File: Ico.cpp

package info (click to toggle)
storm-lang 0.7.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 52,004 kB
  • sloc: ansic: 261,462; cpp: 140,405; sh: 14,891; perl: 9,846; python: 2,525; lisp: 2,504; asm: 860; makefile: 678; pascal: 70; java: 52; xml: 37; awk: 12
file content (562 lines) | stat: -rw-r--r-- 14,969 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
#include "stdafx.h"
#include "Ico.h"
#include "Png.h"
#include "Core/Io/MemStream.h"
#include "Utils/Bitwise.h"
#include "Exception.h"

namespace graphics {

	// Fill a structure with data from a stream.
	template <class T>
	static bool fill(IStream *src, T &out) {
		GcPreArray<byte, sizeof(T)> data;
		Buffer r = src->fill(emptyBuffer(data));
		if (r.filled() != sizeof(T))
			return false;
		memcpy(&out, r.dataPtr(), sizeof(T));
		return true;
	}

	// Read data to an array.
	template <class T>
	static T *read(IStream *src, Nat count, Nat &position) {
		Nat size = count*sizeof(T);
		Buffer r = src->fill(buffer(src->engine(), size));
		if (r.filled() != size)
			return null;
		position += size;
		return (T *)r.dataPtr();
	}

	static Bool CODECALL icoApplicable(IStream *from) {
		Buffer buffer = from->peek(storm::buffer(from->engine(), 4));
		if (!buffer.full())
			return false;

		// Signature: reserved (2 bytes), resource type (2 bytes, 1 for icons)
		return buffer[0] == 0x00
			&& buffer[1] == 0x00
			&& buffer[2] == 0x01
			&& buffer[3] == 0x00;
	}

	static FormatOptions *CODECALL icoCreate(ImageFormat *f) {
		return new (f) ICOOptions();
	}

	ICOOptions::ICOOptions() : bestQualityOnly(true) {}

	void ICOOptions::toS(StrBuf *to) const {
		*to << S("ICO {");
		if (bestQualityOnly) {
			*to << S("load only best quality");
		} else {
			*to << S("load all variants");
		}
		*to << S("}");
	}

	Image *ICOOptions::load(IStream *from) {
		ImageSet *s = loadSet(from);
		return s->at(s->count() - 1);
	}

	/**
	 * ICO directory.
	 */
	struct ICODirectory {
		// Reserved, must be 0.
		nat16 reserved;

		// Resource type, 1 for icons.
		nat16 resType;

		// Number of images.
		nat16 imageCount;
	};

	/**
	 * A single entry in the directory.
	 */
	struct ICOEntry {
		// Dimension.
		byte width;
		byte height;

		// Number of colors.
		byte colorCount;

		// Reserved, must be 0.
		byte reserved;

		// Color planes.
		nat16 planes;

		// Bits per pixel.
		nat16 bpp;

		// Bytes in the image.
		nat size;

		// Offset in the file.
		nat offset;
	};

	/**
	 * DIB header in the ICO file.
	 */
	struct DIBHeader {
		// Header size in bytes. May be larger than this header.
		nat size;

		// Image width in pixels.
		nat width;

		// Image height in pixels.
		nat height;

		// Number of planes. Must be 1.
		nat16 planes;

		// Number of bits per pixel. 1, 4, 8, 16, 24, or 32.
		nat16 pixelDepth;

		// Compression type (needs to be 0)
		nat compression;

		// Image size in bytes. Possibly zero for uncompressed images.
		nat imageSize;

		// Resolution in pixels per meter (needs to be 0)
		nat xResolution;
		nat yResolution;

		// Number of color map entries used (needs to be 0)
		nat colorsUsed;

		// Number of significant colors (needs to be 0)
		nat colorsImportant;
	};

	/**
	 * An entry in the color table. Located after ImageHeader.
	 */
	struct DIBColor {
		byte b;
		byte g;
		byte r;
		byte pad;
	};

	/**
	 * A single loaded entry. We use it to remove duplicates later.
	 *
	 * We can't rely on all data in the ICOEntry structure - mostly due to the presence of
	 * PNG-encoded images where height and width are both zero. So, we load all versions first, and
	 * then discard the ones that were duplicates.
	 */
	struct LoadedImage {
		// Loaded image.
		Image *image;

		// Bits per pixel in the actual image.
		Nat bpp;
	};

