File: ReplaceActive.cpp

package info (click to toggle)
storm-lang 0.7.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 52,004 kB
  • sloc: ansic: 261,462; cpp: 140,405; sh: 14,891; perl: 9,846; python: 2,525; lisp: 2,504; asm: 860; makefile: 678; pascal: 70; java: 52; xml: 37; awk: 12
file content (1249 lines) | stat: -rw-r--r-- 41,938 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
#include "stdafx.h"
#include "ReplaceActive.h"
#include "ControlFlow.h"
#include "ControlFlowDiff.h"
#include "Code/Listing.h"
#include "Code/Arena.h"
#include "Engine.h"

namespace storm {

	/**
	 * Convenient data structures:
	 */


	/**
	 * Data that describes the replacement we are trying to do:
	 */
	struct ActiveReplace {
		// Arena.
		code::Arena *arena;

		// Old function.
		const void *oldFn;

		// New function.
		Function *newFn;

		// Source listing for the new function.
		code::Listing *newSource;

		// Transformed source listing (with some additional labels).
		code::Listing *newTransformed;

		// Variable offsets for the new function.
		Array<Offset> *newVarOffsets;

		// Layout in 'oldFn'.
		Array<ControlFlowItem> *oldCf;

		// Mapped layout in 'newFn'. Refers to instructions in 'newSource'.
		Array<ControlFlowItem> *newCf;

		// Map locations in 'newCf' to instructions in 'newTransformed'. First location after the call instr.
		Map<Nat, Nat> *toTransformedInside;

		// Map locations in 'newCf' to instructions in 'newTransformed'. First location after the expanded FnCall.
		Map<Nat, Nat> *toTransformedAfter;

		// Map locations in 'newCf' to offsets, to right after the corresponding call instruction.
		Map<Nat, Nat> *toOffsetInside;

		// Map locations in 'newCf' to offsets, to after the result has been stored (after the expanded FnCall).
		Map<Nat, Nat> *toOffsetAfter;
	};


	/**
	 * Data structure that describes how to translate offsets from another function to the current
	 * one (the adapter function). This is needed since some architectures have a frame pointer that
	 * points to different locations depending on the size of the stack frame.
	 */
	class OffsetTranslator {
	public:
		// Default: no translation.
		OffsetTranslator() : refVar(), offset() {}

		// Any translation?
		Bool any() const {
			return refVar != code::Var();
		}
		Bool empty() const {
			return !any();
		}

		// Set a different zero point.
		void set(code::Var refVar, code::Offset offset) {
			this->refVar = refVar;
			this->offset = offset;
		}

		// Translate.
		code::Operand operator ()(const code::Operand &o) const {
			if (!any())
				return o;

			// Note: We don't need to handle offset references - they are not used for
			// stack-allocated variables.
			if (o.type() != code::opRelative)
				return o;
			if (!code::same(o.reg(), code::ptrFrame))
				return o;
			return xRel(o.size(), refVar, offset + o.offset());
		}

	private:
		// Variable to use, if any.
		code::Var refVar;

		// Offset in the old function, if any.
		code::Offset offset;
	};


	// Find a Listing for a function.
	static MAYBE(code::Listing *) findSource(Function *fn) {
		Code *code = fn->getCode();

		if (GeneratedCode *g = as<GeneratedCode>(code)) {
			g->compile(); // Make sure it is compiled.
			return g->source();
		} else if (DelegatedCode *delegated = as<DelegatedCode>(fn->getCode())) {
			// Traverse the delegated code and see if we find something on the other side.
			if (NamedSource *target = as<NamedSource>(delegated->to().source())) {
				if (Function *f = as<Function>(target->named())) {
					return findSource(f);
				}
			}
		}

		return null;
	}

	// Clear all parameters in the array:
	static void clearParams(code::Listing *l, Array<code::Var> *vars) {
		for (Nat i = 0; i < vars->count(); i++) {
			if (l->isParam(vars->at(i)))
				vars->at(i) = code::Var();
		}
	}

	// Create a Value from a VarInfo.
	static Value asValue(code::Listing::VarInfo *info) {
		return Value(info->type, info->ref);
	}

	// Default-initialize a variable.
	static void defaultInitVar(code::Listing *l, code::Listing::VarInfo *info, code::Operand target) {
		using namespace code;

		Value type = asValue(info);

		if (type.isValue() && type.isPrimitive()) {
			// Int, float, etc. We can simply zero it.
			*l << lea(ptrA, target);
			*l << mov(xRel(type.size(), ptrA), xConst(type.size(), 0));
		} else if (Function *defaultCtor = info->type->defaultCtor()) {
			TypeDesc *ptrDesc = l->engine().ptrDesc();

			if (type.isClass()) {
				*l << fnParam(ptrDesc, info->type->typeRef());
				*l << fnCall(l->engine().ref(builtin::alloc), false, ptrDesc, ptrA);
				*l << lea(ptrC, target);
				*l << mov(ptrRel(ptrC), ptrA);
				*l << fnParam(ptrDesc, ptrA);
				*l << fnCall(defaultCtor->ref(), true);
			} else {
				*l << lea(ptrA, target);
				*l << fnParam(ptrDesc, ptrA);
				*l << fnCall(defaultCtor->ref(), true);
			}
		} else {
			// Should this be a hard error?
			WARNING(L"No default constructor!");
		}
	}

