1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943
|
#include "stdafx.h"
#include "Type.h"
#include "Engine.h"
#include "NamedThread.h"
#include "Function.h"
#include "Adapter.h"
#include "Exception.h"
#include "Package.h"
#include "TypeTransform.h"
#include "Core/Str.h"
#include "Core/Handle.h"
#include "Core/Gen/CppTypes.h"
#include "Core/StrBuf.h"
#include "Core/Io/Serialization.h" // for SerializedType
#include "OS/UThread.h"
#include "OS/Future.h"
#include "Utils/Memory.h"
namespace storm {
const wchar *Type::CTOR = S("__init");
const wchar *Type::DTOR = S("__destroy");
static void CODECALL stormDtor(void *object, os::Thread *thread);
// Set 'type->type' to 'me' while forwarding 'name'. This has to be done before invoking the
// parent constructor, since that relies on 'engine()' working properly, which is not the case
// for the first object otherwise.
static Str *setMyType(Str *name, Type *me, GcType *type, Engine &e) {
// Set the type properly.
type->type = me;
// We need to set the engine as well. Should be the first member of this class.
OFFSET_IN(me, sizeof(NameSet), Engine *) = &e;
// Check to see if we succeeded!
assert(&me->engine == &e, L"Type::engine must be the first data member declared in Type.");
return name;
}
Type::Type(Str *name, TypeFlags flags) :
NameSet(name),
engine(RootObject::engine()),
myGcType(null),
tHandle(null),
myTypeFlags(flags & ~typeCpp) {
init(null);
}
Type::Type(Str *name, Array<Value> *params, TypeFlags flags) :
NameSet(name, params),
engine(RootObject::engine()),
myGcType(null),
tHandle(null),
myTypeFlags(flags & ~typeCpp) {
init(null);
}
Type::Type(SrcPos pos, Str *name, TypeFlags flags) :
NameSet(name),
engine(RootObject::engine()),
myGcType(null),
tHandle(null),
myTypeFlags(flags & ~typeCpp) {
this->pos = pos;
init(null);
}
Type::Type(SrcPos pos, Str *name, Array<Value> *params, TypeFlags flags) :
NameSet(name, params),
engine(RootObject::engine()),
myGcType(null),
tHandle(null),
myTypeFlags(flags & ~typeCpp) {
this->pos = pos;
init(null);
}
Type::Type(Str *name, Array<Value> *params, TypeFlags flags, Size size) :
NameSet(name, params),
engine(RootObject::engine()),
myGcType(null),
tHandle(null),
myTypeFlags(flags | typeCpp),
mySize(size) {
if ((flags & typeValue) == 0)
throw new (this) InternalError(S("Can not use the Type constructor taking a Size to create class types."));
init(null);
}
Type::Type(SrcPos pos, Str *name, Array<Value> *params, TypeFlags flags, Size size) :
NameSet(pos, name, params),
engine(RootObject::engine()),
myGcType(null),
tHandle(null),
myTypeFlags(flags | typeCpp),
mySize(size) {
if ((flags & typeValue) == 0)
throw new (this) InternalError(S("Can not use the Type constructor taking a Size to create class types."));
init(null);
}
Type::Type(Str *name, TypeFlags flags, Size size, GcType *gcType, const void *vtable) :
NameSet(name),
engine(RootObject::engine()),
myGcType(gcType),
tHandle(null),
myTypeFlags(flags | typeCpp),
mySize(size) {
myGcType->type = this;
init(vtable);
}
Type::Type(Str *name, Array<Value> *params, TypeFlags flags, Size size, GcType *gcType, const void *vtable) :
NameSet(name, params),
engine(RootObject::engine()),
myGcType(gcType),
tHandle(null),
myTypeFlags(flags | typeCpp),
mySize(size) {
myGcType->type = this;
init(vtable);
}
// We need to set myGcType->type first, therefore we call setMyType!
Type::Type(Engine &e, TypeFlags flags, Size size, GcType *gcType) :
NameSet(setMyType(null, this, gcType, e)), engine(e), myGcType(gcType),
tHandle(null), myTypeFlags(typeClass | typeCpp), mySize(size) {
init(null);
}
Type::~Type() {
GcType *g = myGcType;
// Make sure we abandon the GcType before we free it by using an atomic op (they imply barriers).
atomicWrite(myGcType, (GcType *)null);
// The GC will ignore these during shutdown, when it is crucial not to destroy anything too
// early.
engine.gc.freeType(g);
}
void Type::init(const void *vtable) {
assert((myTypeFlags & typeValue) == typeValue || (myTypeFlags & typeClass) == typeClass, L"Invalid type flags!");
// Generally, we want this on types.
flags |= namedMatchNoInheritance;
if (myGcType) {
if (value())
myGcType->kind = GcType::tArray;
// Note: If there was a finalizer specified, we will overwrite it with our own later on anyway.
}
if (engine.has(bootTypes))
vtableInit(vtable);
if (engine.has(bootTemplates))
lateInit();
}
void Type::vtableInit(const void *vtab) {
if (value())
return;
VTable *vt = new (engine) VTable(this);
if (myTypeFlags & typeCpp) {
vt->createCpp(vtab);
} else if (Type *t = super()) {
vt->createStorm(t->myVTable);
} else {
vt->createStorm(Object::stormType(engine)->myVTable);
}
// Write it using atomics. That way we get sane behavior in relation to 'hasVTableOf' which
// may be called from any point in the system.
atomicWrite(myVTable, vt);
}
void Type::lateInit() {
NameSet::lateInit();
if (!chain) {
chain = new (this) TypeChain(this);
Type *def = defaultSuper();
if (def)
setSuper(def);
}
chain->lateInit();
if (myVTable)
myVTable->lateInit();
}
void Type::addTypeFlag(TypeFlags flags) {
// Mask out `typeClass` and `typeValue`. Can't change them after creation!
flags &= ~typeClass;
flags &= ~typeValue;
// Also, information from C++ can not be added after the fact.
flags &= ~typeCpp;
flags &= ~typeCppPOD;
flags &= ~typeCppSimple;
// Finally, it is safe to update our flags.
myTypeFlags |= flags;
}
// Our finalizer.
static void CODECALL destroyType(void *obj, os::Thread *) {
Type *t = (Type *)obj;
t->~Type();
}
void Type::makeType(Engine &e, GcType *src) {
// Find the entry containing OFFSET_OF(Type, myGcType).
nat myTypePos = Nat(src->count);
for (nat i = 0; i < src->count; i++) {
if (src->offset[i] == OFFSET_OF(Type, myGcType)) {
myTypePos = i;
break;
}
}
assert(myTypePos < src->count, L"The type definition for a type inheriting from core.lang.Type does not contain an entry for 'myGcType'!");
// Move elements one step back to make room at location 0.
