File: Operators.cpp

package info (click to toggle)
storm-lang 0.7.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 52,004 kB
  • sloc: ansic: 261,462; cpp: 140,405; sh: 14,891; perl: 9,846; python: 2,525; lisp: 2,504; asm: 860; makefile: 678; pascal: 70; java: 52; xml: 37; awk: 12
file content (350 lines) | stat: -rw-r--r-- 10,571 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
#include "stdafx.h"
#include "Operators.h"
#include "Named.h"
#include "Cast.h"
#include "Resolve.h"
#include "Compiler/Exception.h"
#include "Utils/Bitmask.h"

namespace storm {
	namespace bs {

		AssignOpInfo::AssignOpInfo(syntax::SStr *op, Int prio, Bool leftAssoc) : OpInfo(op, prio, leftAssoc) {}

		Expr *AssignOpInfo::meaning(Block *block, Expr *lhs, Expr *rhs) {
			// We need to do this first. Otherwise the UnresolvedName will barf when we ask it for its return type.
			if (as<UnresolvedName>(lhs)) {
				// Try to find a setter function!
				if (Expr *setter = findSetter(block, lhs, rhs))
					return setter;
			}

			// Notify LHS that we are going to assign to it, so that it can tell the user if that is a bad idea.
			if (MemberVarAccess *access = as<MemberVarAccess>(lhs)) {
				// This will message the user if the variable access would make a copy of the data
				// due to thread-switches.
				access->assignResult();
			}

			Value l = lhs->result().type();
			// Note: We will check compatibility between types at a later stage.

			if (!l.ref) {
				// Try to use a setter function if we can find one.
				if (Expr *setter = findSetter(block, lhs, rhs))
					return setter;

				Str *msg = TO_S(engine(), S("Unable to assign a ") << rhs->result().type().asRef(false) <<
								S(" to the value ") << l << S(". ")
								S("It is only possible to assign to references (such as variables), ")
								S("and if an assignment function is available."));
				throw new (this) SyntaxError(pos, msg);
			}

			if (l.isObject() && l.ref && castable(rhs, l.asRef(false), block->scope)) {
				return new (block) ClassAssign(lhs, rhs, block->scope);
			} else {
				// Make sure we do not allow automatic conversion of the 'this' parameter during
				// assignment. That would produce weird results.
				Expr *fn = find(block, name, lhs, rhs, true);
				if (!fn) {
					Str *msg = TO_S(engine(), S("Can not find an implementation of the operator ")
									<< name << S(" for ") << lhs->result().type() << S(", ")
									<< rhs->result().type() << S("."));
					throw new (this) SyntaxError(pos, msg);
				}
				return fn;
			}
		}

		Expr *AssignOpInfo::findSetter(Block *block, Expr *lhs, Expr *rhs) {
			UnresolvedName *name = as<UnresolvedName>(lhs);
			if (!name)
				if (FnCall *call = as<FnCall>(lhs))
					name = call->name();

			// Not something we can use to find a setter.
			if (!name)
				return null;

			Actuals *params = new (this) Actuals(*name->params);
			params->add(rhs);

			// Try again!
			FnCall *call = as<FnCall>(name->retry(params));
			if (!call)
				return null;

			// Only accept functions explicitly marked as 'assign'.
			if (call->function()->fnFlags() & fnAssign)
				return call;

			return null;
		}

		OpInfo *assignOperator(syntax::SStr *op, Int p) {
			return new (op) AssignOpInfo(op, p, false);
		}


		/**
		 * Is operator.
		 */

		IsOperator::IsOperator(syntax::SStr *op, Int prio, Bool negate) : OpInfo(op, prio, true), negate(negate) {}

		Expr *IsOperator::meaning(Block *block, Expr *lhs, Expr *rhs) {
			return new (this) ClassCompare(pos, lhs, rhs, negate);
		}


		/**
		 * Combined operator.
		 */

		static Str *combinedName(Str *name) {
			return *name + new (name) Str(L"=");
		}

		CombinedOperator::CombinedOperator(OpInfo *info, Int prio) :
			OpInfo(new (engine()) syntax::SStr(combinedName(info->name)), prio, true), op(info) {}

		static Expr *combineOperator(SrcPos pos, Block *block, OpInfo *op, Expr *lhs, Expr *rhs) {
			// Based on the implementation of 'AssignOpInfo::meaning' there are the following cases:

			// 1. lhs returns a reference of some form
			// -> just capture the reference.
			// 2. lhs is something that does not return a reference
			// -> will try to expand to an assign fn, so capture all parameters

			// Note that we don't have to worry about UnresolvedName in lhs. We will always read
			// from lhs as-is, so we would throw an error anyway if that is the case.

