File: AsmOut.cpp

package info (click to toggle)
storm-lang 0.7.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 52,028 kB
  • sloc: ansic: 261,471; cpp: 140,432; sh: 14,891; perl: 9,846; python: 2,525; lisp: 2,504; asm: 860; makefile: 678; pascal: 70; java: 52; xml: 37; awk: 12
file content (856 lines) | stat: -rw-r--r-- 23,261 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
#include "stdafx.h"
#include "AsmOut.h"
#include "Asm.h"
#include "../OpTable.h"

namespace code {
	namespace x64 {

		void nopOut(Output *to, Instr *instr) {
			// Alias for xchg eax, eax
			to->putByte(0x90);
		}

		void prologOut(Output *to, Instr *instr) {
			// There are two forms we need to consider:
			Operand src = instr->src();

			if (src.type() == opNone) {
				// 1: if we have no parameter. This is used on Posix platforms. There, we generate a
				// prolog with DWARF metadata as follows:
				// - push rbp
				// - mov rbp, rsp

				// push rbp
				to->putByte(0x50 + 5);
				// now the CFA offset is different
				to->setFrameOffset(Offset::sPtr*2);
				// We also saved RBP on the stack
				to->markSaved(ptrFrame, -Offset::sPtr*2);

				// mov rbp, rsp
				to->putByte(0x48);
				to->putByte(0x89);
				to->putByte(0xE5);
				// now we use ebp as the CFA register, offset is the same
				to->setFrameRegister(ptrFrame);
			} else if (src.type() == opConstant) {
				// 2: if we have a constant as a parameter, we are on Windows. Then, generate code
				// for allocating memory on the stack, and emit appropriate metadata:

				// This is from 'sub' below:
				ImmRegInstr op = {
					opCode(0x83), 5,
					opCode(0x81), 5,
					opCode(0x29),
					opCode(0x2B)
				};
				immRegInstr(to, op, ptrStack, src);
				to->markFrameAlloc(src.offset());
				to->markPrologEnd();
			}
		}

		void epilogOut(Output *to, Instr *instr) {
			// Marking all epilogs require that we can resize the FDA records on demand, as there
			// might be an unknown number of return statements in a function.
			// In general, the epilog CFA information is not strictly neccessary as long as there
			// are no exceptions thrown during the last two instructions in the epilog.
			// to->markEpilog();

			// We use this pseudo-op to generate the LEAVE instruction.
			to->putByte(0xC9);
		}

		void preserveOut(Output *to, Instr *instr) {
			if (instr->dest().type() == opNone) {
				to->markSaved(instr->src().reg(), Offset());
			} else {
				// Offset between the stack pointer and the CFA. This difference is due to us
				// spilling RBP from the previous function, and the return address on the stack.
				Size offset = Size::sPtr * 2;
				to->markSaved(instr->src().reg(), instr->dest().offset() - offset);
			}
		}

		void locationOut(Output *, Instr *) {
			// We don't currently offer the ability to lookup source locations in the final binary.
		}

		void metaOut(Output *, Instr *) {
			// We don't preserve metadata.
		}

		void pushOut(Output *to, Instr *instr) {
			const Operand &src = instr->src();
			switch (src.type()) {
			case opConstant:
				assert(singleInt(src.constant()), L"Should be solved by RemoveInvalid.");
				if (singleByte(src.constant())) {
					to->putByte(0x6A);
					to->putByte(Byte(src.constant() & 0xFF));
				} else {
					to->putByte(0x68);
					to->putInt(Int(src.constant()));
				}
				break;
			case opRegister:
			{
				nat reg = registerId(src.reg());
				if (reg >= 8) {
					to->putByte(0x41); // REX.B
					reg -= 8;
				}
				to->putByte(0x50 + reg);
				break;
			}
			case opRelative:
			case opReference:
			case opObjReference:
			case opOffReference:
				modRm(to, opCode(0xFF), rmNone, 6, src);
				break;
			default:
				assert(false, L"Push does not support this operand type.");
				break;
			}
		}