for (nat i = myTypePos; i > 0; i--) {
src->offset[i] = src->offset[i - 1];
}
src->offset[0] = OFFSET_OF(Type, myGcType);
src->kind = GcType::tType;
}
Type *Type::createType(Engine &e, const CppType *type) {
assert(wcscmp(type->name, S("Type")) == 0, L"storm::Type was not found!");
assert(Size(type->size).current() == sizeof(Type),
L"The computed size of storm::Type is wrong: " + ::toS(Size(type->size).current()) + L" vs " + ::toS(sizeof(Type)));
// Generate our layout description for the GC:
nat entries = 0;
for (; type->ptrOffsets[entries] != CppOffset::invalid; entries++)
;
GcType *t = e.gc.allocType(GcType::tType, null, sizeof(Type), entries);
// Insert 'myGcType' as the first (special) pointer:
t->offset[0] = OFFSET_OF(Type, myGcType);
// Insert the other ones afterwards. The 'ptrOffsets' array should contain the special
// offset as well, since GcType pointers are garbage collected. If it is not found, we will
// assert.
nat pos = 1;
for (nat i = 0; i < entries; i++) {
size_t offset = Offset(type->ptrOffsets[i]).current();
if (offset != OFFSET_OF(Type, myGcType)) {
assert(pos < entries, L"The entry for 'myGcType' was not found in the type description for core.lang.Type.");
t->offset[pos++] = Offset(type->ptrOffsets[i]).current();
}
}
// Ensure we're finalized.
t->finalizer = &destroyType;
// Now we can allocate the type and let the constructor handle the rest!
return new (e, t) Type(e, typeClass, Size(type->size), t);
}
void Type::setType(Object *onto) const {
engine.gc.switchType(onto, myGcType);
}
Type *Type::defaultSuper() const {
if (value())
return null;
else if (useThread)
return TObject::stormType(engine);
else
return Object::stormType(engine);
}
void Type::setSuper(Type *to) {
setSuper(to, null);
}
void Type::setSuper(Type *to, ReplaceTasks *tasks) {
if (to && (to->typeFlags() & typeFinal)) {
StrBuf *msg = new (engine) StrBuf();
*msg << S("Can not inherit the type ") << to->identifier() << S(" since it is marked 'final'.");
throw new (engine) TypedefError(pos, msg->toS());
}
// If 'to' is null: figure out what to inherit from.
if (!to)
to = defaultSuper();
// So that Object does not inherit from TObject.
if (to == this)
return;
// Check so that values only inherit from values, and classes only from classes.
if (to && value() != to->value()) {
StrBuf *msg = new (engine) StrBuf();
*msg << S("The type ") << identifier() << S(" can not extend the type ")
<< to->identifier() << S(" since one is a value, and the other is not.");
throw new (engine) TypedefError(pos, msg->toS());
}
if (!chain)
chain = new (this) TypeChain(this);
// Nothing to do?
if (to == chain->super())
return;
if (to && !to->chain)
to->chain = new (this) TypeChain(to);
// Set the type-chain properly.
Type *prev = super();
chain->super(to);
// Notify our old parent of removal of vtable members. We only need to do this for the
// topmost class we're moving, as all other vtables will be deleted.
vtableDetachedSuper(prev);
// Propagate changes to all children.
updateSuper(tasks);
}
void Type::updateSuper(ReplaceTasks *tasks) {
Type *to = super();
// Which thread to use?
Type *tObj = TObject::stormType(engine);
if (to != null && to->chain != null && tObj->chain != null) {
if (!to->chain->isA(tObj)) {
useThread = null;
} else if (to != tObj) {
useThread = to->useThread;
}
// Propagate to our children.
notifyThread(useThread);
}
// Invalidate the GcType for this type.
if (myTypeFlags & typeCpp) {
// Type from C++. Nothing to do.
} else if (myGcType != null) {
// We're not a type from C++.
GcType *old = myGcType;
myGcType = null;
engine.gc.freeType(old);
// Create a new one if we are to generate 'replace' instructions.
if (tasks)
tasks->replace(old, gcType());
}
// TODO: Invalidate the Layout as well.
// TODO: Invalidate the handle as well.
if ((myTypeFlags & typeCpp) != typeCpp && !value()) {
// Re-initialize the vtable.
myVTable->createStorm(to->myVTable);
}
// Register all functions here and in our children as vtable calls.
vtableNewSuper();
// Recurse into children.
TypeChain::Iter i = chain->children();
while (Type *c = i.next())
c->updateSuper(tasks);
}
MAYBE(Type *) Type::declaredSuper() const {
Type *s = super();
if (s == Object::stormType(engine))
s = null;
else if (s == TObject::stormType(engine))
s = null;
return s;
}
Bool Type::setThread(NamedThread *thread) {
// Can't set threads for value types.
if (value())
return false;
if (Type *currentSuper = super()) {
// If the current super-type is something other than the base-class Object, or the base
// class has a 'useThread' configured, disallow setting the thread here:
Type *objType = Object::stormType(engine);
if (isA(objType) && currentSuper != objType) {
// We inherit indirectly from a class-type. Don't allow introducing TObject.
return false;
} else if (isA(TObject::stormType(engine))) {
// Disallow if the super type has its 'useThread' set:
if (currentSuper->useThread != null) {
return false;
}
}
}
useThread = thread;
Type *def = defaultSuper();
// Note: this function is used early enough so that 'chain' may not be initialized.
if (!chain || !isA(def))
setSuper(def);
// Propagate the current thread to any child types.
notifyThread(thread);
return true;
}
RunOn Type::runOn() {
if (isA(TObject::stormType(engine))) {
if (useThread)
return RunOn(useThread);
else
return RunOn(RunOn::runtime);
} else {
return RunOn();
}
}
Bool Type::abstract() {
// Note: We always insert abstract functions in a vtable, even if it is not necessary at the
// moment. This means that we can simply examine all slots in a vtable to determine if we're
// abstract or not.
VTable *vt = vtable();
// If we don't have a VTable, then the concept of 'abstract' is not meaningful.
if (!vt)
return false;
if (isAbstract != abstractUnknown)
return isAbstract == abstractYes;
// If any of the topmost functions are abstract, the entire class is abstract.
Array<Function *> *fns = vt->allSlots();
isAbstract = abstractYes;
for (Nat i = 0; i < fns->count(); i++)
if (fns->at(i)->fnFlags() & fnAbstract)
return true;
isAbstract = abstractNo;
return false;
}
void Type::ensureNonAbstract(SrcPos pos) {
if (!abstract())
return;
// Generate a nice error message...
StrBuf *msg = new (this) StrBuf();
*msg << S("The class ") << identifier() << S(" is abstract due to the following members:\n");
VTable *vt = vtable();
if (vt) {
Array<Function *> *fns = vt->allSlots();
for (Nat i = 0; i < fns->count(); i++)
if (fns->at(i)->fnFlags() & fnAbstract)
*msg << S(" ") << fns->at(i)->shortIdentifier() << S("\n");
}
throw new (this) InstantiationError(pos, msg->toS());
}
void Type::add(Named *item) {
NameSet::add(item);
if (Function *f = as<Function>(item)) {
if (*f->name == CTOR)
updateCtor(f);
else if (*f->name == DTOR)
updateDtor(f);
else
vtableFnAdded(f);
if (tHandle)
updateHandle(f);
}
if ((myTypeFlags & typeCpp) != typeCpp) {
// Tell the layout we found a new variable!
if (!layout)
layout = new (engine) Layout();
layout->add(item, this);
}
}
Bool Type::remove(Named *item) {
if (!NameSet::remove(item))
return false;
if (Function *f = as<Function>(item)) {
if (*f->name == CTOR)
updateCtor(f);
else if (*f->name == DTOR)
updateDtor(null);
else
vtableFnRemoved(f);
}
if ((typeFlags() & typeCpp) != typeCpp) {
// TODO: Update layout?