	// Find the target we should migrate to, given an offset.
	static void findMapTarget(Array<ControlFlowItem> *oldCf, Array<ControlFlowItem> *newCf, size_t offset,
							const ControlFlowItem &parent,
							ControlFlowItem &result, size_t &best) {
		for (Nat i = 0; i < oldCf->count(); i++) {
			const ControlFlowItem &item = oldCf->at(i);
			const ControlFlowItem &newItem = newCf->at(i);
			if (item.isLoop()) {
				findMapTarget(item.loop(), newItem.loop(), offset, newItem, result, best);
			} else if (item.isCall()) {
				if (item.offset() <= offset && offset - item.offset() < best) {
					best = offset - item.offset();
					if (newItem.isStart()) {
						// If the new item was the start, use 'parent'. This maps 'start' inside
						// loops onto the loop itself.
						result = parent;
						// We mark it as 'none' so we start at the top of the loop.
						result.status(ControlFlowItem::none);
					} else {
						result = newItem;
					}
				}
			}
		}
	}
	static ControlFlowItem findMapTarget(ActiveReplace &replace, size_t offset) {
		size_t best = size_t(-1);
		ControlFlowItem firstParent;
		ControlFlowItem result;
		findMapTarget(replace.oldCf, replace.newCf, offset, firstParent, result, best);
		return result;
	}

	struct GeneratedThunk {
		code::Binary *generated;
		size_t offset;
	};

	static code::Operand offsetIn(code::Size size, code::Operand base, Nat offset) {
		using namespace code;
		if (base.type() == opRelative) {
			return xRel(size, base.reg(), base.offset() + Offset(offset));
		} else if (base.type() == opVariable) {
			return xRel(size, base.var(), base.offset() + Offset(offset));
		} else {
			throw new (runtime::someEngine()) InternalError(S("Unsupported operand type!"));
		}
	}

	static void movMemcpy(code::Listing *out, code::Size size, code::Operand from, code::Operand to) {
		using namespace code;

		// Copy pointer by pointer.
		Nat totalSize = size.current();
		Nat offset = 0;

		const Size steps[] = { Size::sPtr, Size::sInt, Size::sByte };

		for (Nat step = 0; step < ARRAY_COUNT(steps); step++) {
			Size stepSz = steps[step];

			while (offset + stepSz.current() <= totalSize) {
				*out << mov(offsetIn(stepSz, to, offset), offsetIn(stepSz, from, offset));
				offset += stepSz.current();
			}
		}
	}

	static void copyValue(code::Listing *out, Value type, code::Operand from, code::Operand to) {
		using namespace code;

		if (type.type == null) {
			// We need to trust sizes in the operands. Prefer 'from'.
			Reg sizedA = asSize(ptrA, from.size());
			*out << mov(sizedA, from);
			if (to.size() == from.size()) {
				*out << mov(to, sizedA);
			} else {
				*out << lea(ptrC, to);
				*out << mov(xRel(from.size(), ptrC), sizedA);
			}
		} else if (type.isAsmType()) {
			// Sizes of 'from' and 'to' may be wrong, so we work with pointers:
			Reg sizedA = asSize(ptrA, type.size());
			if (from.size() != type.size() || to.size() != type.size()) {
				*out << lea(ptrA, from);
				*out << lea(ptrC, to);
				*out << mov(sizedA, xRel(type.size(), ptrA, Offset()));
				*out << mov(xRel(type.size(), ptrC, Offset()), sizedA);
			} else {
				*out << mov(sizedA, from);
				*out << mov(to, sizedA);
			}
		} else {
			Function *copyCtor = type.type->copyCtor();
			TypeDesc *ptrDesc = out->engine().ptrDesc();
			if (!copyCtor || (copyCtor->fnFlags() & fnPure)) {
				// Memcpy
				movMemcpy(out, type.size(), from, to);
			} else {
				// Call copy-ctor.
				*out << lea(ptrA, to);
				*out << lea(ptrC, from);
				*out << fnParam(ptrDesc, ptrA);
				*out << fnParam(ptrDesc, ptrC);
				*out << fnCall(copyCtor->ref(), true);
			}

			// Run the dtor if applicable:
			Function *dtor = type.type->destructor();
			// Don't run dtor if ctor was marked pure.
			if (copyCtor && (copyCtor->fnFlags() & fnPure))
				dtor = null;
			if (dtor) {
				*out << lea(ptrA, from);
				*out << fnParam(ptrDesc, ptrA);
				*out << fnCall(dtor->ref(), true);
			}
		}
	}

	static void commitMoves(code::Listing *out, Array<DataMove> *moves) {
		using namespace code;

		for (Nat i = 0; i < moves->count(); i++) {
			const DataMove &move = moves->at(i);

			copyValue(out, move.type, move.source, move.target);
		}
	}

	static void moveVar(Array<DataMove> *out, code::Listing *l, code::Block auxBlock,
						Value type, code::Operand from, code::Operand to) {
		using namespace code;

		// If the two locations are the same, we can skip moving it.
		if (from == to)
			return;

		Var tmpVar = l->createVar(auxBlock, type.size());
		copyValue(l, type, from, tmpVar);

		out->push(DataMove(tmpVar, to, type));
	}

	static void movePreservedRegs(Array<DataMove> *move, code::Listing *out,
								const OffsetTranslator &translateOld, const OffsetTranslator &translateNew,
								code::Block auxBlock, code::Arena::Skeleton *oldFn, code::Arena::Skeleton *newFn) {
		using namespace code;

		// Find registers we need to keep and save them in separate variables.
		for (Nat i = 0; i < newFn->savedRegs->count(); i++) {
			Operand src = newFn->savedRegs->at(i);

			for (Nat j = 0; j < oldFn->savedRegs->count(); j++) {
				if (same(oldFn->savedRegs->at(j).reg(), src.reg())) {
					src = oldFn->savedLocs->at(j);
					break;
				}
			}