		void popOut(Output *to, Instr *instr) {
			const Operand &dest = instr->dest();
			switch (dest.type()) {
			case opRegister:
			{
				nat reg = registerId(dest.reg());
				if (reg >= 8) {
					to->putByte(0x41); // REX.B
					reg -= 8;
				}
				to->putByte(0x58 + reg);
				break;
			}
			case opRelative:
				modRm(to, opCode(0x8F), rmNone, 0, dest);
				break;
			default:
				assert(false, L"Pop does not support this operand type.");
				break;
			}
		}

		static OpCode fpOp(const Operand &size, byte op) {
			if (size.size() == Size::sWord)
				return prefixOpCode(0xF2, 0x0F, op);
			else
				return prefixOpCode(0xF3, 0x0F, op);
		}

		void movOut(Output *to, Instr *instr) {
			// NOTE: There is a version of MOV that supports 64-bit immediate values. We could use
			// that to avoid additional instructions in quite some cases!
			ImmRegInstr8 op8 = {
				opCode(0xC6), 0,
				opCode(0x88),
				opCode(0x8A),
			};
			ImmRegInstr op = {
				opCode(0x00), 0xFF, // Not supported
				opCode(0xC7), 0,
				opCode(0x89),
				opCode(0x8B),
			};

			bool fpSrc = fpRegister(instr->src());
			bool fpDest = fpRegister(instr->dest());
			if (fpSrc && fpDest) {
				// Two registers. This is the easy part!
				modRm(to, fpOp(instr->src(), 0x10), rmNone, instr->dest(), instr->src());
			} else if (fpSrc) {
				// 'dest' is either in memory or in a regular register.
				Operand dest = instr->dest();
				RmFlags flags = dest.size() == Size::sWord ? rmWide : rmNone;
				modRm(to, prefixOpCode(0x66, 0x0F, 0x7E), flags, instr->src(), dest);
			} else if (fpDest) {
				// 'src' is either in memory or a regular register.
				Operand src = instr->src();
				RmFlags flags = src.size() == Size::sWord ? rmWide : rmNone;
				modRm(to, prefixOpCode(0x66, 0x0F, 0x6E), flags, instr->dest(), src);
			} else {
				// Integer mov instruction.
				immRegInstr(to, op8, op, instr->dest(), instr->src());
			}
		}

		void shadowMovOut(Output *to, Instr *instr) {
			movOut(to, instr);
		}

		void swapOut(Output *to, Instr *instr) {
			if (instr->size() == Size::sByte) {
				modRm(to, opCode(0x86), rmByte, instr->dest(), instr->src());
			} else {
				modRm(to, opCode(0x87), wide(instr->dest()), instr->dest(), instr->src());
			}
		}

		void addOut(Output *to, Instr *instr) {
			ImmRegInstr8 op8 = {
				opCode(0x80), 0,
				opCode(0x00),
				opCode(0x02),
			};
			ImmRegInstr op = {
				opCode(0x83), 0,
				opCode(0x81), 0,
				opCode(0x01),
				opCode(0x03)
			};
			immRegInstr(to, op8, op, instr->dest(), instr->src());
		}

		void adcOut(Output *to, Instr *instr) {
			ImmRegInstr8 op8 = {
				opCode(0x80), 2,
				opCode(0x10),
				opCode(0x12)
			};
			ImmRegInstr op = {
				opCode(0x83), 2,
				opCode(0x81), 2,
				opCode(0x11),
				opCode(0x13)
			};
			immRegInstr(to, op8, op, instr->dest(), instr->src());
		}

		void borOut(Output *to, Instr *instr) {
			ImmRegInstr8 op8 = {
				opCode(0x80), 1,
				opCode(0x08),
				opCode(0x0A)
			};
			ImmRegInstr op = {
				opCode(0x83), 1,
				opCode(0x81), 1,
				opCode(0x09),
				opCode(0x0B)
			};
			immRegInstr(to, op8, op, instr->dest(), instr->src());
		}