}
return true;
}
Named *Type::createBaseWrapper(Named *fromBase, SimplePart *query, Scope scope) {
// The problem we are trying to solve here is the following:
// If we are the first class that defines that we are tied to a specific thread,
// and we return a function from the base class (e.g. 'toS(StrBuf)'). Then, when
// calling the returned function, the call mechanisms will see that the thread to
// use is dynamic (since TObject is thread: any), and therefore insert an unexpected
// thread switch. To solve this, we detect these cases and transparently insert a
// wrapper. As of writing, this only happens for TObject -> first class, so it
// only happens for the functions in TObject.
// No point in doing anything if we don't have a superclass. We should never get caught here
// due to how the function is called, but it is nice to be a bit robust.
Type *super = this->super();
if (!super)
return fromBase;
// First: check if we need to bother doing anything at all.
// This logic is the same as in 'runOn', but with checks in a slightly different
// order. This is to avoid calling 'isA' if we know that no thread is specified
// here. Since we are only interested in the case where a thread is specified,
// this produces the same result as calling 'runOn'.
if (!useThread)
return fromBase;
if (!isA(TObject::stormType(engine)))
return fromBase;
// Similarly, we can check our parent class here directly. We know that both we and our
// parent is at least a TObject (assuming we *have* a parent). If they have the same idea of
// which thread to use, then we don't have to do anything. Note that this should be the case
// if both 'useThread' are non-null.
if (super->useThread == useThread)
return fromBase;
// We are only interested in non-static functions.
Function *baseFunction = as<Function>(fromBase);
if (!baseFunction)
return fromBase;
if (!baseFunction->isMember())
return fromBase;
// Also ignore ctors and dtors:
if (*baseFunction->name == CTOR || *baseFunction->name == DTOR)
return fromBase;
// Note: Some of these paths return 'null' instead of 'fromBase'. These are cases where we
// have determined that the lookup is likely looking for this particular function from
// another subclass. As such, we return 'null' to nudge the name lookup logic to find the
// proper function from the appropriate subclass instead.
// See if it makes sense to create a wrapper by looking at the first parameter:
if (query->params->empty())
return fromBase;
Type *t = query->params->at(0).type;
// Note: Letting cases where a parameter is Value() through is deliberate. It lets
// implementations use Value() as a placeholder in case they do something strange,
// and would like us to call 'matches' instead.
if (t && !t->isA(this))
return null; // See above
// At this point, we can create the wrapper, add it, and return it.
Function *wrapper = baseFunction->withDerivedThis(this);
if (!wrapper) {
WARNING(L"withDerivedThis failed!");
return fromBase;
}
// Double check if we did not pass the checks previously:
wrapper->parentLookup(this);
if (query->matches(wrapper, scope) >= 0) {
add(wrapper);
return wrapper;
} else {
return null; // See above
}
}
Named *Type::find(SimplePart *part, Scope source) {
if (Named *n = NameSet::find(part, source))
return n;
// Constructors are not inherited.
if (*part->name == CTOR)
return null;
if (Type *s = super())
return createBaseWrapper(s->find(part, source), part, source);
else
return null;
}
void Type::notifyThread(NamedThread *thread) {
useThread = thread;
if (chain != null) {
TypeChain::Iter i = chain->children();
while (Type *c = i.next()) {
c->notifyThread(thread);
}
}
}
code::Ref Type::typeRef() {
if (!selfRef) {
selfRef = new (engine) NamedSource(this);
selfRef->setPtr(this);
}
return code::Ref(selfRef);
}
code::TypeDesc *Type::typeDesc() {
if (myTypeDesc) {
// Just return the desc we have. It is an actor anyway.
return myTypeDesc;
}
// We need to create the description. Switch threads if neccessary.
const os::Thread &t = TObject::associatedThread()->thread();
if (t != os::Thread::current()) {
// Switch threads...
Type *me = this;
os::Future<code::TypeDesc *> f(os::FutureMode::exclusive);
os::FnCall<code::TypeDesc *, 1> p = os::fnCall().add(me);
os::UThread::spawn(address(&Type::typeDesc), true, p, f, &t);
return f.result(&updateFutureExceptions, null);
}
// Double-check so that the desc is not created.
if (!myTypeDesc)
myTypeDesc = createTypeDesc();
return myTypeDesc;
}
code::TypeDesc *Type::createTypeDesc() {
if (!value()) {
// If we're not a value, then we're a plain pointer.
return engine.ptrDesc();
}
// We need to generate a TypeDesc for this value.
// First: See if we're a complex type.
Function *ctor = copyCtor();
Function *dtor = destructor();
Bool simple = true;
if (ctor && !ctor->pure())
simple = false;
if (dtor && !dtor->pure())
simple = false;
// Complex types are actually fairly simple to handle.
if (!simple) {
if (ctor == null) {
Str *msg = TO_S(this, S("The type ") << identifier()
<< S(" has a nontrivial destructor, but no constructor."));
throw new (this) TypedefError(pos, msg);
}
code::Ref d = dtor ? dtor->ref() : engine.ref(builtin::fnNull);
return new (this) code::ComplexDesc(size(), ctor->ref(), d);
}
// Generate a proper description of this type!
return createSimpleDesc();
}
code::SimpleDesc *Type::createSimpleDesc() {
forceLoad();
Size mySize = size(); // Performs a layout of all variables if neccessary.
Nat elems = populateSimpleDesc(null);
if (elems == 0 && mySize != Size()) {
StrBuf *msg = new (this) StrBuf();
*msg << identifier();
*msg << S(": Trying to generate a type description for an empty object ")
S("with a nonzero size. This is most likely not what you want. There are two possible ")
S("reasons for why this might happen: Either, you try to access the type description of ")
S("the type too early, or you are attempting to construct a non-standard type, ")
S("in which case you should override 'createSimpleDesc' as well.");
throw new (this) TypedefError(pos, msg->toS());
}
code::SimpleDesc *desc = new (this) code::SimpleDesc(mySize, elems);
populateSimpleDesc(desc);
// Note: In some cases (notably for C++ types) the desc will not be sorted according to offset.
