File: Arena.cpp

package info (click to toggle)
storm-lang 0.7.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 52,028 kB
  • sloc: ansic: 261,471; cpp: 140,432; sh: 14,891; perl: 9,846; python: 2,525; lisp: 2,504; asm: 860; makefile: 678; pascal: 70; java: 52; xml: 37; awk: 12
file content (457 lines) | stat: -rw-r--r-- 13,717 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
#include "stdafx.h"
#include "Arena.h"
#include "WindowsOutput.h"
#include "PosixOutput.h"
#include "Asm.h"
#include "AsmOut.h"
#include "RemoveInvalid.h"
#include "WindowsLayout.h"
#include "PosixLayout.h"
#include "Code/PosixEh/StackInfo.h"
#include "Code/WindowsEh/Seh.h"
#include "Code/Exception.h"
#include "Core/GcBitset.h"
#include "Gc/DwarfTable.h"
#include "Dwarf/FunctionInfo.h"
#include "DwarfRegisters.h"
#include "FnState.h"
#include "WindowsEh/Seh64.h"

namespace code {
	namespace x64 {

		Arena::Arena() {
			dirtyRegs = new (this) RegSet();
		}

		Arena::TransformInfo Arena::transformInfo(Listing *l) const {
#ifdef X64
#if defined(WINDOWS)
			code::eh::activateWindowsInfo(engine());
#elif defined(POSIX)
			code::eh::activatePosixInfo();
#endif
#endif

			// Remove unsupported OP-codes, replacing them with their equivalents.
			l = code::transform(l, this, new (this) RemoveInvalid(this));

			// Expand variables and function calls as well as function prolog and epilog.
			Layout *layout = layoutTfm();
			l = code::transform(l, this, layout);

			return TransformInfo(l, layout->layout);
		}

		void Arena::output(Listing *src, Output *to) const {
			code::x64::output(src, to);
			to->finish();
		}

		LabelOutput *Arena::labelOutput() const {
			return new (this) LabelOutput(8);
		}

		void Arena::removeFnRegs(RegSet *from) const {
			for (RegSet::Iter i = dirtyRegs->begin(), end = dirtyRegs->end(); i != end; ++i)
				from->remove(*i);
		}

		RegSet *Arena::fnResultRegs() const {
			RegSet *result = new (this) RegSet();
			result->put(rax);
			result->put(rdx);
			result->put(xmm0);
			result->put(xmm1);
			return result;
		}

		Listing *Arena::redirect(Bool member, TypeDesc *result, Array<TypeDesc *> *params, Ref fn, Operand param) {
			Listing *l = new (this) Listing(this);

			// Generate a layout of all parameters so we can properly restore them later.
			Params *layout = layoutParams(member, result, params);

			// Note: We want to use the 'prolog' and 'epilog' functionality so that exceptions from
			// 'fn' are able to propagate through this stub properly.
			*l << prolog();

			// Store the registers used for parameters inside variables on the stack.
			Array<Var> *vars = new (this) Array<Var>(layout->registerCount(), Var());
			for (Nat i = 0; i < layout->registerCount(); i++) {
				if (layout->registerParam(i) != Param()) {
					Var &v = vars->at(i);
					v = l->createVar(l->root(), Size::sLong);
					*l << mov(v, asSize(layout->registerSrc(i), Size::sLong));
				}
			}

			// Call 'fn' to obtain the actual function to call.
			if (!param.empty())
				*l << fnParam(ptrDesc(engine()), param);
			*l << fnCall(fn, member, ptrDesc(engine()), ptrA);

			// Restore the registers.
			for (Nat i = 0; i < layout->registerCount(); i++) {
				Var v = vars->at(i);
				if (v != Var())
					*l << mov(asSize(layout->registerSrc(i), Size::sLong), v);
			}

			// Note: The epilog will preserve all registers in this case since there are no destructors to call!
			*l << epilog();
			*l << jmp(ptrA);

			return l;
		}

		static Listing *engineRedirectSimple(Arena *arena, Params *before, Params *after, Ref fn, Operand engine) {
			// Simple case, where we don't have to modify the stack contents.
			// We simply shuffle the registers around to match the new layout.
			Listing *l = new (arena) Listing(arena);

			// Note: Iterate backwards so that we can move registers in a chain without worrying
			// about overwriting them.
			for (Nat i = after->registerCount(); i > 0; i--) {
				Nat id = i - 1;
				Param par = after->registerParam(id);
				Reg to = after->registerSrc(id);

				if (par.empty())
					continue;

				// Is it the parameter where we shall put the engine?
				if (par.id() == 0) {
					*l << mov(to, engine);
					continue;
				}

				// Find the register in 'before' to figure out its source. A simple linear search is
				// fine here, since we have well below 10 registers to look through.
				Nat srcId = before->registerCount();
				Nat lookFor = par.id();
				if (lookFor != Param::returnId())
					lookFor--;

				for (Nat j = 0; j < before->registerCount(); j++) {
					Param p = before->registerParam(j);
					if (p.id() == lookFor && p.offset() == par.offset()) {
						srcId = j;
						break;
					}
				}

				assert(srcId < before->registerCount(), L"Should have used the complex redirect!");