		void bandOut(Output *to, Instr *instr) {
			ImmRegInstr8 op8 = {
				opCode(0x80), 4,
				opCode(0x20),
				opCode(0x22)
			};
			ImmRegInstr op = {
				opCode(0x83), 4,
				opCode(0x81), 4,
				opCode(0x21),
				opCode(0x23)
			};
			immRegInstr(to, op8, op, instr->dest(), instr->src());
		}

		void bnotOut(Output *to, Instr *instr) {
			const Operand &dest = instr->dest();
			if (dest.size() == Size::sByte) {
				modRm(to, opCode(0xF6), rmNone, 2, dest);
			} else {
				modRm(to, opCode(0xF7), wide(dest), 2, dest);
			}
		}

		void subOut(Output *to, Instr *instr) {
			ImmRegInstr8 op8 = {
				opCode(0x80), 5,
				opCode(0x28),
				opCode(0x2A)
			};
			ImmRegInstr op = {
				opCode(0x83), 5,
				opCode(0x81), 5,
				opCode(0x29),
				opCode(0x2B)
			};
			immRegInstr(to, op8, op, instr->dest(), instr->src());
		}

		void sbbOut(Output *to, Instr *instr) {
			ImmRegInstr8 op8 = {
				opCode(0x80), 2,
				opCode(0x18),
				opCode(0x1A)
			};
			ImmRegInstr op = {
				opCode(0x83), 2,
				opCode(0x81), 2,
				opCode(0x19),
				opCode(0x1B)
			};
			immRegInstr(to, op8, op, instr->dest(), instr->src());
		}

		void bxorOut(Output *to, Instr *instr) {
			ImmRegInstr8 op8 = {
				opCode(0x80), 6,
				opCode(0x30),
				opCode(0x32)
			};
			ImmRegInstr op = {
				opCode(0x83), 6,
				opCode(0x81), 6,
				opCode(0x31),
				opCode(0x33)
			};
			immRegInstr(to, op8, op, instr->dest(), instr->src());
		}

		void cmpOut(Output *to, Instr *instr) {
			ImmRegInstr8 op8 = {
				opCode(0x80), 7,
				opCode(0x38),
				opCode(0x3A)
			};
			ImmRegInstr op = {
				opCode(0x83), 7,
				opCode(0x81), 7,
				opCode(0x39),
				opCode(0x3B)
			};
			immRegInstr(to, op8, op, instr->dest(), instr->src());
		}

		void testOut(Output *to, Instr *instr) {
			ImmRegInstr8 op8 = {
				opCode(0xF6), 0,
				opCode(0x84),
				opCode(0x84), // TEST is symmetric, order does not matter
			};
			ImmRegInstr op = {
				opCode(0x00), 0xFF, // not supported
				opCode(0xF7), 0,
				opCode(0x85),
				opCode(0x85), // TEST is symmetric, order does not matter
			};
			immRegInstr(to, op8, op, instr->dest(), instr->src());
		}

		static void shiftOp(Output *to, const Operand &dest, const Operand &src, byte subOp) {
			RmFlags flags = wide(dest);
			if (dest.size() == Size::sByte)
				flags |= rmByte;

			byte c;
			switch (src.type()) {
			case opConstant:
				c = byte(src.constant());
				if (c == 0) {
					// Nothing to do!
				} else if (c == 1) {
					if (flags & rmByte)
						modRm(to, opCode(0xD0), flags, subOp, dest);
					else
						modRm(to, opCode(0xD1), flags, subOp, dest);
				} else {
					if (flags & rmByte)
						modRm(to, opCode(0xC0), flags, subOp, dest);
					else
						modRm(to, opCode(0xC1), flags, subOp, dest);
					to->putByte(c);
				}
				break;
			case opRegister:
				assert(src.reg() == cl, L"Transformation of shift operation failed.");
				if (flags & rmByte)
					modRm(to, opCode(0xD2), flags, subOp, dest);
				else
					modRm(to, opCode(0xD3), flags, subOp, dest);
				break;
			default:
				assert(false, L"The shift operation was not transformed properly.");
				break;
			}
		}

		void shlOut(Output *to, Instr *instr) {
			shiftOp(to, instr->dest(), instr->src(), 4);
		}

