1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
#include "stdafx.h"
#include "ControlFlowDiff.h"
namespace storm {
// See if two functions are the same.
static Bool sameFunction(ControlFlowItem o, ControlFlowItem n) {
if (!o.isCall() || !n.isCall())
return false;
if (o.hasFunction() != n.hasFunction())
return false;
if (o.hasFunction()) {
Function *oFun = o.function();
Function *nFun = n.function();
if (*oFun->name != *nFun->name)
return false;
if (oFun->params->count() != nFun->params->count())
return false;
for (Nat i = 0; i < oFun->params->count(); i++) {
if (!nFun->params->at(i).mayStore(oFun->params->at(i)))
return false;
}
return true;
} else {
// Built-in functions.
return o.builtIn()->which() == n.builtIn()->which();
}
}
// Flatten sub-lists:
static Array<ControlFlowItem> *flatSubLists(Array<ControlFlowItem> *l) {
Array<ControlFlowItem> *result = new (l) Array<ControlFlowItem>();
result->reserve(l->count());
for (Nat i = 0; i < l->count(); i++) {
ControlFlowItem item = l->at(i);
if (item.isCall()) {
result->push(item);
} else if (item.isLoop()) {
result->push(ControlFlowItem(item.offset(), item.endOffset(), item.flatten()));
}
}
return result;
}
// Element to use in the DP table of the minimum edit distance algorithm:
struct DpElem {
enum {
none,
add,
remove,
keep
};
// Keep within 32 bits to keep it compact.
Nat distance : 30;
Nat mode : 2;
// Default ctor:
DpElem() : distance(0), mode(none) {}
DpElem(Nat distance, Nat mode) : distance(distance), mode(mode) {}
// Update if better distance:
void update(Nat distance, Nat mode) {
if (this->distance >= distance) {
this->distance = distance;
this->mode = mode;
}
}
};
// Check if vector contains element.
static bool contains(const vector<Nat> &in, Nat find) {
// Note: If performance is a problem, we can use lower_bound. 'in' is sorted here.
return std::find(in.begin(), in.end(), find) != in.end();
}
// Compute the minimum edit distance of two items that are known to be loops, and flattened.
static Nat editDistance(Array<ControlFlowItem> *a, Array<ControlFlowItem> *b) {
// DP-table: cell [a][b] is the minimum edit distance at when we have
// transformed the first 'a' cells in A into the first 'b' cells in B.
vector<vector<Nat>> dpTable(a->count() + 1, vector<Nat>(b->count() + 1, 0));
// Fill in row 1 and col 1:
for (Nat aPos = 1; aPos <= a->count(); aPos++)
dpTable[aPos][0] = aPos;
for (Nat bPos = 1; bPos <= b->count(); bPos++)
dpTable[0][bPos] = bPos;
// Fill in the rest of the table:
for (Nat aPos = 1; aPos <= a->count(); aPos++) {
for (Nat bPos = 1; bPos <= b->count(); bPos++) {
// Options are:
// 1: Deleting element in 'a':
Nat best = dpTable[aPos - 1][bPos] + 1;
// 2: Inserting element from 'b':
best = min(best, dpTable[aPos][bPos - 1] + 1);
// 3: if possible, just leave it alone:
if (sameFunction(a->at(aPos - 1), b->at(bPos - 1)))
best = min(best, dpTable[aPos - 1][bPos - 1]);
dpTable[aPos][bPos] = best;
}
}
// Result is in the last cell:
return dpTable.back().back();
}
static vector<DpElem> minEdits(const vector<vector<Nat>> &equivalence, Nat oldCount, Nat newCount) {
// See 'editDistance' above for details.
vector<vector<DpElem>> dpTable(oldCount + 1, vector<DpElem>(newCount + 1, DpElem()));
// Fill in row 1 and col 1:
for (Nat oldPos = 1; oldPos <= oldCount; oldPos++)
dpTable[oldPos][0] = DpElem(oldPos, DpElem::remove);
for (Nat newPos = 1; newPos <= newCount; newPos++)
dpTable[0][newPos] = DpElem(newPos, DpElem::add);
// Fill in the rest of the table:
for (Nat oldPos = 1; oldPos <= oldCount; oldPos++) {
for (Nat newPos = 1; newPos <= newCount; newPos++) {
// 1: Delete element in 'old':
DpElem best(dpTable[oldPos - 1][newPos].distance + 1, DpElem::remove);
// 2: Insert an element in 'new':
best.update(dpTable[oldPos][newPos - 1].distance + 1, DpElem::add);
// 3: Keep current one, if applicable:
if (contains(equivalence[oldPos - 1], newPos - 1))
best.update(dpTable[oldPos - 1][newPos - 1].distance, DpElem::keep);
dpTable[oldPos][newPos] = best;
}
}
// Extract the minimum edits:
vector<DpElem> edits;
Nat oldPos = oldCount;
Nat newPos = newCount;
while (oldPos != 0 || newPos != 0) {
DpElem &elem = dpTable[oldPos][newPos];
edits.push_back(elem);
switch (elem.mode) {
case DpElem::remove:
oldPos--;
break;
case DpElem::add:
newPos--;
break;
case DpElem::keep:
newPos--;
oldPos--;
break;
case DpElem::none:
// Exit loop, this should not happen.
oldPos = 0;
newPos = 0;
break;
}
}
std::reverse(edits.begin(), edits.end());
return edits;
}
// Compute a diff between two CFLs. Return a ControlFlowItem that has the same structure as
// 'oldFlow' that indicates what each element should be mapped to.