	// Compare, first on image size (h then v), then bpp:
	bool operator <(const LoadedImage &a, const LoadedImage &b) {
		if (a.image->width() != b.image->width())
			return a.image->width() < b.image->width();
		if (a.image->height() != b.image->height())
			return a.image->height() < b.image->height();
		return a.bpp < b.bpp;
	}

	static LoadedImage loadedImage(Image *image, Nat bpp) {
		LoadedImage x = { image, bpp };
		return x;
	}

	static const GcType loadedImageType = {
		GcType::tArray,
		null,
		null,
		sizeof(LoadedImage),
		1,
		{ OFFSET_OF(LoadedImage, image) }
	};


	static bool compareIcoEntries(const ICOEntry &a, const ICOEntry &b) {
		return a.offset < b.offset;
	}

	static Image *icoDecode1(IStream *from, const DIBHeader &header, Nat &position);
	static Image *icoDecode4(IStream *from, const DIBHeader &header, Nat &position);
	static Image *icoDecode8(IStream *from, const DIBHeader &header, Nat &position);
	static Image *icoDecode24(IStream *from, const DIBHeader &header, Nat &position);
	static Image *icoDecode32(IStream *from, const DIBHeader &header, Nat &position);

	typedef Image *(*IcoDecoder)(IStream *from, const DIBHeader &header, Nat &position);
	static IcoDecoder pickIcoDecoder(const DIBHeader &header);

	static LoadedImage loadIcon(IStream *from, const ICOEntry &entry, Nat &position) {
		if (position > entry.offset)
			throw new (from) ImageLoadError(S("Malformed ICO file: multiple images overlap each other."));

		Nat toSkip = entry.offset - position;
		if (toSkip > 0) {
			from->fill(toSkip);
			position += toSkip;
		}

		// See if this is actually a PNG image.
		if (checkHeader(from, "\x89PNG", false)) {
			// Note: We can't pass a partially seeked stream to the PNG decoder. It needs a random
			// access stream and will seek the stream itself, which will not work. We could adapt
			// the stream, but it is not really worth it since random access is needed anyway.
			Buffer pngData = from->fill(entry.size);
			if (!pngData.full())
				throw new (from) ImageLoadError(S("Not enough data for PNG icon."));
			position += pngData.filled();

			PNGOptions *png = new (from) PNGOptions();
			return loadedImage(png->load(new (from) MemIStream(pngData)), 32);
		}

		// This is (usually) a DIB header. Note that only: size, width, height, planes, bitcount,
		// size are used. Importantly, "compression" is *not* used, so we can't use 'pickDecoder' directly.
		DIBHeader header;
		if (!fill(from, header))
			throw new (from) ImageLoadError(S("Failed to read icon header."));
		position += sizeof(DIBHeader);

		if (header.size < 40 || header.planes != 1)
			throw new (from) ImageLoadError(S("Invalid or incomplete DIB header for icon."));

		IcoDecoder decode = pickIcoDecoder(header);
		if (!decode)
			throw new (from) ImageLoadError(S("Unsupported bit depth in icon."));

		Image *image = (*decode)(from, header, position);
		if (!image)
			throw new (from) ImageLoadError(S("Failed to load icon bitmap."));

		// This 'pixelDepth' is more trustworthy than the BPP in the ICO header, especially since we
		// now know that it is a bitmap image.
		return loadedImage(image, header.pixelDepth);
	}

	ImageSet *ICOOptions::loadSet(IStream *from) {
		const wchar *error = S("");
		Nat position = 0;

		error = S("Invalid or incompatible ICO header.");

		ICODirectory directory;
		if (!fill(from, directory))
			throw new (this) ImageLoadError(error);
		position += sizeof(directory);

		if (directory.reserved != 0 || directory.resType != 1)
			throw new (this) ImageLoadError(error);

		error = S("Invalid ICO directory entry.");

		std::vector<ICOEntry> entries(directory.imageCount, ICOEntry());
		for (size_t i = 0; i < entries.size(); i++) {
			if (!fill(from, entries[i]))
				throw new (this) ImageLoadError(error);
			position += sizeof(ICOEntry);

			if (entries[i].reserved != 0 || entries[i].planes > 1)
				throw new (this) ImageLoadError(error);
		}

		// Sort the entries based on offset, so we can read them in one go.
		std::sort(entries.begin(), entries.end(), compareIcoEntries);