		void shrOut(Output *to, Instr *instr) {
			shiftOp(to, instr->dest(), instr->src(), 5);
		}

		void sarOut(Output *to, Instr *instr) {
			shiftOp(to, instr->dest(), instr->src(), 7);
		}

		void leaOut(Output *to, Instr *instr) {
			Operand src = instr->src();
			Operand dest = instr->dest();
			assert(dest.type() == opRegister);
			nat regId = registerId(dest.reg());

			if (src.type() == opReference) {
				// Special meaning, load the RefSource instead.
				// Issues a 'mov' operation to simply load the address of the refsource.
				modRm(to, opCode(0x8B), rmWide, regId, objPtr(src.refSource()));
			} else if (src.type() == opOffReference) {
				// Same as above.
				modRm(to, opCode(0x8B), rmWide, regId, objPtr(src.offsetRef().source()));
			} else {
				modRm(to, opCode(0x8D), rmWide, regId, src);
			}
		}

		void mulOut(Output *to, Instr *instr) {
			assert(instr->dest().type() == opRegister);
			const Operand &src = instr->src();
			Reg dest = instr->dest().reg();

			// Note: We're actually doing 32-bit multiplication even if we are only supposed to do
			// 8-bit multiplication. There is only one 8-bit multiplication which is difficult to
			// use. That is fine since any 'noise' in the registers will be lost in the
			// multiplication anyway. The only downside is when operands are in memory, which means
			// we might casue a pagefault.

			switch (src.type()) {
			case opConstant:
				if (singleByte(src.constant())) {
					modRm(to, opCode(0x6B), wide(src), registerId(dest), instr->dest());
					to->putByte(src.constant() & 0xFF);
				} else {
					modRm(to, opCode(0x69), wide(src), registerId(dest), instr->dest());
					to->putInt(Nat(src.constant()));
				}
				break;
			case opOffReference:
				modRm(to, opCode(0x69), wide(src), registerId(dest), instr->dest());
				to->putInt(src.offsetRef());
				break;
			case opLabel:
			case opReference:
			case opObjReference:
				assert(false, L"Multiplying an absolute address does not make sense.");
				break;
			default:
				// Register or in memory. Handled by the modRm variant.
				modRm(to, opCode(0x0F, 0xAF), wide(src), registerId(dest), src);
				break;
			}
		}

		void idivOut(Output *to, Instr *instr) {
			assert(instr->dest().type() == opRegister);
			assert(same(instr->dest().reg(), ptrA));

			if (instr->size() == Size::sByte) {
				// Sign extend al into ax.
				to->putByte(0x66);
				to->putByte(0x98);
				modRm(to, opCode(0xF6), rmByte, 7, instr->src());
			} else if (instr->size() == Size::sInt) {
				// Sign-extend eax into eax, edx
				to->putByte(0x99);
				modRm(to, opCode(0xF7), rmNone, 7, instr->src());
			} else {
				// Sign extend rax into rax, rdx
				to->putByte(0x48); to->putByte(0x99);
				modRm(to, opCode(0xF7), rmWide, 7, instr->src());
			}
		}

		void udivOut(Output *to, Instr *instr) {
			assert(instr->dest().type() == opRegister);
			assert(same(instr->dest().reg(), ptrA));

			if (instr->size() == Size::sByte) {
				// Clear ah using xor ah, ah. We can't use 'modRm' for this since we can not represent the 'ah' register.
				to->putByte(0x30);
				to->putByte(0xE4);
				modRm(to, opCode(0xF6), rmByte, 6, instr->src());
			} else {
				RmFlags f = wide(instr->src());
				// Clear edx using xor edx, edx (or rdx, rdx if 64-bit)
				modRm(to, opCode(0x31), f, registerId(edx), edx);
				modRm(to, opCode(0xF7), f, 6, instr->src());
			}
		}