// If this is the case, we need to sort it here, as other parts of the system expect it to be sorted.
desc->sort();
return desc;
}
static void merge(Offset offset, Nat &pos, MAYBE(code::SimpleDesc *) into, code::SimpleDesc *from) {
if (!into) {
pos += from->count();
return;
}
for (Nat i = 0; i < from->count(); i++) {
code::Primitive src = from->at(i);
into->at(pos++) = src.move(src.offset() + offset);
}
}
Nat Type::populateSimpleDesc(MAYBE(code::SimpleDesc *) into) {
using namespace code;
Nat pos = 0;
if (Type *parent = super()) {
TypeDesc *desc = parent->typeDesc();
if (SimpleDesc *s = as<SimpleDesc>(desc))
storm::merge(Offset(), pos, into, s);
else
throw new (this) TypedefError(this->pos,
S("Can not produce a SimpleDesc when the parent type is not a simple type!"));
}
Array<MemberVar *> *vars = variables();
for (Nat i = 0; i < vars->count(); i++) {
MemberVar *v = vars->at(i);
Offset offset = v->rawOffset();
Value type = v->type;
if (type.isObject() || type.ref) {
// This is a pointer to something.
if (into)
into->at(pos) = Primitive(primitive::pointer, Size::sPtr, offset);
pos++;
continue;
}
TypeDesc *original = type.type->typeDesc();
if (PrimitiveDesc *p = as<PrimitiveDesc>(original)) {
if (into)
into->at(pos) = p->v.move(offset);
pos++;
} else if (SimpleDesc *s = as<SimpleDesc>(original)) {
storm::merge(offset, pos, into, s);
} else if (ComplexDesc *c = as<ComplexDesc>(original)) {
UNUSED(c);
throw new (this) TypedefError(this->pos,
S("Can not produce a SimpleDesc from a type containing a complex type!"));
} else {
throw new (this) TypedefError(this->pos,
TO_S(this, S("Unknown type description: ") << original));
}
}
if (into) {
assert(pos == into->count(), L"A too small SimpleDesc provided.");
}
return pos;
}
void Type::doLayout() {
// Make sure we're fully loaded.
forceLoad();
// No layout -> nothing to do.
if (!layout)
return;
// We might as well compute our size while we're at it!
mySize = layout->doLayout(superSize());
// Since we have computed our size, it means that we can be instantiated. Because of that,
// make sure that the destructor is compiled now. Otherwise, it might be compiled during
// shutdown, which is likely to fail:
if (Function *dtor = destructor())
dtor->compile();
}
Array<MemberVar *> *Type::variables() const {
if (layout) {
return layout->variables();
} else {
// Fall back to examining the contents of the NameSet.
Array<MemberVar *> *result = new (this) Array<MemberVar *>();
for (Iter i = begin(); i != end(); ++i) {
if (MemberVar *v = as<MemberVar>(i.v()))
result->push(v);
}
return result;
}
}
Size Type::superSize() {
if (super())
return super()->size();
if (value())
return Size();
assert(false, L"We are a class which does not inherit from TObject or Object!");
return Size();
}
Size Type::size() {
if (mySize != Size())
return mySize;
// We need to compute our size. Switch threads if neccessary...
const os::Thread &t = TObject::associatedThread()->thread();
if (t != os::Thread::current()) {
// Switch threads...
Type *me = this;
os::Future<Size> f(os::FutureMode::exclusive);
os::FnCall<Size, 1> p = os::fnCall().add(me);
os::UThread::spawn(address(&Type::size), true, p, f, &t);
return f.result(&updateFutureExceptions, null);
}
mySize = createSize();
// Since we have computed our size, it means that we can be instantiated. Because of that,
// make sure that the destructor is compiled now. Otherwise, it might be compiled during
// shutdown, which is likely to fail:
if (Function *dtor = destructor())
dtor->compile();
return mySize;
}
Size Type::createSize() {
// Recompute the size!
forceLoad();
mySize = superSize();
// If we do not have a layout, we do not have any variables.
if (layout) {
mySize = layout->doLayout(mySize);
}
return mySize;
}
VTable *Type::vtable() {
// Don't bother if we're a value or we don't have a vtable yet.
if (!myVTable || value())
return null;
// If we're loaded, then we're good to go!
if (allLoaded())
return myVTable;
// We need to load ourself. Make sure we're running on the proper thread.
const os::Thread &t = TObject::associatedThread()->thread();
if (t != os::Thread::current()) {
// Switch threads...
Type *me = this;
os::Future<VTable *> f(os::FutureMode::exclusive);
os::FnCall<VTable *, 1> p = os::fnCall().add(me);
os::UThread::spawn(address(&Type::vtable), true, p, f, &t);
return f.result(&updateFutureExceptions, null);
}
// In the proper thread. The only thing we need to do is to make sure that the VTable is
// populated, which is simply done by issuing a 'forceLoad'. Us intercepting the 'add'
// function will do all of the dirty work.
// If we force loading too early, we will not be able to boot... All types used during
// boot should be properly loaded during boot anyway, so that is fine.
if (engine.has(bootDone))
forceLoad();
return myVTable;
}
static void defToS(const void *obj, StrBuf *to) {
*to << S("<no member toS(StrBuf) or toS()>");
}
const Handle &Type::handle() {
// If we're completely done with the handle, return it immediatly.
if (tHandle)
return *tHandle;
// We need to create the handle. Switch threads.
const os::Thread &t = TObject::associatedThread()->thread();
if (t != os::Thread::current()) {
// Switch threads...
Type *me = this;
os::Future<const Handle *> f(os::FutureMode::exclusive);
os::FnCall<const Handle *, 1> p = os::fnCall().add(me);
os::UThread::spawn(address(&Type::handle), true, p, f, &t);
return *f.result(&updateFutureExceptions, null);
}
if (!tHandle)
buildHandle();
return *tHandle;
}
static void CODECALL stormDtor(void *object, os::Thread *thread) {
Type *t = runtime::typeOf((RootObject *)object);
if (!t)
return;
Type::DtorFn f = t->rawDestructor();
if (!f)
return;
// If shutting down, do not care about threads anymore, as we might not have enough to see
// if the type is a TObject or not...
if (!t->engine.has(bootShutdown)) {
if (t->isA(TObject::stormType(t->engine))) {
// We might need to switch threads...
TObject *obj = (TObject *)object;
Thread *t = obj->associatedThread();
if (t) {
os::Thread desired = t->thread();
if (desired != os::Thread::current()) {
// We can't execute it on this thread. Tell the GC we need a different one!
*thread = desired;
return;
}
}
}
}
// If we get here, we shall execute on the current thread.
(*f)(object);
}
void Type::updateDtor(Function *dtor) {
if (rawDtorRef) {
rawDtorRef->disable();
rawDtorRef = null;
}
rawDtor = null;
// Keep 'rawDtor' updated if we have a destructor.
if (dtor) {
// Make sure we have a proper finalizer. Needs to be done before the line below,
// otherwise recursion stops at the first level.
if (!value())
updateChildFinalizers();
// Set 'rawDtor'.
rawDtorRef = new (this) code::MemberRef(this, OFFSET_OF(Type, rawDtor), dtor->ref(), refContent());
}
}
void Type::updateChildFinalizers() {
// If we have a destructor already, we don't need to keep recursing.
if (rawDtor)
return;
if (myGcType) {
myGcType->finalizer = &stormDtor;
}
if (chain) {
TypeChain::Iter i = chain->children();
while (Type *t = i.next()) {
t->updateChildFinalizers();
}
}
}
Type::DtorFn Type::rawDestructor() {
if (rawDtor)
return rawDtor;
if (Type *s = super())
return s->rawDestructor();
return null;
}
void Type::updateCtor(Function *ctor) {
// Clear the cache.
if (rawCtorRef) {
rawCtorRef->disable();
rawCtorRef = null;
}
rawCtor = null;
}
Type::CopyCtorFn Type::rawCopyConstructor() {
CopyCtorFn r = rawCtor;
if (r)
return r;
// Call on proper thread...
const os::Thread &t = TObject::associatedThread()->thread();
if (t != os::Thread::current()) {
// Wrong thread, switch!