			Operand dest = newFn->savedLocs->at(i);

			src = translateOld(src);
			dest = translateNew(dest);

			// If it is already in the proper location, we don't need to do anything.
			if (src == dest)
				continue;

			Var tmp = out->createVar(auxBlock, Size::sPtr);
			*out << mov(ptrA, src);
			*out << mov(tmp, ptrA);
			move->push(DataMove(tmp, dest, Value()));
		}

		// Find registers that were removed, and restore them now.
		for (Nat i = 0; i < oldFn->savedRegs->count(); i++) {
			Operand dest = oldFn->savedRegs->at(i);
			Bool found = false;
			for (Nat j = 0; j < newFn->savedRegs->count(); j++) {
				if (same(dest.reg(), newFn->savedRegs->at(j).reg())) {
					found = true;
					break;
				}
			}

			if (!found) {
				// Avoid making 'dest' a preserved register by using 'shadowMov'.
				*out << shadowMov(dest, translateOld(oldFn->savedLocs->at(i)));
			}
		}
	}

	// Helper data structure to look up variables based on their offsets.
	class OffsetLookup {
	public:
		// Variables that are visible here.
		Array<code::Var> *visibleVars;

		// Offset-based lookup.
		struct Entry {
			code::Offset offset;
			code::Var var;

			Entry(code::Offset offset, code::Var var)
				: offset(offset), var(var) {}

			bool operator <(const Entry &o) const {
				return *this < o.offset;
			}
			bool operator <(const code::Offset &o) const {
				return offset.current() < o.current();
			}
		};
		vector<Entry> lookup;

		// Create.
		OffsetLookup(code::Listing *l, code::Block block, Array<code::Offset> *offsets) {
			// Get all variables to get the total number of variables we need to worry about.
			visibleVars = l->allVars();
			for (Nat i = 0; i < visibleVars->count(); i++)
				visibleVars->at(i) = code::Var();

			// Fill in all variables that are visible.
			for (code::Block c = block; c != code::Block(); c = l->parent(c)) {
				Array<code::Var> *here = l->allVars(c);
				for (Nat i = 0; i < here->count(); i++) {
					code::Var v = here->at(i);

					// Don't include named variables or parameters.
					if (l->varInfo(v))
						continue;
					if (l->isParam(v))
						continue;

					visibleVars->at(v.key()) = v;
				}
			}

			// Put all offsets in an array so that we can look them up later on.
			for (Nat i = 0; i < visibleVars->count(); i++) {
				code::Var v = visibleVars->at(i);
				if (v == code::Var())
					continue;

				lookup.push_back(Entry(offsets->at(v.key()), v));
			}

			std::sort(lookup.begin(), lookup.end());
		}

		// Lookup an offset into a variable.
		code::Var find(code::Offset offset) const {
			vector<Entry>::const_iterator found = std::lower_bound(lookup.begin(), lookup.end(), offset);
			if (found == lookup.end())
				return code::Var();

			if (found->offset.current() == offset.current())
				return found->var;

			// Try to look at the previous element:
			if (found == lookup.begin())
				return code::Var();

			--found;
			if (found->offset.current() + Int(found->var.size().current()) < offset.current())
				return found->var;
			return code::Var();
		}

		// Lookup an entire Operand. Only return something sensible if it is relative to ptrFrame.
		code::Var find(const code::Operand &op) const {
			if (op.type() == code::opRelative && op.reg() == code::ptrFrame)
				return find(op.offset());
			return code::Var();
		}
	};

	// Add a register to a RegSet, but skip ptrFrame and ptrStack.
	static void putReg(code::RegSet *to, code::Reg reg) {
		if (code::same(reg, code::ptrStack) || code::same(reg, code::ptrFrame))
			return;
		to->put(reg);
	}

	// Look backwards and see if the registers used to address some operands lead to a
	// non-initialized variable.
	static Bool dependsOnVariable(code::Operand toTrace, code::Listing *src, Nat current, const OffsetLookup &lookup) {
		using namespace code;

		// This only makes sense for pointer-sized registers.
		if (toTrace.size() != Size::sPtr)
			return false;

		// Go backwards and find the source.
		for (Nat i = current; i > 0; i--) {
			Instr *instr = src->at(i - 1);

			// Ignore instructions that don't write anything.
			if ((instr->mode() & destWrite) == 0)
				continue;

			// Right target?
			Operand dest = instr->dest();
			if (dest != toTrace)
				continue;

			// End-case, is it a lea?
			if (instr->op() == op::lea) {
				return lookup.find(instr->src()) != Var();
			}

			// Otherwise, check the source operand. If that is a register, we need to trace that as well.
			// We also need to trace through other variables on the stack - we might have spilled the
			// register to memory.
			Operand srcOp = instr->src();
			if (srcOp.type() == opRegister) {
				if (dependsOnVariable(srcOp, src, i - 1, lookup))
					return true;
			} else if (srcOp.type() == opRelative && srcOp.reg() == ptrFrame) {
				if (dependsOnVariable(srcOp, src, i - 1, lookup))
					return true;
			}

			// Finally, continue looping as long as the instruction also reads from the source
			// operand (e.g. add ptrX, 10)
			if ((instr->mode() & destRead) == 0)
				break;
		}

		return false;
	}

	// Check if the array contains the operand.
	static Bool findAndRemove(const code::Offset &find, Array<code::Offset> *in) {
		for (Nat i = 0; i < in->count(); i++) {
			if (find.current() == in->at(i).current()) {
				in->remove(i);
				return true;
			}
		}
		return false;
	}