		void imodOut(Output *to, Instr *instr) {
			idivOut(to, instr);
		}

		void umodOut(Output *to, Instr *instr) {
			udivOut(to, instr);
		}

		static void jmpCall(Output *to, bool call, const Operand &src) {
			switch (src.type()) {
			case opConstant:
				assert(false, L"Calling or jumping to constant values are not supported. Use labels or references!");
				break;
			case opLabel:
				if (!call)
					to->markJump(src.label());
				to->putByte(call ? 0xE8 : 0xE9);
				to->putRelative(src.label());
				break;
			case opReference:
				// We have two options of encoding here, depending on if the reference is currently
				// within the 2GB we can address using the 32 bit operand. We want to use the short
				// encoding if possible (as that is probably faster, and will occur quite frequently
				// in practice). This is handled by the implementation in 'Refs.cpp'. This
				// implementation dictates that the short variant shall be encoded with an unneeded
				// REX prefix (we set the REX.W bit, so that we pretend that we mean something).
				//
				// We start by outputting the short version of the instruction so that the 'Refs'
				// implementation is able to deduce if we're encoding a jump or a call
				// instruction. Then we let that implementation deal with the fact that we might
				// actually need the long version of the jump/call.
				to->putByte(0x48); // REX.W
				to->putByte(call ? 0xE8 : 0xE9);
				to->putGc(GcCodeRef::jump, 4, src.ref());
				break;
			case opRegister:
			case opRelative:
				modRm(to, opCode(0xFF), rmNone, call ? 2 : 4, src);
				break;
			default:
				assert(false, L"Unsupported operand used for 'call' or 'jump'.");
				break;
			}
		}

		void jmpOut(Output *to, Instr *instr) {
			CondFlag c = instr->src().condFlag();
			if (c == ifAlways) {
				jmpCall(to, false, instr->dest());
			} else if (c == ifNever) {
				// Nothing.
			} else {
				byte op = 0x80 + condOp(c);
				const Operand &src = instr->dest();
				switch (src.type()) {
				case opLabel:
					to->putByte(0x0F);
					to->putByte(op);
					to->putRelative(src.label());
					break;
				default:
					assert(false, L"Conditional jumps only support labels.");
					break;
				}
			}
		}

		void callOut(Output *to, Instr *instr) {
			jmpCall(to, true, instr->src());
		}

		void retOut(Output *to, Instr *instr) {
			to->putByte(0xC3);
		}

		void setCondOut(Output *to, Instr *instr) {
			CondFlag c = instr->src().condFlag();
			if (c == ifAlways) {
				// mov <dest>, 1
				modRm(to, opCode(0xC6), rmByte, 0, instr->dest());
				to->putByte(0x01);
			} else if (c == ifNever) {
				// mov <dest>, 0
				modRm(to, opCode(0xC6), rmByte, 0, instr->dest());
				to->putByte(0x00);
			} else {
				modRm(to, opCode(0x0F, 0x90 + condOp(c)), rmNone, 0, instr->dest());
			}
		}

		void ucastOut(Output *to, Instr *instr) {
			nat sFrom = instr->src().size().size64();
			nat sTo = instr->dest().size().size64();
			Reg rTo = instr->dest().reg();

			bool same = instr->src().type() == opRegister
				&& instr->src().reg() == rTo;

			switch (min(sTo, sFrom)) {
			case 1:
				// We could use 'movzx' as well, but this works in all cases.

				// Easy, just move one byte from 'src' to 'dest', or do an 'and' operation.
				if (!same) {
					// mov
					modRm(to, opCode(0x8A), rmByte, registerId(rTo), instr->src());
				}

				// Clear the remainder of the register, just in case.
				// and <rTo>, 0xFF
				modRm(to, opCode(0x81), rmNone, 4, asSize(rTo, Size::sInt));
				to->putInt(0xFF);
				break;
			case 4:
				// Easy, always a mov instruction. The upper 32 bits of a register is cleared when
				// accessing them as a 32-bit register. Therefore, it is acceptable to generate a
				// 'mov x, x' instruction to do this.
				modRm(to, opCode(0x8B), rmNone, registerId(rTo), instr->src());
				break;
			case 8:
				// This will rarely happen, but let's generate a regular mov instruction anyway.
				modRm(to, opCode(0x8B), rmNone, registerId(rTo), instr->src());
				break;
			default:
				assert(false, L"Unsupported operand sizes for ucast.");
				break;
			}
		}

