1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
#include "stdafx.h"
#include "Stack.h"
#include "Core/StrBuf.h"
#include "Utils/Bitwise.h"
namespace storm {
namespace syntax {
namespace glr {
StackItem::StackItem()
: state(0), pos(0), prev(null), tree(0) {}
StackItem::StackItem(Nat state, Nat pos)
: state(state), pos(pos), prev(null), tree(0), required() {}
StackItem::StackItem(Nat state, Nat pos, StackItem *prev, Nat tree)
: state(state), pos(pos), prev(prev), tree(tree), required() {}
StackItem::StackItem(Nat state, Nat pos, StackItem *prev, Nat tree, ParentReq required)
: state(state), pos(pos), prev(prev), tree(tree), required(required) {}
Bool StackItem::insert(TreeStore *store, StackItem *insert) {
Bool z;
return this->insert(store, insert, z);
}
Bool StackItem::insert(TreeStore *store, StackItem *insert, Bool &usedTree) {
// First: see if this node is already here.
for (StackItem *at = this; at; at = at->morePrev)
if (at == insert)
return false;
// Find a node to merge.
StackItem *last = this;
for (StackItem *at = this; at; at = at->morePrev) {
last = at;
if (at->prev == insert->prev && at->required == insert->required) {
// These are considered to be the same link. See which syntax tree to use!
usedTree |= at->updateTree(store, insert->tree);
return false;
}
}
last->morePrev = insert;
usedTree = true;
return true;
}
Bool StackItem::updateTree(TreeStore *store, Nat newTree) {
Bool used = false;
if (!newTree) {
} else if (!tree) {
// Note: this should really update any previous tree nodes, but as there is no
// previous, we can not do that. Only the start node will ever be empty, so this
// is not a problem.
tree = newTree;
} else if (store->at(tree).pos() != store->at(newTree).pos()) {
// Don't alter the position of the tree. This can happen during error
// recovery and is not desirable since it will duplicate parts of the input
// string in the syntax tree.
} else if (store->priority(newTree, tree) == TreeStore::higher) {
// Note: we can not simply set the tree pointer of this state, as we need to
// update any previously created syntax trees.
// Note: due to how 'priority' works, we can be sure that both this tree node
// and the other one have children.
if (!store->contains(newTree, tree)) {
// Avoid creating cycles (could probably be skipped now that 'insert'
// properly checks for duplicates).
store->at(tree).replace(store->at(newTree));
used = true;
}
}
return used;
}
Bool StackItem::operator ==(const StackItem &o) const {
if (!sameType(this, &o))
return false;
return state == o.state;
}
Nat StackItem::hash() const {
return state;
}
static void print(const StackItem *me, const StackItem *end, StrBuf *to) {
bool space = false;
for (const StackItem *i = me; i; i = i->prev) {
if (i == end) {
*to << L"...";
break;
}
if (space)
*to << L" ";
space = true;
*to << i->state;
if (i->morePrev)
*to << L"->";
if (i->tree) {
*to << L" " << i->tree << L"\n";
space = false;
}
}
}
void StackItem::toS(StrBuf *to) const {
print(this, null, to);
}
/**
* Future stacks.
*/
FutureStacks::FutureStacks() {
data = null;
}
MAYBE(Array<StackItem *> *) FutureStacks::top() {
if (data)
return data->v[first];
else
return null;
}
void FutureStacks::pop() {
if (data) {
data->v[first] = null;
// // Try to re-use the array if possible.
// Array<StackItem *> *v = data->v[first];
// if (v)
// while (v->any())
// v->pop();
}
first = wrap(first + 1);
}
StackItem *FutureStacks::putRaw(Nat pos, StackItem *insert) {
if (pos >= count())
grow(pos + 1);
Nat i = wrap(first + pos);
Array<StackItem *> *&to = data->v[i];
if (!to)
to = new (this) Array<StackItem *>();
// Note: There are often few enough states for this to be faster than a set.
for (Nat i = 0, count = to->count(); i < count; i++) {
StackItem *at = to->at(i);
if (*at == *insert) {
return at;
}
}
// Insert it.
to->push(insert);
return insert;
}
Bool FutureStacks::put(Nat pos, TreeStore *store, StackItem *insert) {
StackItem *inserted = putRaw(pos, insert);
// Merge existing nodes?
if (inserted != insert)
return inserted->insert(store, insert);
else
return true;
}
void FutureStacks::set(Nat pos, Array<StackItem *> *v) {
if (pos >= count())
grow(pos + 1);
Nat i = wrap(first + pos);
data->v[i] = v;
}
void FutureStacks::grow(Nat cap) {
cap = max(Nat(32), nextPowerOfTwo(cap));
GcArray<Array<StackItem *> *> *n = runtime::allocArray<Array<StackItem *> *>(engine(), &pointerArrayType, cap);
Nat c = count();
for (Nat i = 0; i < c; i++) {
n->v[i] = data->v[wrap(first + i)];
}
data = n;
first = 0;
}
}
}
}
|