Type *me = this;
os::Future<void *> f(os::FutureMode::exclusive);
os::FnCall<void *, 1> p = os::fnCall().add(me);
os::UThread::spawn(address(&Type::rawCopyConstructor), true, p, f, &t);
return (CopyCtorFn)f.result(&updateFutureExceptions, null);
}
// Find the copy constructor...
Function *ctor = copyCtor();
if (!ctor)
return null;
// And keep 'rawCtor' updated.
rawCtorRef = new (this) code::MemberRef(this, OFFSET_OF(Type, rawCtor), ctor->ref(), refContent());
return rawCtor;
}
void Type::findEquivalentTypes(Named *old, ReplaceContext *ctx) {
if (Type *o = as<Type>(old))
ctx->addEquivalence(o, this);
}
class TypeCheckDiff : public NameDiff {
public:
TypeCheckDiff(Type *type, ReplaceContext *ctx) : type(type), ctx(ctx) {}
Type *type;
ReplaceContext *ctx;
virtual void added(Named *item) {
if (MemberVar *var = as<MemberVar>(item)) {
// We currently only support modifying the layout of class types:
if (type->isValue())
throw new (item) ReplaceError(item->pos, S("Unable to add member variables to value types."));
// Check so that we either have an initializer, or that the type in the variable has
// a default ctor we can use.
if (!var->initializer() && (var->type.type == null || var->type.type->defaultCtor() == null)) {
StrBuf *message = new (item) StrBuf();
*message << S("Unable to add the variable ") << item->name << S(" to ") << type->identifier()
<< S(" since no initializer was specified, and since the type ")
<< var->type << S(" does not have a default constructor. Add an initializer and try again.");
throw new (item) ReplaceError(item->pos, message->toS());
}
}
}
virtual void added(Template *) { /* We don't care */ }
virtual void removed(Named *item) {
if (as<MemberVar>(item)) {
// At the time being, we don't support removing members. We need to check if they are used first.
throw new (item) ReplaceError(item->pos, S("Unable to remove member variables from types."));
}
}
virtual void removed(Template *) { /* We don't care */ }
virtual void changed(Named *old, Named *changed) {
if (Str *msg = changed->canReplace(old, ctx))
throw new (changed) ReplaceError(changed->pos, msg);
}
};
MAYBE(Str *) Type::canReplace(Named *old, ReplaceContext *ctx) {
Type *o = as<Type>(old);
if (!o)
return new (this) Str(S("Unable to replace a non-type with a type."));
// Note: Due to type equivalences, the remainder of the system more or less assumes that all
// types can be replaced without issues. Therefore, we throw errors if we fail for some
// reason so that the system does not attempt to simply remove and then add the type.
// We only need to check for conflicts if the old entity has actually been loaded. If it is
// not loaded, we can replace it without any issues whatsoever.
if (!o->allLoaded())
return null;
forceLoad();
if (value() != o->value())
throw new (this) ReplaceError(pos, S("Can not change classes into values or vice versa."));
if (super() && !o->super()) {
throw new (this) ReplaceError(pos, S("Can not introduce a super class."));
} else if (!super() && o->super()) {
throw new (this) ReplaceError(pos, S("Can not remove a super class."));
} else if (super()) {
if (!ctx->same(super(), o->super()))
throw new (this) ReplaceError(pos, S("Can not change the super class."));
}
TypeCheckDiff diff(this, ctx);
o->diff(this, diff, ctx);
return null;
}
class TypeReplaceDiff : public NameDiff {
public:
TypeReplaceDiff(ReplaceTasks *tasks, ReplaceContext *ctx)
: tasks(tasks), context(ctx), membersUpdated(false) {}
ReplaceTasks *tasks;
ReplaceContext *context;
Bool membersUpdated;
virtual void added(Named *item) {
if (as<MemberVar>(item))
membersUpdated = true;
}
virtual void added(Template *) { /* We don't care */ }
virtual void removed(Named *item) {
if (as<MemberVar>(item))
membersUpdated = true;
}
virtual void removed(Template *) { /* We don't care */ }
virtual void changed(Named *old, Named *changed) {
// Do the replacement.
changed->replace(old, tasks, context);
// If both are variables, see if the offset changed. If so, we need to update the heap.
if (MemberVar *oldVar = as<MemberVar>(old)) {
if (MemberVar *newVar = as<MemberVar>(changed)) {
if (oldVar->rawOffset() != newVar->rawOffset())
membersUpdated = true;
}
}
}
};
static Nat findVar(Array<MemberVar *> *in, MemberVar *item) {
for (Nat i = 0; i < in->count(); i++) {
if (*item->name == *in->at(i)->name)
return i;
}
return in->count();
}
static Bool hasUpdatedTransform(Type *type, ReplaceTasks *tasks, ReplaceContext *ctx, Bool checkMembers = false) {
Type *oldType = ctx->normalize(type);
// No updated transform if the type has not been replaced:
if (oldType == type)
return false;
// See if there is already an added transform for the type. This means that the parent's
// update ran before us, and it already added a transform for us.
if (tasks->hasTransformFor(oldType))
return true;
// If not, the parent might run after us.
// If 'checkMembers', we should check members here. This is to actually diff the members in
// the case the parent runs after a child.
if (checkMembers) {
// This is a simple check of members:
type->doLayout();
Array<MemberVar *> *oldVars = oldType->variables();
Array<MemberVar *> *newVars = type->variables();
if (oldVars->count() != newVars->count())
return true;
for (Nat oldI = 0; oldI < oldVars->count(); oldI++) {
MemberVar *oldVar = oldVars->at(oldI);
Nat newI = findVar(newVars, oldVar);
if (newI >= newVars->count())
return true;
MemberVar *newVar = newVars->at(newI);
if (oldVar->rawOffset() != newVar->rawOffset())
return true;
}
}
// If it was equal here, check the parent as well.
Type *super = type->super();
if (!super)
return false;
return hasUpdatedTransform(super, tasks, ctx, true);
}
void Type::doReplace(Named *old, ReplaceTasks *tasks, ReplaceContext *ctx) {
Type *o = (Type *)old;
// Force us to compute our layout now. We need it in the diff.
size(); // Calls 'doLayout' if it is necessary.
// Update derived classes (Note: We don't need to update our super class).
if (o->chain) {
// Note: Calling 'setSuper' will modify the WeakSet inside o->chain that we use to find
// all children of the old class. This is not good, as it means that we might miss
// elements in it (e.g. when two or more elements form a chain in consecutive elements,
// then deleting the first one will make the map move the second one backwards).
// Therefore, we need to save the children in a separate array first.