	// Helper to find the target offset of a label (slow).
	static Nat findLabelTarget(code::Listing *src, code::Label find) {
		for (Nat i = 0; i < src->count(); i++) {
			Array<code::Label> *lbls = src->labels(i);
			for (Nat j = 0; j < lbls->count(); j++) {
				if (lbls->at(j) == find)
					return i;
			}
		}
		return src->count();
	}

	// Replace source operands that are labels if necessary.
	static code::Instr *replaceInstrLabel(code::Instr *instr, code::Listing *listing, Function *newFn,
										Array<code::Operand> *largeData, code::Label largeLbl) {
		using namespace code;

		Operand src = instr->src();
		if (src.type() != opLabel && src.type() != opRelativeLbl)
			return instr;

		// Find the label:
		Nat target = findLabelTarget(listing, src.label());
		if (target >= listing->count())
			return instr;

		// There are two cases we want to handle here:
		if (target == 0 && src.type() == opLabel) {
			// Start of the listing itself. This is used on X86 to store a pointer to the code
			// itself for EH.
			src = newFn->directRef();
		} else {
			// Reference to data. This is used to load large-ish constants from memory. We need to
			// copy the data to our listing.
			Int offset = 0;
			if (src.type() == opRelativeLbl)
				offset = src.offset().v64() / Offset::sWord.v64();
			if (Int(target) + offset < 0 || Nat(target + offset) >= listing->count())
				return instr;

			Instr *d = listing->at(Nat(target + offset));
			if (d->op() != op::dat)
				return instr;

			src = xRel(src.size(), largeLbl, Offset::sWord * largeData->count());
			largeData->push(d->src());
		}

		return instr->alterSrc(src);
	}

	// Initialize all non-named variables in the listing based on 'src' that is expected to be a
	// transformed version of the new code. Note that, since 'src' is transformed, we can not easily
	// speak of variables. We only have offsets to work with.
	static void initializeNonNamed(code::Arena *arena, code::Listing *out,
								code::Listing *src, const OffsetTranslator &translate,
								code::Block activeBlock, Nat srcOffset, Array<code::Offset> *srcLayout,
								Array<code::Offset> *extraMetadata, Function *newFn) {
		using namespace code;

		// TODO: Try to trace values between function calls as well! That is nice in cases with
		// expressions with multiple function calls and lots of temporaries.

		OffsetLookup lookup(src, activeBlock, srcLayout);

		// 1: Walk the code forward to find which variables will be used in the future. We stop at
		// the first occurrence of each of them. This is a bit tricky, since the same stack space is
		// re-used in subsequent blocks. We are therefore likely to over-estimate what we need.
		Array<Var> *toTrack = new (src) Array<Var>(lookup.visibleVars->count(), Var());
		for (Nat i = srcOffset; i < src->count(); i++) {
			Instr *instr = src->at(i);

			Var srcVar = lookup.find(instr->src());
			if (srcVar != Var())
				toTrack->at(srcVar.key()) = srcVar;

			if (instr->mode() & destRead) {
				Var destVar = lookup.find(instr->dest());
				if (destVar != Var())
					toTrack->at(destVar.key()) = destVar;
			}
		}

		// We will trash 'extraMetadata', so make our own copy.
		extraMetadata = new (extraMetadata) Array<Offset>(*extraMetadata);

		Array<Operand> *largeData = new (out) Array<Operand>();
		Label largeLbl = out->label();

		// 2: Walk the code backwards to find assignments to the affected variables. Copy them to
		// the output.
		Array<Instr *> *keep = new (out) Array<Instr *>();
		RegSet *regs = new (out) RegSet(); // Registers that contain valuable data.
		Bool addNext = false; // To keep flags intact if we need to.
		for (Nat i = srcOffset; i > 0; i--) {
			Instr *instr = src->at(i - 1);

			// Skip instructions prefixed with threadLocal (x86 mainly), they don't behave in the
			// way we expect.
			if (i >= 2 && src->at(i - 2)->op() == op::threadLocal)
				continue;

			Bool add = addNext;
			addNext = false;

			if (instr->op() == op::call) {
				// Function calls are special in that they clear registers.
				arena->removeFnRegs(regs);

				// TODO: If we are interested in some function call register, we might want to keep
				// the call. This does, however, mean that we have to understand quite a bit about
				// the calling convention. For example, we need to retain stack setup/cleanup, which
				// is not easy. Since we generally know which function was called, we could inspect
				// it to figure out parameter layout for example. Also, we need to re-do the call
				// since we have a larger stack frame. If we keep the old code we risk destroying
				// our saved temporaries.

			} else if (instr->mode() & destWrite) {
				// See if it produces something we are interested in!
				Operand dest = instr->dest();
				Var destVar = lookup.find(dest);
				if (destVar != Var() && toTrack->at(destVar.key()) != Var()) {
					add = true;
					// TODO: This does not account for if the *entire* variable has been read/written.
					toTrack->at(destVar.key()) = Var();
				} else if (dest.type() == opRegister && regs->has(dest.reg())) {
					add = true;
					regs->remove(dest.reg());
				} else if (dest.type() == opRelative) {
					// We have different things to consider here:
					if (same(dest.reg(), ptrFrame)) {
						// 1: if the base register is ptrFrame, check if this is an extra metadata access.
						add |= findAndRemove(dest.offset(), extraMetadata);
					} else if (same(dest.reg(), ptrStack)) {
						// 2: ptrStack can just be skipped.
					} else {
						// Check if the source originates from a lea of the address of the variable.
						add |= dependsOnVariable(dest.reg(), src, i - 1, lookup);
					}
				}
			}

			// Add it if we want to keep it!
			if (add) {
				// If 'src' is a label, we might need to modify it a bit.
				instr = replaceInstrLabel(instr, src, newFn, largeData, largeLbl);

				keep->push(instr);

				// If we just kept 'setCond', we want to add the next one if it is a 'cmp' or
				// 'test', even if those instructions don't produce any relevant output. They affect
				// flags, and we are interested in flags!
				if (instr->op() == op::setCond) {
					if (i >= 2) {
						Instr *prev = src->at(i - 2);
						addNext = (prev->op() == op::cmp) || (prev->op() == op::test);
					}
				}

				// Look at inputs from the instruction and update what we should keep track of.

