refCount; i++) {
			const GcCodeRef &ref = refs->refs[i];
			if (ref.offset == offset) {
				refSlot = i;
				break;
			}
		}

		// Note: Id #0 is reserved for a pointer to us.
		if (refSlot == 0)
			return null;

		return findReferenceBySlot(Nat(refSlot));
	}

	class CompareUpdater {
	public:
		bool operator() (const TObject *lhs, const TObject *rhs) const {
			CodeUpdater *l = (CodeUpdater *)lhs;
			CodeUpdater *r = (CodeUpdater *)rhs;
			return l->getSlot() < r->getSlot();
		}
		bool operator() (const TObject *lhs, Nat rhs) const {
			CodeUpdater *l = (CodeUpdater *)lhs;
			return l->getSlot() < rhs;
		}
	};

	static void sortUpdaters(GcArray<TObject *> *updaters) {
		// First, partition according to whether it is a CodeUpdater or something else. Let 'filled'
		// keep track of how many elements are used for this.
		updaters->filled = 0;
		for (size_t i = 0; i < updaters->count; i++) {
			if (as<CodeUpdater>(updaters->v[i])) {
				// Cheap enough to swap the same pointer as a no-op, don't bother checking.
				std::swap(updaters->v[updaters->filled++], updaters->v[i]);
			}
		}

		// Now, we can sort the elements:
		std::sort(updaters->v, updaters->v + updaters->filled, CompareUpdater());
	}

	MAYBE(Reference *) Binary::findReferenceBySlot(Nat refSlot) {
		GcCode *refs = runtime::codeRefs((void *)address());

		// Element #1 is a reference to an array of TObjects that contains the data we are after:
		GcArray<TObject *> *updaters = (GcArray<TObject *> *)refs->refs[1].pointer;

		// If 'filled' is larger than 'count', then we need to sort the array first:
		if (updaters->filled > updaters->count)
			sortUpdaters(updaters);

		// Now, we can sort everything!
		TObject **begin = updaters->v;
		TObject **end = begin + updaters->filled;
		TObject **found = std::lower_bound(begin, end, refSlot, CompareUpdater());
		if (found == end)
			return null;

		CodeUpdater *elem = (CodeUpdater *)*found;
		if (elem->getSlot() == refSlot)
			return elem;
		return null;
	}

	void Binary::cleanup(StackFrame &frame, Variable &v) {
		if (v.flags & freeOnException) {
			VarCleanup *vars = cleanupInfo();

			VarCleanup &now = vars[v.id];
			void *freeFn = now.function;
			int offset = now.offset;
			nat activeAfter = now.activeAfter;

			// If not active, we don't destroy it.
			if (frame.activation < activeAfter)
				return;

			void *ptr = frame.toPtr(offset);

			if (v.flags & freeIndirection)
				ptr = *(void **)ptr;

			typedef void (*FPtr)(void *v);
			typedef void (*FByte)(Byte v);
			typedef void (*FInt)(Int v);
			typedef void (*FLong)(Long v);

			if (v.flags & freePtr) {
				FPtr p = (FPtr)freeFn;
				(*p)(ptr);
			} else {
				switch (v.flags & Variable::sMask) {
				case Variable::sUnknown:
					break;
				case Variable::sPtr: {
					FPtr p = (FPtr)freeFn;
					(*p)(*(void **)ptr);
					break;
				}
				case Variable::sByte: {
					FByte p = (FByte)freeFn;
					(*p)(*(Byte *)ptr);
					break;
				}
				case Variable::sInt: {
					FInt p = (FInt)freeFn;
					(*p)(*(Int *)ptr);
					break;
				}
				case Variable::sLong: {
					FLong p = (FLong)freeFn;
					(*p)(*(Long *)ptr);
					break;
				}
				}
			}
		}
	}

	bool Binary::hasCatch(Nat active, RootObject *exception, Resume &resume) {
		struct Compare {
			inline bool operator() (const TryInfo &l, Nat r) const {
				return l.blockId < r;
			}
		};

		if (!tryBlocks)
			return false;

		for (size_t block = active; block != code::Block().key(); block = blocks->v[block]->parent) {
			TryInfo *end = tryBlocks->v + tryBlocks->count;
			TryInfo *found = std::lower_bound(tryBlocks->v, end, Nat(block), Compare());

			// Check all possible matches.
			for (; found != end && found->blockId == block; found++) {
				if (runtime::isA(exception, found->type)) {
					// Find where to resume.
					byte *data = (byte *)address();
					resume.ip = data + found->resumeOffset;
					resume.stackOffset = stackOffset();

					// Remember how far to clean.
					resume.cleanUntil = block;

					return true;
				}
			}
		}

		return false;
	}

	ptrdiff_t Binary::rawStackOffset() const {
		byte *data = (byte *)address();
		// First entry in the metadata table is the stack offset.
		ptrdiff_t *table = (ptrdiff_t *)(data + metaOffset);
		return table[0];
	}

	ptrdiff_t Binary::stackOffset() const {
		ptrdiff_t raw = rawStackOffset();
		// If LSB is set, then this is just a size.
		if (raw & 0x1)
			return 0;
		else
			return raw;
	}

	size_t Binary::stackSize() const {
		ptrdiff_t raw = rawStackOffset();
		raw &= ~ptrdiff_t(0x1);
		return abs(raw);
	}

}