		// Load all images, one by one:
		GcArray<LoadedImage> *loaded = runtime::allocArray<LoadedImage>(engine(), &loadedImageType, entries.size());
		for (size_t i = 0; i < entries.size(); i++) {
			loaded->v[loaded->filled++] = loadIcon(from, entries[i], position);
		}

		// Sort them grouped by image size, then by bpp (we put them in order of increasing quality).
		std::sort(loaded->v, loaded->v + loaded->filled);

		if (bestQualityOnly && loaded->filled > 0) {
			// If asked to only get the best ones, filter out the others. We just walk from the end
			// of the array and set everything that does not have a new resolution to null.
			Nat curWidth = loaded->v[loaded->filled - 1].image->width();
			Nat curHeight = loaded->v[loaded->filled - 1].image->height();

			for (size_t i = loaded->filled - 1; i > 0; i--) {
				Image *&img = loaded->v[i - 1].image;
				if (img->width() != curWidth || img->height() != curHeight) {
					// Keep it, it is different.
					curWidth = img->width();
					curHeight = img->height();
				} else {
					// Same resolution, worse quality.
					img = null;
				}
			}
		}

		// Insert into an ImageSet (this is actually cheaper now, since they are already sorted!)
		ImageSet *images = new (this) ImageSet();
		for (size_t i = 0; i < loaded->filled; i++) {
			if (loaded->v[i].image)
				images->push(loaded->v[i].image);
		}

		return images;
	}

	static IcoDecoder pickIcoDecoder(const DIBHeader &header) {
		switch (header.pixelDepth) {
		case 1:
			return &icoDecode1;
		case 4:
			return &icoDecode4;
		case 8:
			return &icoDecode8;
			// Note the oldnewthing blog says 16 bits exist, but not 24 bits. That is likely the
			// opposite - I found 24-bit icons from old Visual Studio stock icons (but no 16-bit),
			// Gimp does not support encoding 16-bit images, and the docs say that the compression
			// field is not used (which would be needed for the bitfield encoding required).
		case 24:
			return &icoDecode24;
		case 32:
			return &icoDecode32;
		}
		return null;
	}

	static bool applyMask(IStream *from, Image *to, Nat w, Nat h, Nat &position) {
		Nat stride = roundUp((w + 7) / 8, Nat(4));
		Buffer src = buffer(from->engine(), stride);
		for (Nat y = 0; y < h; y++) {
			src.filled(0);
			src = from->read(src);
			position += src.filled();
			if (src.filled() != stride)
				return false;

			byte *dest = to->buffer(0, h - y - 1);
			for (Nat x = 0; x < w; x++) {
				byte color = src[x / 8];
				color = (color >> (7 - (x & 0x7))) & 0x1;

				if (color) {
					// Set alpha channel to transparent where we are asked to do so.
					dest[4*x + 3] = 0;
				}
			}
		}
		return true;
	}

	static Image *icoDecode32(IStream *from, const DIBHeader &header, Nat &position) {
		Nat w = header.width;
		Nat h = header.height;

		// These bitmaps are strange. First, we have a color bitmap, then a 1-bpp mask.
		h /= 2;

		Image *to = new (from) Image(w, h);

		// Color part:
		Nat stride = w * 4;
		Buffer src = buffer(from->engine(), stride);
		for (Nat y = 0; y < h; y++) {
			src.filled(0);
			src = from->read(src);
			position += src.filled();
			if (src.filled() != stride)
				return null;

			byte *dest = to->buffer(0, h - y - 1);
			for (Nat x = 0; x < w; x++) {
				dest[4*x + 2] = src[x*4 + 0];
				dest[4*x + 1] = src[x*4 + 1];
				dest[4*x + 0] = src[x*4 + 2];
				dest[4*x + 3] = src[x*4 + 3];
			}
		}

		applyMask(from, to, w, h, position);
		return to;
	}

	static Image *icoDecode24(IStream *from, const DIBHeader &header, Nat &position) {
		Nat w = header.width;
		Nat h = header.height;

		// These bitmaps are strange. First, we have a color bitmap, then a 1-bpp mask.
		h /= 2;

		Image *to = new (from) Image(w, h);