				// Note the special case xor <reg>, <reg> has no inputs.
				Bool skipInputs = false;
				if (instr->op() == op::bxor) {
					skipInputs = instr->src() == instr->dest();
				}

				if (!skipInputs) {
					{
						Operand op = instr->src();
						Var v = lookup.find(op);
						if (v != Var() && lookup.visibleVars->at(v.key()) != Var()) {
							toTrack->at(v.key()) = v;
						} else if (op.type() == opRegister || op.type() == opRelative) {
							if (op.reg() != ptrFrame && op.reg() != ptrStack)
								regs->put(op.reg());
						}
					}

					Operand op = instr->dest();
					Var v = lookup.find(op);
					if (instr->mode() & destRead) {
						if (v != Var() && lookup.visibleVars->at(v.key()) != Var()) {
							toTrack->at(v.key()) = v;
						} else if (op.type() == opRegister) {
							putReg(regs, op.reg());
						}
					}
					// Addressing reads are a bit special:
					if ((instr->mode() & (destRead | destWrite)) && op.type() == opRelative) {
						putReg(regs, op.reg());
					}
				}
			}
		}

		// 3: Put things back to "out".
		for (Nat i = keep->count(); i > 0; i--) {
			Instr *instr = keep->at(i - 1);
			// Translate offsets if required:
			instr = instr->alter(translate(instr->dest()), translate(instr->src()));
			// PVAR(instr);
			*out << instr;
		}

		// 4: Put the large constants out if we need them.
		if (largeData->any()) {
			Label end = out->label();
			*out << jmp(end);
			*out << align(Offset::sWord);
			*out << largeLbl;
			for (Nat i = 0; i < largeData->count(); i++)
				*out << dat(largeData->at(i));
			*out << end;
		}
	}

	static GeneratedThunk generateStage1(ActiveReplace &replace, size_t offset,
										code::Arena::Skeleton *skeleton, GeneratedThunk stage2) {
		using namespace code;

		Binary *oldBinary = codeBinary(replace.oldFn);
		Listing *l = skeleton->listing;

		// To initialize the stack frame and EH properly. We will actually jump *over* this, since
		// we do not want to re-initialize the stack frame.
		*l << prolog();

		// Add dummy "mov(reg, 0)" to make sure that they are clobbered.
		for (Nat i = 0; i < skeleton->savedRegs->count(); i++) {
			Operand op = skeleton->savedRegs->at(i);
			*l << mov(op, xConst(op.size(), 0));
		}

		// This is where we actually start executing the thunk!
		Label start = l->label();
		*l << start;

		// The only thing left to do is to jump to stage 2:

		// Update the stack size. ptrC is safe to use here. It is neither volatile, nor used for the result.
		replace.arena->resizeStackFrame(l, ptrC, stage2.generated);

		// Jump to target!
		RefSource *ref = new (l) StrRefSource(S("<stage 2>"), stage2.generated);
		*l << mov(ptrC, Operand(Ref(ref)));
		*l << add(ptrC, ptrConst(Nat(stage2.offset)));
		*l << jmp(ptrC);

		Binary::Info info = Binary::compile(replace.arena, l);

		// Check the assumption that the stack frame of what we have created is the same as the
		// stack frame of the old function. Otherwise, exceptions will not work!
		size_t oldStackSize = oldBinary->stackSize();
		if (info.binary->stackSize() != oldStackSize) {
			StrBuf *msg = new (replace.arena) StrBuf();
			*msg << S("Mismatched stack sizes during replacement. ");
			*msg << S("Expected ") << oldStackSize << S(" but got ") << info.binary->stackSize() << S(".");
			throw new (replace.arena) InternalError(msg->toS());
		}

		GeneratedThunk r = {
			info.binary,
			info.offsets->at(start.key()),
		};
		return r;
	}

	static void activateBlock(code::Listing *out, code::Block block) {
		if (block == out->root())
			return;
		activateBlock(out, out->parent(block));
		*out << code::begin(block);
	}

	static GeneratedThunk generateStage2(ActiveReplace &replace, size_t offset, code::Arena::Skeleton *stage1) {
		using namespace code;

		Binary *newBinary = codeBinary(replace.newFn->directRef().address());
		size_t newStackSize = newBinary->stackSize();
		size_t oldStackSize = codeBinary(replace.oldFn)->stackSize();

		ControlFlowItem target = findMapTarget(replace, offset);

		// Figure out the target offset:
		Nat targetOffset = 0;
		Nat transformedOffset = 0;
		switch (target.status()) {
		case ControlFlowItem::none:
			targetOffset = replace.toOffsetInside->get(target.offset());
			transformedOffset = replace.toTransformedInside->get(target.offset());
			break;
		case ControlFlowItem::removed:
			// Skip storing the result, the call was removed:
			targetOffset = replace.toOffsetAfter->get(target.offset());
			transformedOffset = replace.toTransformedAfter->get(target.offset());
			break;
		}

		Listing *srcListing = replace.newTransformed;