Array<Type *> *toUpdate = new (this) Array<Type *>();
TypeChain::Iter iter = o->chain->children();
while (Type *child = iter.next())
toUpdate->push(child);
// Now we can update them all without worrying.
for (Nat i = 0; i < toUpdate->count(); i++) {
Type *child = toUpdate->at(i);
if (child->super() != this)
child->setSuper(this, tasks);
}
}
// TODO: We might be able to move some of this into NameSet.
TypeReplaceDiff diff(tasks, ctx);
o->diff(this, diff, ctx);
// Update the reference.
if (o->selfRef) {
typeRef(); // Make sure it is created in here.
selfRef->steal(o->selfRef);
o->selfRef = null;
}
// We need to replace references to the old one with references to us.
tasks->replace(old, this);
// Also replace handles.
if (o->tHandle) {
// For many reference types, the handles are the same.
if (o->tHandle != &handle())
tasks->replace(o->tHandle, tHandle);
}
// Here, we have two options depending on whether the layout changed or not:
if (diff.membersUpdated) {
// Expensive path. We need to rewrite all instances of this type on the heap.
createTypeTransform(tasks, ctx);
} else if (!hasUpdatedTransform(this, tasks, ctx)) {
// Less expensive path. The object did not change, but we need to update the GcType of
// all objects so that the Type returned is correct, and update the VTables.
if (o->myGcType)
tasks->replace(o->myGcType, gcType());
if (o->myVTable)
vtable()->replace(o->myVTable, tasks);
}
}
void Type::createTypeTransformRec(ReplaceTasks *tasks, ReplaceContext *ctx) {
createTypeTransform(tasks, ctx);
if (!chain)
return;
TypeChain::Iter children = chain->children();
while (Type *t = children.next())
t->createTypeTransformRec(tasks, ctx);
}
void Type::createTypeTransform(ReplaceTasks *tasks, ReplaceContext *ctx) {
Type *oldType = ctx->normalize(this);
if (tasks->hasTransformFor(oldType))
return;
TypeTransform *tfm = new (this) TypeTransform(oldType, this);
populateTypeTransform(tfm, ctx);
tasks->transform(tfm);
}
void Type::populateTypeTransform(TypeTransform *tfm, ReplaceContext *ctx) {
if (Type *s = super())
s->populateTypeTransform(tfm, ctx);
Type *oldType = ctx->normalize(this);
// If this type has not been replaced, we don't have to do anything more.
if (oldType == this)
return;
// No layout for the old type -> declared in C++.
if (!oldType->layout)
return;
// Force the layout to happen now.
size();
assert(layout);
// Find differences between variables here:
Array<MemberVar *> *oldVars = oldType->layout->variables();
Array<MemberVar *> *newVars = layout->variables();
for (Nat oldId = 0; oldId < oldVars->count(); oldId++) {
MemberVar *oldVar = oldVars->at(oldId);
Nat newId = findVar(newVars, oldVar);
if (newId >= newVars->count()) {
// Not found, register it as a removed variable.
tfm->removed(oldVar);
} else {
// Found, register it as a changed variable.
tfm->same(oldVar, newVars->at(newId));
}
}
for (Nat newId = 0; newId < newVars->count(); newId++) {
MemberVar *newVar = newVars->at(newId);
Nat oldId = findVar(oldVars, newVar);
if (oldId >= oldVars->count()) {
// Not found, it is a new variable.
tfm->added(newVar);
}
}
}
void Type::useSuperGcType() {
if (myGcType)
return;
Type *s = super();
assert(s, L"Can not use 'useSuperGcType' without a super class!");
// DebugBreak();
mySize = s->size();
myGcType = engine.gc.allocType(s->gcType());
myGcType->type = this;
}
// Create a GcType from a TypeDesc for a type, assuming no parent class is present and no layout
// has been initialized (ie. no explicit members).
static GcType *gcTypeFromDesc(Type *type, code::TypeDesc *desc) {
Engine &e = type->engine;
Nat size = type->size().current();
GcType *result = null;
if (code::PrimitiveDesc *primitive = as<code::PrimitiveDesc>(desc)) {
if (primitive->v.kind() == code::primitive::pointer) {
result = e.gc.allocType(GcType::tArray, type, size, 1);
result->offset[0] = 0;
} else {
result = e.gc.allocType(GcType::tArray, type, size, 0);
}
} else if (code::SimpleDesc *simple = as<code::SimpleDesc>(desc)) {
Nat ptrCount = 0;
for (Nat i = 0; i < simple->count(); i++) {
if (simple->at(i).kind() == code::primitive::pointer)
ptrCount++;
}
result = e.gc.allocType(GcType::tArray, type, size, ptrCount);
Nat offsetAt = 0;
for (Nat i = 0; i < simple->count(); i++) {
if (simple->at(i).kind() == code::primitive::pointer)
result->offset[offsetAt++] = simple->at(i).offset().current();
}
} else if (code::ComplexDesc *complex = as<code::ComplexDesc>(desc)) {
// If we get here, the type should be empty.
(void)complex;
result = e.gc.allocType(GcType::tArray, type, size, 0);
} else {
throw new (type) InternalError(S("Unsupported type description of a value."));
}
assert(result);
return result;
}
const GcType *Type::gcType() {
// Already created?
if (myGcType != null)
return myGcType;
// We need to create it. Switch threads if neccessary...
const os::Thread &t = TObject::associatedThread()->thread();
if (t != os::Thread::current()) {
// Wrong thread, switch!
Type *me = this;
os::Future<const GcType *> f(os::FutureMode::exclusive);
os::FnCall<const GcType *, 2> p = os::fnCall().add(me);
os::UThread::spawn(address(&Type::gcType), true, p, f, &t);
return f.result(&updateFutureExceptions, null);
}
// We're on the correct thread. Compute the type!
assert(value() || (myTypeFlags & typeCpp) != typeCpp, L"C++ types should be given a GcType on creation!");
// Make sure everything is loaded.
forceLoad();
// Compute the GcType for us!
const GcType *superGc = null;
Size superSize;
if (Type *s = super()) {
superGc = s->gcType();
superSize = s->size();
}
if (!layout) {
// We do not have any variables of our own.
if (superGc) {
myGcType = engine.gc.allocType(superGc);
} else if (value()) {
// Look at our TypeDesc to see what we shall do.
myGcType = gcTypeFromDesc(this, typeDesc());
} else {
assert(false, L"We're a non-value not inheriting from Object or TObject!");
}
} else {
// Merge our parent's and our offsets (if we have a parent).
nat entries = layout->fillGcType(superSize, superGc, null);
if (value())
myGcType = engine.gc.allocType(GcType::tArray, this, size().current(), entries);
else if (superGc)
myGcType = engine.gc.allocType(GcType::Kind(superGc->kind), this, size().current(), entries);
else
assert(false, L"Neither a value nor have a parent!");
layout->fillGcType(superSize, superGc, myGcType);
}
myGcType->type = this;
// Do we need a destructor?