Array<ControlFlowItem> *diff(Array<ControlFlowItem> *oldFlow, Array<ControlFlowItem> *newFlow) {
Engine &e = oldFlow->engine();
// Create flattened version of both lists:
Array<ControlFlowItem> *oldFlat = flatSubLists(oldFlow);
Array<ControlFlowItem> *newFlat = flatSubLists(newFlow);
// Pre-compute an equivalence relation:
vector<vector<Nat>> equivalence;
for (Nat i = 0; i < oldFlat->count(); i++) {
ControlFlowItem item = oldFlat->at(i);
if (item.isCall()) {
// Find all elements with the same name and parameter lists:
vector<Nat> eq;
for (Nat j = 0; j < newFlat->count(); j++) {
if (sameFunction(item, newFlat->at(j)))
eq.push_back(j);
}
equivalence.push_back(eq);
} else if (item.isLoop()) {
// Find all elements with minimum edit distance:
vector<Nat> eq;
Nat minEdit = nat(-1);
for (Nat j = 0; j < newFlat->count(); j++) {
if (!newFlat->at(j).isLoop())
continue;
Nat edit = editDistance(item.loop(), newFlat->at(j).loop());
if (edit < minEdit) {
minEdit = edit;
eq.clear();
}
if (edit == minEdit) {
eq.push_back(j);
}
}
equivalence.push_back(eq);
}
}
// Compute the minimum edit distance:
vector<DpElem> edits = minEdits(equivalence, oldFlat->count(), newFlat->count());
// for (size_t i = 0; i < edits.size(); i++) {
// PVAR(edits[i].distance);
// PVAR(edits[i].mode);
// }
// Figure out the mapping:
Array<ControlFlowItem> *result = new (e) Array<ControlFlowItem>();
Nat oldPos = 0;
Nat newPos = 0;
for (size_t i = 0; i < edits.size(); i++) {
if (edits[i].mode == DpElem::remove) {
// This element has been removed, map it to the previous emitted item, if there is one.
if (result->any()) {
result->push(result->last());
} else {
result->push(ControlFlowItem());
}
result->last().status(ControlFlowItem::removed);
oldPos++;
} else if (edits[i].mode == DpElem::add) {
// The element has been added. Just advance 'newPos'!
newPos++;
} else if (edits[i].mode == DpElem::keep) {
// Element is the same, just map it to the new one!
const ControlFlowItem &o = oldFlow->at(oldPos);
const ControlFlowItem &n = newFlow->at(newPos);
assert(o.isCall() == n.isCall());
if (o.isCall()) {
result->push(n);
} else if (o.isLoop()) {
// Recursive diff.
result->push(ControlFlowItem(n.offset(), n.endOffset(), diff(o.loop(), n.loop())));
}
oldPos++;
newPos++;
}
}
// This should always be true, otherwise we have messed up some case above or in 'minEdits'.
assert(result->count() == oldFlow->count());
return result;
}
static void formatDiff(StrBuf *to, Array<ControlFlowItem> *oldFlow, Array<ControlFlowItem> *newFlow) {
if (oldFlow->count() != newFlow->count()) {
*to << S("<size mismatch: ") << oldFlow->count() << S(" vs ") << newFlow->count() << S(")");
return;
}
*to << S("[");
to->indent();
for (Nat i = 0; i < oldFlow->count(); i++) {
const ControlFlowItem &o = oldFlow->at(i);
const ControlFlowItem &n = newFlow->at(i);
*to << S("\n@") << o.offset() << S(",") << o.endOffset() << S("->")
<< n.offset() << S(",") << n.endOffset() << S(" ");
if (o.isLoop() && n.isLoop()) {
formatDiff(to, o.loop(), n.loop());
} else if (o.isCall() && n.isCall()) {
if (o.hasFunction())
*to << o.function()->identifier();
else
*to << o.builtIn()->title();
*to << S(" -> ");
if (n.hasFunction())
*to << n.function()->identifier();
else
*to << n.builtIn()->title();
} else if (o.isCall() && n.isStart()) {
if (o.hasFunction())
*to << o.function()->identifier();
else
*to << o.builtIn()->title();
*to << S(" -> <start of function>");
} else {
*to << S("<non-displayable combination>");
}
ControlFlowItem::statusSuffix(to, n.status());
}
to->dedent();
*to << S("\n]");
}
Str *formatDiff(Array<ControlFlowItem> *oldFlow, Array<ControlFlowItem> *newFlow) {
StrBuf *out = new (oldFlow) StrBuf();
formatDiff(out, oldFlow, newFlow);
return out->toS();
}
}
|