				// Move the register!
				Reg from = before->registerSrc(srcId);
				if (!same(to, from))
					*l << mov(to, from);
			}

			*l << jmp(fn);
			return l;
		}

		static Listing *engineRedirectComplex(Arena *arena, Params *layout,
											TypeDesc *result, Array<TypeDesc *> *params,
											Ref fn, Operand engine) {
			// Complex case. Use a "real" function since we need to allocate our own stack frame.
			Listing *l = new (arena) Listing(arena, false, result);
			TypeDesc *ptr = ptrDesc(arena->engine());

			// Store which parameters are passed by pointer.
			GcBitset *byPointer = allocBitset(arena->engine(), params->count());
			for (Nat i = 0; i < layout->totalCount(); i++)
				byPointer->set(i, layout->totalParam(i).inMemory());

			*l << prolog();

			// Add engine parameter:
			*l << fnParam(ptr, engine);

			// Add parameters:
			for (Nat i = 0; i < params->count(); i++) {
				TypeDesc *paramDesc = params->at(i);
				if (byPointer->has(i)) {
					// This parameter is passed by a pointer in memory. This means that we can treat
					// it as if it were a pointer to avoid copying it once more!
					paramDesc = ptr;
				}
				Var param = l->createParam(paramDesc);
				*l << fnParam(paramDesc, param);
			}

			// Call the function:
			Var resultVar = l->createVar(l->root(), result);
			*l << fnCall(fn, false, result, resultVar);

			// Note: We could avoid a copy of the result when the result is passed as a pointer.
			*l << fnRet(resultVar);

			return l;
		}

		Listing *Arena::engineRedirect(TypeDesc *result, Array<TypeDesc *> *params, Ref fn, Operand engine) {
			// There are two variants of this function: One where the stack is identical before and
			// after adding the Engine parameter, and one where it is different. The first version
			// generates simple machine code (it only needs to re-organize registers), while the
			// second version requires a proper wrapper function.
			Params *before = layoutParams(false, result, params);

			Params *after = createParams(false);
			after->result(result);
			after->add(0, ptrDesc(this->engine()));
			for (Nat i = 0; i < params->count(); i++)
				after->add(i + 1, params->at(i));

			// Check if we can use the simple one (if the stack layout is the same), or if we need
			// the complex one.
			Bool useSimple = before->stackCount() == after->stackCount();
			if (useSimple) {
				for (Nat i = 0; i < before->stackCount(); i++) {
					Param beforeParam = before->stackParam(i);
					Param afterParam = after->stackParam(i).withId(beforeParam.id());

					if (beforeParam != afterParam) {
						useSimple = false;
						break;
					}
				}
			}

			if (useSimple) {
				return engineRedirectSimple(this, before, after, fn, engine);
			} else {
				return engineRedirectComplex(this, before, result, params, fn, engine);
			}
		}

		Reg Arena::functionDispatchReg() {
			return ptrA;
		}

		Params *Arena::layoutParams(Bool member, TypeDesc *result, Array<TypeDesc *> *params) {
			Params *layout = createParams(member);
			layout->result(result);
			for (Nat i = 0; i < params->count(); i++)
				layout->add(i, params->at(i));
			return layout;
		}

		void Arena::resizeStackFrame(Listing *out, Reg tmpReg, Binary *newSz) {
			Int offset = Int(newSz->stackOffset());
			tmpReg = asSize(tmpReg, Size::sPtr);
			*out << mov(tmpReg, ptrFrame);
			if (offset > 0)
				*out << add(tmpReg, ptrConst(Nat(offset)));
			else if (offset < 0)
				*out << sub(tmpReg, ptrConst(Nat(-offset)));
			*out << mov(ptrStack, tmpReg);
		}


		/**
		 * Windows version.
		 */

		WindowsArena::WindowsArena() {
			static const Reg dirty[] = {
				rax, rdx, rcx, r8, r9, r10, r11,
				xmm0, xmm1, xmm2, xmm3, xmm4, xmm5,
			};
			for (size_t i = 0; i < ARRAY_COUNT(dirty); i++)
				this->dirtyRegs->put(dirty[i]);
		}

		LabelOutput *WindowsArena::labelOutput() const {
			return new (this) WindowsLabelOut();
		}

		CodeOutput *WindowsArena::codeOutput(Binary *owner, LabelOutput *size) const {
			if (WindowsLabelOut *out = as<WindowsLabelOut>(size)) {
				return new (this) WindowsCodeOut(owner, out);
			} else {
				throw new (this) InternalError(S("A WindowsLabelOut instance is needed on 64-bit Windows."));
			}
		}

		Nat WindowsArena::firstParamId(MAYBE(TypeDesc *) desc) {
			// The this pointer is always in the first parameter register.
			if (!desc)
				return 1;

			return 0;
		}

		Operand WindowsArena::firstParamLoc(Nat id) {
			if (id != 0)
				return Operand();

			return ptrC;
		}

		code::Params *WindowsArena::createParams(Bool member) const {
			return new (this) WindowsParams(member);
		}