if (Function *dtor = destructor())
updateDtor(dtor);
return myGcType;
}
const GcType *Type::gcArrayType() {
if (value()) {
return gcType();
} else if (useThread) {
return engine.tObjHandle().gcArrayType;
} else {
return &pointerArrayType;
}
}
static void objDeepCopy(void *obj, CloneEnv *env) {
Object *&o = *(Object **)obj;
cloned(o, env);
}
static void objToS(const void *obj, StrBuf *to) {
const Object *o = *(const Object **)obj;
*to << o;
}
code::Content *Type::refContent() {
if (!myContent)
myContent = new (engine) code::Content();
return myContent;
}
void Type::buildHandle() {
// Note: It seems that for pure C++ types, we replace the handle that was generated from
// C++. We could skip doing that in many situations? For example, this happens during boot
// for NameSet lookups, when Str::hash is loaded, for example.
bool val = value();
if (!val) {
// The above check is not strictly necessary for correctness. However, we crash during
// boot if we try to access 'chain' too early.
if (isA(TObject::stormType(engine))) {
// TObject.
tHandle = &engine.tObjHandle();
return;
}
}
RefHandle *h = new (engine) RefHandle(refContent());
tHandle = h;
// We need to fill in enough members in 'h' to be able to create the arrays below. Note: We
// know that 'Value' is simple enough to be copied with memcpy, so it is fine to have a
// partly initialized handle for 'Value' for a small while.
if (val) {
const GcType *g = gcType();
h->size = g->stride;
h->locationHash = false;
h->gcArrayType = g;
h->toSFn = &defToS;
handleToS = toSMissing;
} else {
// Plain class.
h->size = sizeof(void *);
h->locationHash = false;
h->gcArrayType = &pointerArrayType;
h->copyFn = null; // Memcpy is OK.
h->deepCopyFn = &objDeepCopy;
h->toSFn = &objToS;
handleToS = toSWithParam;
}
// Populate the handle for some types manually. Otherwise, we will not be able to boot
// properly.
populateHandle(this, h);
Scope scope = engine.scope();
Array<Value> *r = new (engine) Array<Value>(1, thisPtr(this));
Array<Value> *rr = new (engine) Array<Value>(2, thisPtr(this));
Array<Value> *vv = new (engine) Array<Value>(2, Value(this));
// Fill in the rest of the members.
if (val) {
// Find constructor.
if (Function *f = as<Function>(find(CTOR, rr, scope)))
updateHandle(f);
// Find destructor.
if (Function *f = as<Function>(find(DTOR, r, scope)))
updateHandle(f);
// Find deepCopy.
if (Function *f = deepCopyFn())
updateHandle(f);
// Find toS.
Array<Value> *rb = new (engine) Array<Value>(2, thisPtr(this));
rb->at(1) = Value(StormInfo<StrBuf>::type(engine));
if (Function *f = as<Function>(find(S("toS"), rb, scope))) {
updateHandle(f);
} else {
// Fall back to a version without the StrBuf parameter:
rb->pop();
if (Function *f = as<Function>(find(S("toS"), rb, scope)))
updateHandle(f);
}
}
// Find hash function.
if (Function *f = as<Function>(find(S("hash"), r, scope)))
updateHandle(f);
// Find equal function.
if (Function *f = as<Function>(find(S("=="), vv, scope)))
updateHandle(f);
// Find less-than function.
if (Function *f = as<Function>(find(S("<"), vv, scope)))
updateHandle(f);
// Find the 'serializedType' function.
if (Function *f = as<Function>(find(S("serializedType"), new (engine) Array<Value>(), scope)))
updateHandle(f);
modifyHandle(h);
}
void Type::modifyHandle(Handle *) {}
// Check if the parameters follow the constraints required for comparison functions (i.e. < and ==) to work.
static Bool comparisonParams(Type *me, Array<Value> *params) {
if (params->count() != 2)
return false;
Value lhs = params->at(0).asRef();
Value rhs = params->at(1).asRef();
return lhs.mayReferTo(me)
&& rhs.mayReferTo(me);
}
void Type::updateHandle(Function *fn) {
if (!as<const RefHandle>(tHandle)) {
// This happens if we are a TObject. Then we get a default handle. Without this check,
// we would crash when a 'hash' function is defined, for example.
return;
}
RefHandle *h = (RefHandle *)tHandle;
bool val = value();
Array<Value> *params = fn->params;
Str *name = fn->name;
if (fn->isMember()) {
if (params->count() < 1)
return;
bool refThis = params->at(0).ref;
// Note: We only insert constructors, destructors, etc if they are not pure. Pure
// functions imply that they do mostly nothing, and we might as well use a large scale
// memcpy in containers etc.
if (val && *name == CTOR) {
if (refThis && params->count() == 2 && params->at(1) == Value(this, true) && !fn->pure()) {
h->setCopyCtor(fn->ref());
}
} else if (val && *name == DTOR) {
if (refThis && params->count() == 1 && !fn->pure()) {
h->setDestroy(fn->ref());
}
} else if (val && *name == S("deepCopy")) {
if (refThis && params->count() == 2 && params->at(1) == Value(CloneEnv::stormType(engine)) && !fn->pure()) {
h->setDeepCopy(fn->ref());
}
} else if (*name == S("hash")) {
if (params->count() == 1) {
if (allRefParams(fn))
h->setHash(fn->ref());
else
h->setHash(makeRefParams(fn));
}
} else if (*name == S("==")) {
if (comparisonParams(this, params)) {
if (allRefParams(fn))
h->setEqual(fn->ref());
else
h->setEqual(makeRefParams(fn));
}
} else if (*name == S("<")) {
if (comparisonParams(this, params)) {
if (allRefParams(fn))
h->setLess(fn->ref());
else
h->setLess(makeRefParams(fn));
}
} else if (val && *name == S("toS")) {
if (refThis && params->count() == 2) {
if (Value(StrBuf::stormType(engine)).mayStore(params->at(1)) && !params->at(1).ref) {
h->setToS(fn->ref());
handleToS = toSWithParam;
}
} else if (refThis && params->count() == 1 && handleToS != toSWithParam) {
h->setToS(makeToSThunk(fn));
handleToS = toSNoParam;
}
}
} else {
if (*name == S("serializedType") && fn->result.type == StormInfo<SerializedType>::type(engine)) {
h->setSerializedType(fn->ref());
}
}
}
Named *Type::findHere(SimplePart *part, Scope source) {
return NameSet::find(part, source);
}
Named *Type::tryFindHere(SimplePart *part, Scope source) {
return NameSet::tryFind(part, source);
}
void Type::toS(StrBuf *to) const {
if (value()) {
*to << S("value ");
} else {
*to << S("class ");
}
if (params)
*to << new (this) SimplePart(name, params);
else
*to << new (this) SimplePart(name);
bool extends = false;
if (chain != null && chain->super() != null) {
if (chain->super() == TObject::stormType(engine)) {
} else if (chain->super() == Object::stormType(engine)) {
} else {
extends = true;
*to << S(" extends ") << chain->super()->identifier();
}
}
if (useThread && !extends) {
*to << S(" on ") << useThread->identifier();
}
*to << S(" [");
putVisibility(to);
*to << S("]");
}
Function *Type::defaultCtor() {
return as<Function>(find(CTOR, new (this) Array<Value>(1, thisPtr(this)), engine.scope()));
}
Function *Type::copyCtor() {
return as<Function>(find(CTOR, new (this) Array<Value>(2, thisPtr(this)), engine.scope()));
}
Function *Type::assignFn() {
return as<Function>(find(S("="), new (this) Array<Value>(2, thisPtr(this)), engine.scope()));
}
Function *Type::deepCopyFn() {
Array<Value> *params = valList(engine, 2, thisPtr(this), Value(CloneEnv::stormType(engine)));
return as<Function>(find(S("deepCopy"), params, engine.scope()));
}
Function *Type::destructor() {
return as<Function>(find(DTOR, new (this) Array<Value>(1, thisPtr(this)), engine.scope()));
}
Function *Type::readRefFn() {
if (readRef)
return readRef;
if (!value()) {
// We can just use the default implementation shared between all objects.
if (isA(TObject::stormType(engine)))
return engine.readTObjFn();
else
return engine.readObjFn();
}
// Otherwise, we need to create our own function. Note: We're not actually adding the
// function to the name tree. We want it to be invisible!
