1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
#include "stdafx.h"
#include "Arena.h"
#include "Output.h"
#include "Listing.h"
#include "Remove64.h"
#include "RemoveInvalid.h"
#include "LayoutVars.h"
#include "Asm.h"
#include "AsmOut.h"
#include "Code/WindowsEh/Seh.h"
#include "Code/FnState.h"
namespace code {
namespace x86 {
static bool has64(Listing *in) {
for (nat i = 0; i < in->count(); i++) {
if (in->at(i)->size() == Size::sLong)
return true;
}
return false;
}
Arena::Arena() {}
Arena::TransformInfo Arena::transformInfo(Listing *l) const {
#if defined(WINDOWS) && defined(X86)
code::eh::activateWindowsInfo(engine());
#endif
if (has64(l)) {
// Replace any 64-bit operations with 32-bit corresponding operations.
l = code::transform(l, this, new (this) Remove64());
}
// Transform any unsupported op-codes into sequences of other op-codes. Eg. referencing
// memory twice or similar.
l = code::transform(l, this, new (this) RemoveInvalid());
// Expand variables and function calls as well as function prolog and epilog. We need to
// know all used registers for this to work, so it has to be run after the previous
// transforms.
LayoutVars *layout = new (this) LayoutVars();
l = code::transform(l, this, layout);
return TransformInfo(l, layout->layout);
}
void Arena::output(Listing *src, Output *to) const {
code::x86::output(src, to);
to->finish();
}
LabelOutput *Arena::labelOutput() const {
return new (this) LabelOutput(4);
}
CodeOutput *Arena::codeOutput(Binary *owner, LabelOutput *size) const {
return new (this) CodeOut(owner, size->offsets, size->size, size->refs);
}
void Arena::removeFnRegs(RegSet *from) const {
code::Arena::removeFnRegs(from);
from->remove(ptrD);
// esi, edi (and actually ebx as well) are preserved.
}
RegSet *Arena::fnResultRegs() const {
RegSet *result = new (this) RegSet();
result->put(eax);
result->put(edx);
// Note: We use xmm0 as a placeholder for FP(0).
result->put(xmm0);
return result;
}
Instr *Arena::saveFnResultReg(Reg reg, Operand to) const {
if (reg == xmm0) {
return fstp(engine(), to);
} else {
return code::Arena::saveFnResultReg(reg, to);
}
}
Instr *Arena::restoreFnResultReg(Reg reg, Operand from) const {
if (reg == xmm0) {
return fld(engine(), from);
} else {
return code::Arena::restoreFnResultReg(reg, from);
}
}
Listing *Arena::redirect(Bool member, TypeDesc *result, Array<TypeDesc *> *params, Ref fn, Operand param) {
Listing *l = new (this) Listing(this, member, result);
// Add parameters. We only want to free them if we get an exception.
for (Nat i = 0; i < params->count(); i++)
l->createParam(params->at(i), freeOnException | freePtr);
// Output the function.
*l << prolog();
if (!param.empty())
*l << fnParam(ptrDesc(engine()), param);
// It does not matter if the called function is a member in this case.
*l << fnCall(fn, false, ptrDesc(engine()), ptrA);
*l << epilog(); // preserves ptrA
*l << jmp(ptrA);
return l;
}
Listing *Arena::engineRedirect(TypeDesc *result, Array<TypeDesc *> *params, Ref fn, Operand engine) {
Listing *l = new (this) Listing(this);
if (resultParam(result)) {
// The result is returned using a hidden parameter. The first parameter is, and has
// to be, a pointer to the returned object. Here, the old return pointer and the
// return value pointer are stored in the 'returnData' member of EnginePtr.
*l << mov(ptrA, ptrRel(ptrStack, Offset::sPtr)); // Read the return value ptr.
*l << push(engine);
*l << push(ptrA); // Store the return value ptr once more.
} else {
// The result is returned in a register. The old pointer and the constant 0 will fit
// inside the 'returnData' member of EnginePtr.