		// Create our own listing with the proper layout.
		Listing *l = srcListing->createShell(replace.arena);

		// Generate a skeleton for the compiled version of the new function. This will give us
		// information about saved registers, active blocks, etc.
		Arena::Skeleton *skeleton = replace.arena->compatibleFrameSkeleton(newBinary, targetOffset);

		*l << prolog();

		// Add dummy "mov(reg, 0)" to make sure that they are clobbered.
		for (Nat i = 0; i < skeleton->savedRegs->count(); i++) {
			Operand op = skeleton->savedRegs->at(i);
			*l << mov(op, xConst(op.size(), 0));
		}

		// Activate the right block, for EH to work properly. (Note: we can't look in the listing -
		// transformation removes 'begin' and 'end' instructions).
		Block activeBlock = Block::fromNat(skeleton->currentBlock);
		activateBlock(l, activeBlock);

		// Create a new block to increase the size of the stack frame. This allows us to store
		// registers that need to be preserved for the result. A separate block ensures that these
		// variables are *after* any local variables in the function.
		RegSet *fnRegsToSave = replace.arena->fnResultRegs();
		Array<Var> *storedFnRegs = new (l) Array<Var>();

		Block auxBlock = l->createBlock(activeBlock);
		*l << begin(auxBlock);

		// Reference point for offset translations.
		Var translatorZero;

		// If the new stack frame is smaller than the old version, add padding here so that we don't
		// accidentally overwrite old data when we try to move everything into place.
		if (newStackSize < oldStackSize) {
			Nat extraSize = Nat(oldStackSize - newStackSize);
			translatorZero = l->createVar(auxBlock, Size(extraSize));

			// Then start a new block here to make sure that everything new we add comes after the padding.
			auxBlock = l->createBlock(auxBlock);
			*l << begin(auxBlock);
		}

		// Initialize the translators if necessary.
		OffsetTranslator translateFromOld;
		// Note: 'translateFromNew' is only necessary when looking at transformed code.
		OffsetTranslator translateFromNew;
		if (stage1->accessMode >= 0) {
			assert(skeleton->accessMode >= 0, L"Both skeletons should have similar properties.");

			// If we need to translate offsets, we need a reference point.
			if (translatorZero == Var()) {
				translatorZero = l->createVar(auxBlock, Size::sPtr);
				auxBlock = l->createBlock(auxBlock);
				*l << begin(auxBlock);
			}

			// Set up the translators:
			Offset oldOffset = -Offset(stage1->accessMode);
			Offset newOffset = oldOffset +
				Offset(Int(oldStackSize + stage1->accessMode)) -
				Offset(Int(newStackSize + skeleton->accessMode));

			translateFromOld.set(translatorZero, oldOffset);
			translateFromNew.set(translatorZero, newOffset);
		}

		// Actual starting point.
		Label start = l->label();
		*l << start;

		// We only need to save result registers if the call-site was not removed (if it was removed,
		// we might need to run destructors, however).
		Nat fnRegsSize = 0;
		if (target.status() != ControlFlowItem::removed) {
			for (RegSet::Iter i = fnRegsToSave->begin(); i != fnRegsToSave->end(); i++) {
				Var v = l->createVar(auxBlock, size(i.v()));
				*l << replace.arena->saveFnResultReg(i.v(), v);
				storedFnRegs->push(v);
				// Note: this under-estimates the size (due to not considering alignment), which is
				// fine since we only care about not having a stack frame that is smaller than the
				// old version's stack frame. It is fine if we accidentally add "too much" padding,
				// for example.
				fnRegsSize += v.size().current();
			}
		}

		// Store which items need to be restored.
		Array<DataMove> *toMove = new (replace.arena) Array<DataMove>();

		// Figure out which registers need to be moved, to make sure any preserved registers are in
		// their proper place.
		movePreservedRegs(toMove, l, translateFromOld, translateFromNew, auxBlock, stage1, skeleton);

		// Go through all visible variables and migrate them.
		Array<Var> *toInit = new (replace.arena) Array<Var>();
		Array<Var> *toRemove = new (replace.arena) Array<Var>();
		{
			// Note: Both of these are skeletons, so they only contain visible variables.
			// Note: Due to how the Arena generates the skeleton, variables will be from
			// leafmost block to rootmost block.
			Array<Var> *allOldVars = stage1->listing->allVars();
			Array<Var> *allNewVars = skeleton->listing->allVars();

			// We don't support migrating parameters yet. They need to be the same.
			clearParams(stage1->listing, allOldVars);
			clearParams(skeleton->listing, allNewVars);

			// TODO: We could look at the types as well. That could help to find renamed variables.
			for (Nat i = 0; i < allNewVars->count(); i++) {
				Var newVar = allNewVars->at(i);
				Listing::VarInfo *newInfo = skeleton->listing->varInfo(newVar);
				if (!newInfo)
					continue;

				for (Nat j = 0; j < allOldVars->count(); j++) {
					Var oldVar = allOldVars->at(j);
					Listing::VarInfo *oldInfo = stage1->listing->varInfo(oldVar);
					if (!oldInfo)
						continue;

					if (*newInfo->name != *oldInfo->name)
						continue;

					moveVar(toMove, l, auxBlock, asValue(newInfo),
							translateFromOld(stage1->varOffsets->at(oldVar.key())),
							// Compatible frames, so we can just use 'newVar' here instead of:
							// translateFromNew(skeleton->varOffsets->at(newVar.key())));
							newVar);

					allNewVars->at(i) = Var();
					allOldVars->at(j) = Var();
					break;
				}
			}