		// Color part:
		Nat stride = roundUp(w * 3, Nat(4));
		Buffer src = buffer(from->engine(), stride);
		for (Nat y = 0; y < h; y++) {
			src.filled(0);
			src = from->read(src);
			position += src.filled();
			if (src.filled() != stride)
				return null;

			byte *dest = to->buffer(0, h - y - 1);
			for (Nat x = 0; x < w; x++) {
				dest[4*x + 2] = src[x*3 + 0];
				dest[4*x + 1] = src[x*3 + 1];
				dest[4*x + 0] = src[x*3 + 2];
				dest[4*x + 3] = 255;
			}
		}

		applyMask(from, to, w, h, position);
		return to;
	}

	static Image *icoDecode8(IStream *from, const DIBHeader &header, Nat &position) {
		Nat w = header.width;
		Nat h = header.height;

		// These bitmaps are strange. First, we have a color bitmap, then a 1-bpp mask.
		h /= 2;

		// Read color table.
		Nat used = header.colorsUsed;
		if (used == 0)
			used = 256;
		DIBColor *palette = read<DIBColor>(from, used, position);

		Image *to = new (from) Image(w, h);

		// Image part:
		Nat stride = roundUp(w, Nat(4));
		Buffer src = buffer(from->engine(), stride);
		for (Nat y = 0; y < h; y++) {
			src.filled(0);
			src = from->read(src);
			position += src.filled();
			if (src.filled() != stride)
				return null;

			byte *dest = to->buffer(0, h - y - 1);
			for (Nat x = 0; x < w; x++) {
				byte color = src[x];

				dest[4*x + 0] = palette[color].r;
				dest[4*x + 1] = palette[color].g;
				dest[4*x + 2] = palette[color].b;
				dest[4*x + 3] = 255;
			}
		}

		applyMask(from, to, w, h, position);
		return to;
	}

	static Image *icoDecode4(IStream *from, const DIBHeader &header, Nat &position) {
		Nat w = header.width;
		Nat h = header.height;

		// These bitmaps are strange. First, we have a color bitmap, then a 1-bpp mask.
		h /= 2;

		// Read color table.
		Nat used = header.colorsUsed;
		if (used == 0)
			used = 16;
		DIBColor *palette = read<DIBColor>(from, used, position);

		Image *to = new (from) Image(w, h);

		// Image part:
		Nat stride = roundUp((w + 1) / 2, Nat(4));
		Buffer src = buffer(from->engine(), stride);
		for (Nat y = 0; y < h; y++) {
			src.filled(0);
			src = from->read(src);
			position += src.filled();
			if (src.filled() != stride)
				return null;

			byte *dest = to->buffer(0, h - y - 1);
			for (Nat x = 0; x < w; x++) {
				byte color = src[x / 2];
				color = (color >> (~x & 0x1)*4) & 0xF;

				dest[4*x + 0] = palette[color].r;
				dest[4*x + 1] = palette[color].g;
				dest[4*x + 2] = palette[color].b;
				dest[4*x + 3] = 255;
			}
		}

		applyMask(from, to, w, h, position);
		return to;
	}

	static Image *icoDecode1(IStream *from, const DIBHeader &header, Nat &position) {
		Nat w = header.width;
		Nat h = header.height;

		// These bitmaps are strange. First, we have a color bitmap, then a 1-bpp mask.
		h /= 2;

		// Read color table.
		Nat used = header.colorsUsed;
		if (used == 0)
			used = 2;
		DIBColor *palette = read<DIBColor>(from, used, position);

		Image *to = new (from) Image(w, h);

		// Image part:
		Nat stride = roundUp((w + 7) / 8, Nat(4));
		Buffer src = buffer(from->engine(), stride);
		for (Nat y = 0; y < h; y++) {
			src.filled(0);
			src = from->read(src);
			position += src.filled();
			if (src.filled() != stride)
				return null;

			byte *dest = to->buffer(0, h - y - 1);
			for (Nat x = 0; x < w; x++) {
				byte color = src[x / 8];
				color = (color >> (7 - (x & 0x7))) & 0x1;

				dest[4*x + 0] = palette[color].r;
				dest[4*x + 1] = palette[color].g;
				dest[4*x + 2] = palette[color].b;
				dest[4*x + 3] = 255;
			}
		}

		applyMask(from, to, w, h, position);
		return to;
	}


	void ICOOptions::save(Image *image, OStream *to) {
		throw new (this) ImageSaveError(S("Can not save ICO files yet."));
	}


	ImageFormat *icoFormat(Engine &e) {
		const wchar *exts[] = {
			S("ico"),
			null
		};
		return new (e) ImageFormat(S("Icon"), exts, &icoApplicable, &icoCreate);
	}

}