File: Runtime.cpp

package info (click to toggle)
storm-lang 0.7.4-1
  • links: PTS, VCS
  • area: main
  • in suites:
  • size: 52,004 kB
  • sloc: ansic: 261,462; cpp: 140,405; sh: 14,891; perl: 9,846; python: 2,525; lisp: 2,504; asm: 860; makefile: 678; pascal: 70; java: 52; xml: 37; awk: 12
file content (298 lines) | stat: -rw-r--r-- 7,814 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
#include "stdafx.h"
#include "Runtime.h"
#include "Gc/Gc.h"
#include "Type.h"
#include "Engine.h"
#include "Core/Str.h"
#include "Core/Io/StdStream.h"
#include "Gc/Code.h"
#include "StdIoThread.h"

namespace storm {
	namespace runtime {

		/**
		 * Implements the functions declared in 'Core/Runtime.h' for the compiler.
		 */

		Type *cppType(Engine &e, Nat id) {
			return e.cppType(id);
		}

		Type *cppTemplateVa(Engine &e, Nat id, Nat count, va_list l) {
			const nat maxCount = 16;
			assert(count < maxCount, L"Too many template parameters used: " + ::toS(count) + L" max " + ::toS(maxCount));

			TemplateList *tList = e.cppTemplate(id);
			if (!tList)
				return null;

			Nat params[maxCount];
			for (nat i = 0; i < count; i++)
				params[i] = va_arg(l, Nat);

			return tList->find(params, count);
		}

		const Handle &typeHandle(Type *t) {
			return t->handle();
		}

		const Handle &voidHandle(Engine &e) {
			return e.voidHandle();
		}

		const Handle &refObjHandle(Engine &e) {
			return e.refObjHandle();
		}

		// Find the current parent type for 'type' that matches 'vtable'.
		// This is the slow path of 'typeOf'.
		static Type *findCurrentParent(Type *type, const void *vtable) {
			for (Type *curr = type->super(); curr; curr = curr->super()) {
				if (curr->hasVTable(vtable))
					return curr;
			}
			// Note: Looking up the top type will fail sometimes, for example when we have
			// created a type from an .so file, so that we don't have the same instance of the
			// vtable as in Storm's metadata (e.g. creating Str from a library). In those cases,
			// just return the original one.
			//
			// Important note: this will never happen for Storm types, since we maintain exactly one
			// vtable for those types! We could start trying to do C++-style dynamic casts using the
			// typeinfo in the vtable. That would, however, likely be too slow.
			return type;
		}

		Type *typeOf(const RootObject *o) {
			Type *type = Gc::typeOf(o)->type;
			// Note: 'type' here is the *allocated* type of the object. It does not correspond to
			// the current type of the object. This is given by the vtable (they differ during
			// object construction or destruction, before all constructors are finished). As such,
			// inspect vtables to assess the situation. Important: we want the common case where
			// 'type' is indeed the correct answer to be the fast path here. We don't expect
			// downcasting during construction to be common, but it should be correct!
			const void *vtable = vtable::from(o);
			if (type->hasVTable(vtable))
				return type;
			return findCurrentParent(type, vtable);
		}

		Type *allocTypeOf(const RootObject *o) {
			return Gc::typeOf(o)->type;
		}

		const GcType *typeGc(Type *t) {
			return t->gcType();
		}

		Str *typeName(Type *t) {
			return t->shortIdentifier();
		}

		Str *typeIdentifier(Type *t) {
			return mangleName(t->path());
		}

		static Type *CODECALL fromIdentifierI(Str *name) {
			Engine &e = name->engine();
			return lookupMangledName(e.scope(), name);
		}

		MAYBE(Type *) fromIdentifier(Str *name) {
			// Note: This needs to be thread-safe!
			// It is called during deserialization (for example) to find types. This may be
			// done on other threads than the compiler thread.
			const os::Thread &t = Compiler::thread(name->engine())->thread();
			if (t != os::Thread::current()) {
				os::Future<Type *> f;
				os::FnCall<Type *> p = os::fnCall().add(name);
				os::UThread::spawn(address(&fromIdentifierI), false, p, f, &t);
				return f.result(&updateFutureExceptions, null);
			} else {
				return fromIdentifierI(name);
			}
		}

		bool isValue(Type *t) {
			return (t->typeFlags() & typeValue) != 0;
		}

		const GcType *gcTypeOf(const void *alloc) {
			return Gc::typeOf(alloc);
		}

		bool isA(const Type *a, const Type *b) {
			return a->chain->isA(b);
		}

		bool isA(const RootObject *a, const Type *t) {
			return typeOf(a)->chain->isA(t);
		}