			// Now, we can just look at any remaining variables in 'allNewVars' to find things to initialize...
			for (Nat i = 0; i < allNewVars->count(); i++)
				if (allNewVars->at(i) != Var())
					toInit->push(allNewVars->at(i));

			// ...and in 'allOldVars' to find things to destroy.
			for (Nat i = 0; i < allOldVars->count(); i++)
				if (allOldVars->at(i) != Var())
					toRemove->push(allOldVars->at(i));
		}

		// Destroy old variables.
		for (Nat i = 0; i < toRemove->count(); i++) {
			Var var = toRemove->at(i);
			Listing::VarInfo *info = stage1->listing->varInfo(var);
			if (!info || !info->type)
				continue;

			if (Function *dtor = info->type->destructor()) {
				*l << lea(ptrA, translateFromOld(stage1->varOffsets->at(var.key())));
				*l << fnParam(l->engine().ptrDesc(), ptrA);
				*l << fnCall(dtor->ref(), true);
			}
		}

		// Now that everything is copied away from the old frame, we can copy everything back!
		commitMoves(l, toMove);

		// Initialize any new named variables:
		for (Nat i = 0; i < toInit->count(); i++) {
			Var var = toInit->at(i);
			Listing::VarInfo *info = skeleton->listing->varInfo(var);
			if (!info || !info->type)
				continue;

			// TODO: Find initialization of the variable in replace.newSource and use that if possible.
			// Note: We can just use the variable itself. Frames are compatible.
			// defaultInitVar(l, info, translateFromNew(skeleton->varOffsets->at(var.key())));
			defaultInitVar(l, info, var);
		}

		// Copy code from the new version of the function to initialize any non-named variables.
		initializeNonNamed(replace.arena, l, srcListing, translateFromNew, activeBlock, transformedOffset,
						replace.newVarOffsets, stage1->extraMetadata, replace.newFn);

		// Restore function result registers if we need to.
		if (target.status() != ControlFlowItem::removed) {
			Nat id = 0;
			for (RegSet::Iter i = fnRegsToSave->begin(); i != fnRegsToSave->end(); i++, id++) {
				*l << replace.arena->restoreFnResultReg(i.v(), storedFnRegs->at(id));
			}
		}

		// Update the stack pointer using ptrC as a temporary.
		replace.arena->resizeStackFrame(l, ptrC, newBinary);

		// Jump to the right location.
		// Note 1: we use ptrC, since that register is always saved by the caller and never contains
		// the return value.
		// Note 2: we intentionally *do not* execute the epilog of the function.
		*l << mov(ptrC, replace.newFn->directRef());
		*l << add(ptrC, ptrConst(targetOffset));
		*l << jmp(ptrC);

		// PVAR(l);

		Binary::Info info = Binary::compile(replace.arena, l);
		GeneratedThunk r = {
			info.binary,
			info.offsets->at(start.key()),
		};
		return r;
	}

	static GeneratedThunk generateThunk(ActiveReplace &replace, size_t offset) {
		// The approach here is as follows:
		// We generate two thunks: stage1 and stage2. The code in stage1 has the stack layout of the
		// old function. This way exceptions work reliably, and we can actually read/write data
		// members as we wish. Stage 1 does not do very much, it mainly updates the frame pointer
		// and jumps to stage 2. Stage 2 has the stack layout of the new function. The first thing
		// stage 2 does is to shuffle data around to match the new stack layout. It then runs any
		// initialization code for non-named variables (or new local variables), before jumping to
		// the original version. Stage 2 actually allocates some extra stack space to be able to
		// save the registers that may contain the return value.

		// Compute information about stage 1 first.
		code::Binary *oldBinary = code::codeBinary(replace.oldFn);
		code::Arena::Skeleton *stage1Info = replace.arena->compatibleFrameSkeleton(oldBinary, Nat(offset));

		// Generate stage 2 first.
		GeneratedThunk stage2 = generateStage2(replace, offset, stage1Info);

		// Then, we can connect it to stage 1.
		GeneratedThunk stage1 = generateStage1(replace, offset, stage1Info, stage2);

		return stage1;
	}

	static Bool replaceWithThunk(ActiveReplace &replace, ActiveOffset offset, ReplaceTasks *tasks) {
		GeneratedThunk thunk = generateThunk(replace, offset.offset);
		if (!thunk.generated)
			return false;

		// Add a RefSource for better output in stack traces, etc.
		// TODO: Eventually, we want some special representation here, so that we can detect and account for the
		// case when we are trying to replace a function that was previously replaced, but not yet executed.
		new (replace.arena) code::StrRefSource(S("<thunk>"), thunk.generated);

		size_t replaced = tasks->replaceActive(replace.oldFn, offset.offset, thunk.generated->address(), thunk.offset);
		return replaced == offset.count;
	}

	static MAYBE(Array<Nat> *) hasLabel(Array<code::Label> *checkFor, MAYBE(Array<code::Label> *) checkIn) {
		if (!checkIn)
			return null;
		if (checkFor->empty())
			return null;

		Array<Nat> *found = null;

		for (Nat i = 0; i < checkIn->count(); i++) {
			Nat check = checkIn->at(i).key();

			// TODO: We could binary search here, they should be sorted.
			for (Nat j = 0; j < checkFor->count(); j++) {
				Nat f = checkFor->at(j).key();
				if (check != f)
					continue;

				if (!found)
					found = new (checkFor) Array<Nat>();
				found->push(j);
			}
		}

		return found;
	}

	// Replace mappings in 'mapping' with corresponding offsets in the binary.
	static void srcLocToMapping(ActiveReplace &replace, Array<ControlFlowItem> *targets) {
		code::Listing *code = new (replace.arena) code::Listing(*replace.newSource);