		void icastOut(Output *to, Instr *instr) {
			nat sFrom = instr->src().size().size64();
			nat sTo = instr->dest().size().size64();
			Reg rTo = instr->dest().reg();

			if (sFrom >= sTo) {
				// We can utilize the fact that narrowing works the same way for both signed and
				// unsigned integers.
				ucastOut(to, instr);
				return;
			}

			if (sTo == 4 && sFrom == 1) {
				// movsx
				modRm(to, opCode(0x0F, 0xBE), rmByte, registerId(rTo), instr->src());
			} else if (sTo == 8 && sFrom == 1) {
				// movsx
				modRm(to, opCode(0x0F, 0xBE), rmWide | rmByte, registerId(rTo), instr->src());
			} else if (sTo == 8 && sFrom == 4) {
				// movsx
				modRm(to, opCode(0x0F, 0xBF), rmWide, registerId(rTo), instr->src());
			} else {
				assert(false, L"Unsupported operand sizes for icast.");
			}
		}

		void fstpOut(Output *to, Instr *instr) {
			if (instr->size() == Size::sDouble) {
				modRm(to, opCode(0xDD), rmNone, 3, instr->dest());
			} else {
				modRm(to, opCode(0xD9), rmNone, 3, instr->dest());
			}
		}

		void fldOut(Output *to, Instr *instr) {
			if (instr->size() == Size::sDouble) {
				modRm(to, opCode(0xDD), rmNone, 0, instr->src());
			} else {
				modRm(to, opCode(0xD9), rmNone, 0, instr->src());
			}
		}

		static void fpOp(Output *to, Instr *instr, OpCode op) {
			if (instr->size() == Size::sDouble)
				op.prefix = 0xF2;
			else
				op.prefix = 0xF3;
			modRm(to, op, rmNone, instr->dest(), instr->src());
		}

		void faddOut(Output *to, Instr *instr) {
			fpOp(to, instr, opCode(0x0F, 0x58));
		}

		void fsubOut(Output *to, Instr *instr) {
			fpOp(to, instr, opCode(0x0F, 0x5C));
		}

		void fmulOut(Output *to, Instr *instr) {
			fpOp(to, instr, opCode(0x0F, 0x59));
		}

		void fdivOut(Output *to, Instr *instr) {
			fpOp(to, instr, opCode(0x0F, 0x5E));
		}

		void fnegOut(Output *to, Instr *instr) {
			// set dest to zero, it has to be a register (using XORPS/XORPD)
			Operand dest = instr->dest();
			if (dest.size() == Size::sDouble)
				modRm(to, prefixOpCode(0x66, 0x0F, 0x57), rmNone, dest, dest);
			else
				modRm(to, opCode(0x0F, 0x57), rmNone, dest, dest);
			// fsub
			fpOp(to, instr, opCode(0x0F, 0x5C));
		}

		void fcmpOut(Output *to, Instr *instr) {
			// Note: this is COMISS/COMISD, not CMPSS/CMPSD
			OpCode op = instr->size() == Size::sDouble
				? prefixOpCode(0x66, 0x0F, 0x2F)
				: opCode(0x0F, 0x2F);
			modRm(to, op, rmNone, instr->dest(), instr->src());
		}

		void fcastOut(Output *to, Instr *instr) {
			Operand src = instr->src();
			Operand dst = instr->dest();

			if (src.size() == dst.size()) {
				// Just a mov operation!
				movOut(to, instr);
				return;
			}

			if (src.size() == Size::sDouble)
				modRm(to, prefixOpCode(0xF2, 0x0F, 0x5A), rmNone, instr->dest(), instr->src());
			else
				modRm(to, prefixOpCode(0xF3, 0x0F, 0x5A), rmNone, instr->dest(), instr->src());
		}

		void fcastiOut(Output *to, Instr *instr) {
			byte prefix = instr->src().size() == Size::sDouble
				? 0xF2 : 0xF3;
			modRm(to, prefixOpCode(prefix, 0x0F, 0x2C), wide(instr->dest()), instr->dest(), instr->src());
		}