			ExprBlock *sub = new (block) ExprBlock(pos, block);

			if (lhs->result().type().ref) {
				// Case 1:
				RefVar *var = new (sub) RefVar(pos, sub, new (sub) Str(S("@ tmp")), lhs);
				sub->add(var);

				lhs = new (sub) LocalVarAccess(pos, var->var);;
			} else {
				// Case 2:
				FnCall *call = as<FnCall>(lhs);
				if (!call)
					throw new (block) SyntaxError(pos, S("Unable to assign to this left-hand-side."));

				// Store all parameters as variables:
				Actuals *params = new (call) Actuals();
				for (Nat i = 0; i < call->params->expressions->count(); i++) {
					Expr *expr = call->params->expressions->at(i);
					Str *name = TO_S(sub, S("@ tmp") << i);
					RefVar *var = new (sub) RefVar(pos, sub, name, expr);
					sub->add(var);
					params->add(new (sub) LocalVarAccess(pos, var->var));
				}

				lhs = new (call) FnCall(call->pos, call->scope, call->toExecute, params, call->lookup);
			}

			syntax::SStr *eqOp = new (block) syntax::SStr(S("="), pos);
			OpInfo *assign = new (block) AssignOpInfo(eqOp, 100, true);

			Expr *middle = op->meaning(block, lhs, rhs);
			sub->add(assign->meaning(block, lhs, middle));

			return sub;
		}

		Expr *CombinedOperator::meaning(Block *block, Expr *lhs, Expr *rhs) {
			// See if the combined operator exists first.
			if (Expr *r = find(block, name, lhs, rhs))
				return r;

			try {
				// We need to ensure that 'lhs' is not evaluated more than once. This is a bit
				// tricky since we have assign functions.
				return combineOperator(pos, block, op, lhs, rhs);

				// Based on how the assignment operator works, the following cases exist:

				// One way of doing it is to inspect the results from 'assign->meaning' below and
				// figure out which of the three main cases we are in. Then we can find equivalent
				// parameters and store them in temporary variables.

				// Create: 'lhs = lhs <op> rhs'.
				syntax::SStr *eqOp = new (this) syntax::SStr(S("="), pos);
				OpInfo *assign = new (this) AssignOpInfo(eqOp, 100, true);

				Expr *middle = op->meaning(block, lhs, rhs);
				return assign->meaning(block, lhs, middle);
			} catch (...) {
				TODO(L"Better error message when using combined operators.");
				throw;
			}
		}


		/**
		 * Fallback operator.
		 */

		enum FallbackFlags {
			// Swap the order of the arguments?
			fSwap = 0x01,

			// Negate the result?
			fNegate = 0x02,

			// Connect with the next entry using '&'?
			fConnectAnd = 0x04,

			// Connect with the next entry using '|'?
			fConnectOr  = 0x08,
		};
		BITMASK_OPERATORS(FallbackFlags);

		struct OpFallback {
			// Name of the operator to use. 'null' if no more elements.
			const wchar *op;

			// Flags.
			FallbackFlags flags;
		};

		FallbackOperator::FallbackOperator(syntax::SStr *op, Int prio, Bool leftAssoc, const OpFallback *fallback) :
			OpInfo(op, prio, leftAssoc), fallback(fallback) {}

		Expr *FallbackOperator::meaning(Block *block, Expr *lhs, Expr *rhs) {
			// Try the original meaning first.
			if (Expr *r = find(block, name, lhs, rhs))
				return r;

			// Interpret the 'fallback' data and try those in order.
			for (Nat i = 0; fallback[i].op; i++)
				if (Expr *r = tryFallback(i, block, lhs, rhs))
					return r;