		// Figure out which offsets are necessary:
		// Note: This excludes loops. Currently, we don't need them, but we might in the future.
		Array<ControlFlowItem> *offsets = flatten(targets);
		offsets->sort();
		offsets->removeDuplicates();
		if (offsets->empty())
			return;

		// Insert labels:
		Array<code::Label> *innerLabels = new (code) Array<code::Label>();
		Array<code::Label> *endLabels = new (code) Array<code::Label>();

		for (Nat i = 0; i < offsets->count(); i++) {
			ControlFlowItem item = offsets->at(i);
			if (item.isLoop()) {
				// Loop:
				code::Label start = code->label();
				code::Label end = code->label();
				code->insert(item.offset(), start);
				code->insert(item.endOffset() + 1, end); // After the jump instruction.
				innerLabels->push(start);
				endLabels->push(end);
			} else {
				// Function call:
				code::Label lbl = code->label();
				// Note: Inserting just after the function call.
				code->insert(item.offset() + 1, lbl);
				innerLabels->push(lbl);
				endLabels->push(lbl);
			}
		}

		// Transform into low-level representation:
		code::Arena::TransformInfo tfmInfo = replace.arena->transformInfo(code);
		code::Listing *transformed = tfmInfo.listing;
		replace.newTransformed = tfmInfo.listing;
		replace.newVarOffsets = tfmInfo.varLayout;

		// Find the labels in the transformed version, move them earlier to just after the call instruction.
		for (Nat i = 0; i < transformed->count(); i++) {
			Array<Nat> *found = hasLabel(endLabels, transformed->labels(i));
			if (found && found->any()) {
				// See if at least one element is a call.
				Bool anyCalls = false;
				for (Nat j = 0; j < found->count(); j++) {
					if (!offsets->at(j).isLoop())
						anyCalls = true;
				}
				if (!anyCalls)
					continue;

				// Find the call op:
				Nat call = i - 1;
				while (call > 0 && transformed->at(call)->op() != code::op::call)
					call--;

				// Update labels if we need to:
				if (call + 1 != i) {
					code::Label lbl = transformed->label();
					transformed->insert(call + 1, lbl);
					for (Nat j = 0; j < found->count(); j++)
						innerLabels->at(found->at(j)) = lbl;
				}
			}
		}

		// Compute offsets for all labels in 'transformed':
		{
			Array<Nat> *labelTarget = new (code) Array<Nat>(transformed->labelCount(), transformed->count());
			for (Nat i = 0; i < transformed->count(); i++) {
				// Mark labels:
				if (Array<code::Label> *labels = transformed->labels(i)) {
					for (Nat j = 0; j < labels->count(); j++) {
						labelTarget->at(labels->at(j).key()) = i;
					}
				}
			}

			replace.toTransformedInside = new (code) Map<Nat, Nat>();
			replace.toTransformedAfter = new (code) Map<Nat, Nat>();

			// Values to handle "jump to start of function".
			replace.toTransformedInside->put(0, 0);
			replace.toTransformedAfter->put(0, 0);

			for (Nat i = 0; i < offsets->count(); i++) {
				const ControlFlowItem &item = offsets->at(i);
				replace.toTransformedInside->put(item.offset(), labelTarget->at(innerLabels->at(i).key()));
				replace.toTransformedAfter->put(item.endOffset(), labelTarget->at(endLabels->at(i).key()));
			}
		}

		// Compute the offset of all labels:
		code::LabelOutput *lblOutput = replace.arena->labelOutput();
		replace.arena->output(transformed, lblOutput);

		// Find the offsets and store them:
		replace.toOffsetInside = new (code) Map<Nat, Nat>();
		replace.toOffsetAfter = new (code) Map<Nat, Nat>();

		// Values to handle "jump to start of function".
		replace.toOffsetInside->put(0, 0);
		replace.toOffsetAfter->put(0, 0);

		for (Nat i = 0; i < offsets->count(); i++) {
			Nat o = offsets->at(i).offset();
			replace.toOffsetInside->put(o, lblOutput->offsets->at(innerLabels->at(i).key()));
			replace.toOffsetAfter->put(o, lblOutput->offsets->at(endLabels->at(i).key()));
		}
	}


	// Note: We might need some way of differentiating between old types and new types. Since this
	// code expects to be executed *after* replacing all types, it can not simply look at Type
	// pointers. For that, we might need a context that contains replacement code, if that is not
	// already inside ReplaceTasks.
	Bool replaceActiveFunction(const void *oldFn, Function *newFn, ReplaceTasks *tasks) {
		// Figure out what we need to do:
		vector<ActiveOffset> active = tasks->findActive(oldFn);
		if (active.empty())
			return true;

		ActiveReplace replace = {
			newFn->engine().arena(),
			oldFn,
			newFn,
			null,
			null,
			null,
			null,
			null,
			null,
			null,
		};

		// Find a Listing, otherwise we can't do very much.
		replace.newSource = findSource(newFn);
		if (!replace.newSource)
			return false;

		// Pre-compute mappings etc. that can be used for many different offsets.
		replace.oldCf = controlFlowListRaw((void *)replace.oldFn);
		replace.newCf = controlFlowList(replace.newSource);

		replace.newCf = diff(replace.oldCf, replace.newCf);
		srcLocToMapping(replace, replace.newCf);
		// PVAR(formatDiff(replace.oldCf, replace.newCf));

		Bool ok = true;

		for (size_t i = 0; i < active.size(); i++) {
			ok &= replaceWithThunk(replace, active[i], tasks);
		}

		return ok;
	}

}