		Layout *WindowsArena::layoutTfm() const {
			return new (this) WindowsLayout(this);
		}

		Arena::Skeleton *WindowsArena::compatibleFrameSkeleton(Binary *binary, Nat offset) {
			Arena::Skeleton *result = frameSkeletonHead(binary);
			Array<Operand> *preservedRegs = result->savedRegs;
			Array<Operand> *preservedLocs = result->savedLocs;

			// Figure out which registers were spilled in the prolog:
			{
				using namespace eh;

				const byte *codeStart = (const byte *)binary->address();
				const byte *codeEnd = codeStart + runtime::codeSize(codeStart);
				Nat ehOffset = ((Nat *)codeEnd)[-1];

				const byte *ehStart = codeStart + ehOffset;

				const UnwindInfo *uwInfo = (UnwindInfo *)(ehStart + sizeof(RuntimeFunction));
				const byte *unwindCodes = (const byte *)(uwInfo + 1);
				for (Nat i = 0; i < uwInfo->unwindCount; i++) {
					// unwindCodes[i*2] is the position, we don't care about that.
					byte code = unwindCodes[i*2 + 1];
					switch (code & 0xF) {
					case UnwindPushNonvol: {
						Reg r = fromWin64Register(code >> 4);
						if (!same(r, ptrFrame)) {
							preservedRegs->push(r);
						}
						break;
					}
					case UnwindAllocSmall:
						// We can just skip this. We have other ways of finding out the size of the stack frame.
						break;
					case UnwindAllocLarge:
						// We can skip this. Figure out if it is small or large:
						if ((code >> 4) == 0) {
							// Small, one extra word:
							i++;
						} else {
							// Large, two extra words:
							i += 2;
						}
						break;
					}
				}

				preservedRegs->reverse();

				// Populate the 'savedLocs' array. We know that we push things first, the alloc must
				// occur last (i.e. be the first element in the prolog).
				for (Nat i = 0; i < preservedRegs->count(); i++) {
					preservedLocs->push(ptrRel(ptrFrame, Offset::sPtr * -Int(i + 1)));
				}

				// TODO(L"Double check order of preserved regs above.");

				// Find the current block and active piece:
				Nat active = findFunctionStateFromEnd(ehStart, offset);
				decodeFnState(active, result->currentBlock, result->currentActivation);
			}

			// Compute the total size of all variables on the stack:
			Nat extraWords = preservedRegs->count();
			{
				code::Params *layout = layoutParams(binary->isMember(), binary->result(), binary->params());
				for (Nat i = 0; i < layout->registerCount(); i++)
					if (layout->registerParam(i).any())
						extraWords++;
			}

			frameSkeletonTail(binary, result, extraWords, 1, true);

			return result;
		}

		/**
		 * Posix version.
		 */

		PosixArena::PosixArena() {
			static const Reg dirty[] = {
				rax, rdi, rsi, rdx, rcx, r8, r9, r10, r11,
				xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7,
			};
			for (size_t i = 0; i < ARRAY_COUNT(dirty); i++)
				this->dirtyRegs->put(dirty[i]);
		}

		CodeOutput *PosixArena::codeOutput(Binary *owner, LabelOutput *size) const {
			return new (this) PosixCodeOut(owner, size->offsets, size->size, size->refs);
		}

		Nat PosixArena::firstParamId(MAYBE(TypeDesc *) desc) {
			if (!desc)
				return 2;

			Params *p = new (this) PosixParams();
			p->result(desc);
			if (p->result().memoryRegister() == noReg)
				return 0;
			else
				return 1;
		}

		Operand PosixArena::firstParamLoc(Nat id) {
			switch (id) {
			case 0:
				// In a register, first parameter.
				return ptrDi;
			case 1:
				// In memory, second parameter.
				return ptrSi;
			default:
				return Operand();
			}
		}

		code::Params *PosixArena::createParams(Bool member) const {
			(void)member; // Not important on Posix.
			return new (this) PosixParams();
		}

		Layout *PosixArena::layoutTfm() const {
			return new (this) PosixLayout(this);
		}

		Arena::Skeleton *PosixArena::compatibleFrameSkeleton(Binary *binary, Nat offset) {
			Arena::Skeleton *result = frameSkeletonHead(binary);
			Array<Operand> *preservedRegs = result->savedRegs;
			Array<Operand> *preservedLocs = result->savedLocs;

			// Figure out which registers were spilled in the prolog:
			{
				FDE *desc = dwarfTable().find(binary->address());
				if (desc)
					code::dwarf::findPreservedRegs(preservedRegs, preservedLocs, desc,
												&fromDwarfRegister, posixDataAlignment);
			}

			Nat extraWords = preservedRegs->count();
			{
				code::Params *layout = layoutParams(binary->isMember(), binary->result(), binary->params());
				for (Nat i = 0; i < layout->registerCount(); i++)
					if (layout->registerParam(i).any())
						extraWords++;
			}

			// Find the current block and active piece:
			Nat active = findFunctionState(binary->address(), offset);
			decodeFnState(active, result->currentBlock, result->currentActivation);

			frameSkeletonTail(binary, result, extraWords, 1, true);

			return result;
		}

	}
}