			Str *msg = TO_S(engine(), S("Can not find an implementation of the operator ")
							<< name << S(" for ") << lhs->result().type() << S(", ")
							<< rhs->result().type() << S("."));
			throw new (this) SyntaxError(pos, msg);
		}

		Expr *FallbackOperator::tryFallback(Nat &id, Block *block, Expr *lhs, Expr *rhs) {
			const OpFallback &f = fallback[id];
			if (f.flags & fConnectAnd) {
				Expr *a = tryFallback(fallback[id++], block, lhs, rhs);
				Expr *b = tryFallback(fallback[id], block, lhs, rhs);

				if (a && b)
					return namedExpr(block, new (this) syntax::SStr(S("&"), pos), a, new (this) Actuals(b));

				return null;
			} else if (f.flags & fConnectOr) {
				Expr *a = tryFallback(fallback[id++], block, lhs, rhs);
				Expr *b = tryFallback(fallback[id], block, lhs, rhs);

				if (a && b)
					return namedExpr(block, new (this) syntax::SStr(S("|"), pos), a, new (this) Actuals(b));

				return null;
			} else {
				return tryFallback(f, block, lhs, rhs);
			}
		}

		Expr *FallbackOperator::tryFallback(const OpFallback &f, Block *block, Expr *lhs, Expr *rhs) {
			// Swap lhs and rhs?
			if (f.flags & fSwap)
				std::swap(lhs, rhs);

			Expr *r = find(block, new (this) Str(f.op), lhs, rhs);
			if (!r)
				return null;

			// Add boolean ! after the comparison?
			if (f.flags & fNegate)
				r = namedExpr(block, new (this) syntax::SStr(S("!"), pos), r);

			return r;
		}


		/**
		 * Definitions of how the fallback is to be performed. The original meaning of the operator
		 * is always attempted first. Otherwise, we will prefer to use '<' over any variants of '>'
		 * if possible.
		 */

		static const OpFallback ltFallback[] = {
			{ S(">"), fSwap }, // b > a
			{ null },
		};

		static const OpFallback gtFallback[] = {
			{ S("<"), fSwap }, // b < a
			{ null },
		};

		static const OpFallback lteFallback[] = {
			{ S("<"), fSwap | fNegate }, // !(b < a)
			{ S(">"), fNegate }, // !(a > b)
			{ null },
		};

		static const OpFallback gteFallback[] = {
			{ S("<"), fNegate }, // !(a < b)
			{ S(">"), fSwap | fNegate }, // !(b > a)
			{ null },
		};

		static const OpFallback eqFallback[] = {
			// !(a < b) && !(b < a)
			{ S("<"), fNegate | fConnectAnd },
			{ S("<"), fSwap | fNegate },
			// !(a > b) && !(b > a)
			{ S("<"), fNegate | fConnectAnd },
			{ S("<"), fSwap | fNegate },
			{ null },
		};

		static const OpFallback neqFallback[] = {
			// !(a == b)
			{ S("=="), fNegate },
			// (a < b) || (b < a)
			{ S("<"), fConnectOr },
			{ S("<"), fSwap },
			// !(a > b) && !(b > a)
			{ S("<"), fConnectOr },
			{ S("<"), fSwap },
			{ null },
		};


		OpInfo *compareLt(syntax::SStr *op, Int priority) {
			return new (op) FallbackOperator(op, priority, true, ltFallback);
		}

		OpInfo *compareLte(syntax::SStr *op, Int priority) {
			return new (op) FallbackOperator(op, priority, true, lteFallback);
		}

		OpInfo *compareGt(syntax::SStr *op, Int priority) {
			return new (op) FallbackOperator(op, priority, true, gtFallback);
		}

		OpInfo *compareGte(syntax::SStr *op, Int priority) {
			return new (op) FallbackOperator(op, priority, true, gteFallback);
		}

		OpInfo *compareEq(syntax::SStr *op, Int priority) {
			return new (op) FallbackOperator(op, priority, true, eqFallback);
		}

		OpInfo *compareNeq(syntax::SStr *op, Int priority) {
			return new (op) FallbackOperator(op, priority, true, neqFallback);
		}

	}
}