		Engine &allocEngine(const RootObject *o) {
			return Gc::typeOf(o)->type->engine;
		}

		void *allocRaw(Engine &e, const GcType *type) {
			return e.gc.alloc(type);
		}

		void *allocStaticRaw(Engine &e, const GcType *type) {
			return e.gc.allocStatic(type);
		}

		GcArray<Byte> *allocBuffer(Engine &e, size_t count) {
			return e.gc.allocBuffer(count);
		}

		static NOINLINE void allocFailSize(const GcType *t, size_t size) {
			PLN(L"Invalid type description found! " << size << L" vs " << t->stride);
			debugAssertFailed();
		}

		static NOINLINE void allocFailType(const GcType *t, Type *type) {
			PLN(L"Invalid type reference found! GcType: " << (void *)t->type << L", actual: " << (void *)type);
			debugAssertFailed();
		}

		void *allocObject(size_t size, Type *type) {
			const GcType *t = type->gcType();
#ifdef DEBUG
			// Try to keep the failure case out of the hot code, even in debug mode.
			if (size > t->stride)
				allocFailSize(t, size);
			if (t->type != type)
				allocFailType(t, type);
#endif
			return type->engine.gc.alloc(t);
		}

		void *allocArray(Engine &e, const GcType *type, size_t count) {
			return e.gc.allocArray(type, count);
		}

		void *allocArrayRehash(Engine &e, const GcType *type, size_t count) {
			return e.gc.allocArrayRehash(type, count);
		}

		void *allocWeakArray(Engine &e, size_t count) {
			return e.gc.allocWeakArray(count);
		}

		void *allocWeakArrayRehash(Engine &e, size_t count) {
			return e.gc.allocWeakArrayRehash(count);
		}

		GcWatch *createWatch(Engine &e) {
			return e.gc.createWatch();
		}

		void *allocCode(Engine &e, size_t code, size_t refs) {
			return e.gc.allocCode(code, refs);
		}

		size_t codeSize(const void *code) {
			return Gc::codeSize(code);
		}

		GcCode *codeRefs(void *code) {
			return Gc::codeRefs(code);
		}

		void codeUpdatePtrs(void *code) {
			gccode::updatePtrs(code, Gc::codeRefs(code));
		}

		void setVTable(RootObject *object) {
			allocTypeOf(object)->vtable()->insert(object);
		}

		bool liveObject(RootObject *object) {
			return Gc::liveObject(object);
		}

		os::ThreadGroup &threadGroup(Engine &e) {
			return e.threadGroup;
		}

		util::Lock &threadLock(Engine &e) {
			return e.threadLock;
		}

		void attachThread(Engine &e) {
			e.gc.attachThread();
		}

		void detachThread(Engine &e, const os::Thread &thread) {
			e.gc.detachThread(thread);
		}

		void reattachThread(Engine &e, const os::Thread &thread) {
			e.gc.reattachThread(thread);
		}

		void postStdRequest(Engine &e, StdRequest *request) {
			e.stdIo()->post(request);
		}

		RootObject *cloneObject(RootObject *obj) {
			if (obj == null)
				return null;

			// Nothing needs to be done for TObjects.
			if (TObject *t = as<TObject>(obj))
				return t;

			return cloneObjectEnv(obj, new (obj) CloneEnv());
		}

		RootObject *cloneObjectEnv(RootObject *obj, CloneEnv *env) {
			if (obj == null)
				return null;

			// Nothing needs to be done for TObjects.
			if (TObject *t = as<TObject>(obj))
				return t;

			Object *src = (Object *)obj;

			// For robustness:
			if (!env)
				env = new (obj) CloneEnv();

			if (Object *prev = env->cloned(src))
				return prev;

			Type *t = typeOf(src);
			const GcType *gcType = t->gcType();
			void *mem = t->engine.gc.alloc(gcType);

			Type::CopyCtorFn ctor = t->rawCopyConstructor();
			if (ctor) {
				(*ctor)(mem, src);
			} else {
				// No copy constructor... Well, then we do it the hard way!
				memcpy(mem, src, gcType->stride);
			}

			Object *result = (Object *)mem;
			env->cloned(src, result);

			// Note: needs to happen *after* cloned is called. Otherwise we don't handle cycles.
			result->deepCopy(env);

			return result;
		}

		void checkObject(Engine &e, const void *obj) {
			e.gc.checkMemory(obj, false);
		}

		// Only used from Code/, not a part of the public API.
		Gc &engineGc(Engine &e) {
			return e.gc;
		}

	}
}