		void fcastuOut(Output *to, Instr *instr) {
			// TODO: Do something sensible!
			fcastiOut(to, instr);
		}

		void icastfOut(Output *to, Instr *instr) {
			// TODO: Need to clear target register first? (use PXOR, 66 0f ef XX)

			byte prefix = instr->dest().size() == Size::sDouble
				? 0xF2 : 0xF3;
			modRm(to, prefixOpCode(prefix, 0x0F, 0x2A), wide(instr->src()), instr->dest(), instr->src());
		}

		void ucastfOut(Output *to, Instr *instr) {
			// TODO: Do something sensible!
			icastfOut(to, instr);
		}


		void datOut(Output *to, Instr *instr) {
			Operand src = instr->src();
			switch (src.type()) {
			case opLabel:
				to->putAddress(src.label());
				break;
			case opReference:
				to->putAddress(src.ref());
				break;
			case opObjReference:
				to->putObject(src.object());
				break;
			case opOffReference:
				if (src.size() == Size::sInt)
					to->putInt(src.offsetRef());
				else if (src.size() == Size::sPtr)
					to->putPtr(src.offsetRef());
				else
					throw new (to) InternalError(S("Unable to output offsets as anything but pointers or ints."));
				break;
			case opConstant:
				to->putSize(src.constant(), src.size());
				break;
			default:
				throw new (to) InternalError(S("Unsupported type for 'dat'."));
				break;
			}
		}

		void lblOffsetOut(Output *to, Instr *instr) {
			to->putOffset(instr->src().label());
		}

		void alignOut(Output *to, Instr *instr) {
			to->align(Nat(instr->src().constant()));
		}

#define OUTPUT(x) { op::x, &x ## Out }

		typedef void (*OutputFn)(Output *to, Instr *instr);

		const OpEntry<OutputFn> outputMap[] = {
			OUTPUT(nop),
			OUTPUT(push),
			OUTPUT(pop),
			OUTPUT(mov),
			OUTPUT(shadowMov),
			OUTPUT(swap),
			OUTPUT(add),
			OUTPUT(adc),
			OUTPUT(bor),
			OUTPUT(band),
			OUTPUT(bnot),
			OUTPUT(sub),
			OUTPUT(sbb),
			OUTPUT(bxor),
			OUTPUT(cmp),
			OUTPUT(test),
			OUTPUT(shl),
			OUTPUT(shr),
			OUTPUT(sar),
			OUTPUT(lea),
			OUTPUT(mul),
			OUTPUT(idiv),
			OUTPUT(udiv),
			OUTPUT(imod),
			OUTPUT(umod),
			OUTPUT(jmp),
			OUTPUT(call),
			OUTPUT(ret),
			OUTPUT(setCond),
			OUTPUT(icast),
			OUTPUT(ucast),

			// Debug information.
			OUTPUT(prolog),
			OUTPUT(epilog),
			OUTPUT(preserve),
			OUTPUT(location),
			OUTPUT(meta),

			// Floating point.
			OUTPUT(fstp),
			OUTPUT(fld),
			OUTPUT(fadd),
			OUTPUT(fsub),
			OUTPUT(fmul),
			OUTPUT(fdiv),
			OUTPUT(fneg),
			OUTPUT(fcmp),
			OUTPUT(fcast),
			OUTPUT(fcasti),
			OUTPUT(fcastu),
			OUTPUT(icastf),
			OUTPUT(ucastf),

			OUTPUT(dat),
			OUTPUT(lblOffset),
			OUTPUT(align),
		};

		void output(Listing *src, Output *to) {
			static OpTable<OutputFn> t(outputMap, ARRAY_COUNT(outputMap));

			for (Nat i = 0; i < src->count(); i++) {
				to->mark(src->labels(i));

				Instr *instr = src->at(i);
				OutputFn fn = t[instr->op()];
				if (fn) {
					(*fn)(to, instr);
				} else {
					assert(false, L"Unsupported op-code: " + String(name(instr->op())));
				}
			}

			to->mark(src->labels(src->count()));
		}

	}
}