Value r(this);
code::Listing *src = new (engine) code::Listing(false, typeDesc());
code::Var param = src->createParam(engine.ptrDesc());
*src << code::prolog();
*src << code::fnRetRef(param);
readRef = dynamicFunction(engine, r, S("_read_"), valList(engine, 1, r.asRef()), src);
readRef->parentLookup(engine.package());
return readRef;
}
void *Type::operator new(size_t size, Engine &e, GcType *type) {
assert(size <= type->stride, L"Invalid type description found!");
return e.gc.alloc(type);
}
void Type::operator delete(void *mem, Engine &e, GcType *type) {}
RootObject *alloc(Type *t) {
Function *ctor = t->defaultCtor();
if (!ctor) {
Str *msg = TO_S(t, S("Can not create ") << t->identifier() << S(", no default constructor."));
throw new (t) InternalError(msg);
}
void *data = runtime::allocObject(t->size().current(), t);
typedef void *(*Fn)(void *);
Fn fn = (Fn)ctor->ref().address();
(*fn)(data);
return (RootObject *)data;
}
/**
* VTable logic.
*
* Note: there is a small optimization we do here. If we know we are the leaf class for a
* specific function, that function only needs to be registered in the vtable but does not need
* to use vtable dispatch!
*/
void Type::vtableFnAdded(Function *fn) {
// If we are a value, we do not have a vtable.
if (value())
return;
// If the function is a static function, don't use it in vtables.
if (!fn->isMember())
return;
bool abstractFn = (fn->fnFlags() & fnAbstract) == fnAbstract;
if (abstractFn)
invalidateAbstract();
OverridePart *part = new (engine) OverridePart(fn);
bool insert = false;
// Try to find a function which overrides this function, or a function which we override. If
// we found the function in either direction, we do not need to search in the other
// direction, as they already are in the vtable in that case.
if (vtableInsertSuper(part, fn)) {
insert = true;
} else if (fn->fnFlags() & fnOverride) {
Str *msg = TO_S(this, S("The function ") << fn->identifier() << S(" is marked 'override' but does not override."));
throw new (this) TypedefError(fn->pos, msg);
}
// Always check subclasses in the case of a function marked 'final'.
if (!insert || (fn->fnFlags() & fnFinal)) {
insert |= vtableInsertSubclasses(part, fn);
}
// Furthermore, if 'fn' is abstract, we insert it anyway since we're certain it will be used
// eventually. Furthermore, it greatly simplifies (and speeds up) the implementation of 'abstract()'.
insert |= abstractFn;
if (insert)
myVTable->insert(fn);
}
void Type::vtableFnRemoved(Function *fn) {
// If we are a value, we do not have a vtable.
if (value())
return;
// Don't care if it is a static function.
if (!fn->isMember())
return;
// See if we can remove the function from the vtable.
if (myVTable)
myVTable->remove(fn);
// TODO: Check if any 'abstract' and 'override' constraints were broken.
}
// See if the return type of a function matches the super function.
// If the result differs "too much" in some sense, the calling conventions of the two functions
// will differ, and we will either produce weird results or crash.
static bool checkResult(Function *parent, Function *child) {
Value p = parent->result;
Value c = child->result;
if (p.type == null) {
// void only allows void
return c.type == null;
} else if (p.isValue() && !p.ref) {
// We can't support inheritance in values, since that could potentially overwrite memory in the caller.
// If we're returning a reference, the situation is different. Then we treat values as if they were
// regular object types.
return p.type == c.type;
} else {
// Object, actor or reference. Regular inheritance rules apply.
return p.mayReferTo(c.type);
}
}
// See if the function 'child' is allowed to override 'parent'.
static void checkOverride(Function *parent, Function *child) {
if (parent->fnFlags() & fnFinal) {
Str *msg = TO_S(parent, S("The function ") << child->identifier() << S(" attempts to ")
S("override the final function ") << parent->identifier() << S("."));
throw new (parent) TypedefError(child->pos, msg);
}
if (!checkResult(parent, child)) {
Str *msg = TO_S(parent, S("The function ") << child->identifier() << S(" overrides ")
<< parent->identifier() << S(", but the return types are not compatible. ")
<< S("Got ") << child->result << S(", but expected a type compatible with ")
<< parent->result << S("."));
throw new (parent) TypedefError(child->pos, msg);
}
}
Bool Type::vtableInsertSuper(OverridePart *fn, Function *original) {
// See if our parent contains an appropriate function.
Type *s = super();
if (!s)
return false;
Function *found = as<Function>(s->tryFindHere(fn, Scope()));
if (found && found->visibleFrom(original)) {
// Is this allowed?
checkOverride(found, original);
// Found it, no need to search further as all possible parent functions are in the
// vtable already.
s->myVTable->insert(found);
return true;
} else {
return s->vtableInsertSuper(fn, original);
}
}
Bool Type::vtableInsertSubclasses(OverridePart *fn, Function *original) {
bool inserted = false;
TypeChain::Iter i = chain->children();
while (Type *child = i.next()) {
// Note: We do not want to eagerly load the child class now. The VTable for the child is
// not needed until it is instantiated anyway, and we will get notified when that happens.
Function *found = as<Function>(child->tryFindHere(fn, Scope()));
if (found && original->visibleFrom(found)) {
// Found something. Is it allowed?
checkOverride(original, found);
// Insert it in the vtable. We do not need to go further down this particular path
// as any overriding functions there are already found by now.
child->myVTable->insert(found);
inserted = true;
} else {
inserted |= child->vtableInsertSubclasses(fn, original);
}
}
return inserted;
}
void Type::vtableNewSuper() {
// Insert all functions in here and in our super-classes.
for (Iter i = begin(), e = end(); i != e; ++i) {
Function *f = as<Function>(i.v());
if (!f)
continue;
if (*f->name == CTOR)
continue;
vtableFnAdded(f);
}
isAbstract = abstractUnknown;
}
void Type::vtableDetachedSuper(Type *old) {
if (!old)
return;
if (!engine.has(bootTemplates))
return;
if (old->myVTable)
old->myVTable->removeChild(this);
isAbstract = abstractUnknown;
}
void Type::invalidateAbstract() {
isAbstract = abstractUnknown;
TypeChain::Iter i = chain->children();
while (Type *child = i.next())
child->invalidateAbstract();
}
}
|