*l << push(ptrConst(Offset(0)));
*l << push(engine);
}
*l << call(fn, Size());
*l << add(ptrStack, ptrConst(Size::sPtr * 2));
*l << ret(Size());
return l;
}
Nat Arena::firstParamId(MAYBE(TypeDesc *) desc) {
if (!desc)
return 1;
// No difference with regards to the return value.
return 0;
}
Operand Arena::firstParamLoc(Nat id) {
if (id != 0)
return Operand();
return ptrRel(ptrStack, Offset::sPtr);
}
Reg Arena::functionDispatchReg() {
return ptrA;
}
struct ModRmInfo {
byte reg;
byte mem;
Int disp;
};
static ModRmInfo skipModRm(const byte *&code) {
byte modrm = *(code++);
ModRmInfo info = { byte((modrm >> 3) & 0x7), byte(modrm & 0x7), 0 };
if ((modrm & 0xC0) == 0xC0) {
// No extra displacement, no SIB.
return info;
}
if ((modrm & 0x07) == 0x04) {
// SIB byte, skip it.
code++;
}
if ((modrm & 0xC0) == 0x80) {
// 32-bit displacement.
info.disp = *(const Int *)code;
code += 4;
} else if ((modrm & 0xC0) == 0x40) {
// 8-bit displacement.
info.disp = *(const signed char *)code;
code++;
} else if ((modrm & 0xC7) == 0x05) {
// Special case of no displacement, 32-bit.
info.disp = *(const Int *)code;
code += 4;
} else {
// No displacement.
}
return info;
}
Arena::Skeleton *Arena::compatibleFrameSkeleton(Binary *binary, Nat offset) {
Arena::Skeleton *result = frameSkeletonHead(binary);
// Figure out which registers were saved where:
Array<Operand> *preservedRegs = result->savedRegs;
Array<Operand> *preservedLocs = result->savedLocs;
// Map from register number to our representation.
const Reg regMap[8] = { ptrA, ptrC, ptrD, ptrB, ptrStack, ptrFrame, ptrSi, ptrDi };
Bool usingEh = false;
// We don't have any metadata here. However, the prolog is fairly static looking, so we
// can just parse that:
const byte *code = (const byte *)binary->address();
const byte *codeEnd = code + binary->size();
while (code < codeEnd) {
byte op = *(code++);
if ((op & 0xF8) == 0x50) {
// Push reg, no extra.
} else if ((op & 0xF8) == 0x58) {
// Pop reg, no extra.
} else if (op == 0x89) {
// Mov r/m32, r32
ModRmInfo info = skipModRm(code);
if (info.mem == 0x05 /* rbp */ && info.disp != 0) {
if (info.reg != 0) { // We never preserve ptrA. That is a part of the SEH setup.
preservedRegs->push(regMap[info.reg]);
preservedLocs->push(ptrRel(ptrFrame, Offset(info.disp)));
}
}
} else if (op == 0x8B) {
// Mov r32, r/m32. We are never interested in this one.
skipModRm(code);
} else if (op == 0xC7) {
// Mov 32-bit immediate.
skipModRm(code);
code += 4;
} else if (op == 0x8D) {
// LEA
skipModRm(code);
} else if (op == 0x83) {
// Misc aritmetic operations with small immediate.
skipModRm(code);
code++;
} else if (op == 0x81) {
// Misc aritmetic operations with large immediate.
skipModRm(code);
code += 4;
} else if (op == 0x64) {
// FS override prefix
usingEh = true;
} else {
// Stop as soon as we find something we don't understand. That means we have
// passed the prolog (e.g. xor, call, ...).
break;
}
}
Nat extraWords = preservedRegs->count();
if (usingEh) {
extraWords += EH_WORDS;
// Add extra offsets to save for the current block ptr...
result->extraMetadata->push(Offset::sPtr * -1);
// ...and the self pointer.
result->extraMetadata->push(Offset::sPtr * -2);
}
// Find the current block and active piece:
Nat active = findFunctionState(binary->address(), offset);
decodeFnState(active, result->currentBlock, result->currentActivation);
// Finish generating the skeleton.
frameSkeletonTail(binary, result, extraWords, 1, false);
return result;
}
void Arena::updateEhInfo(const void *function, size_t offset, void *framePointer) {
// On X86, we need to update the SEH entry on the stack if there is one.
Binary *binary = codeBinary(function);
if (!binary->exceptionAware())
return;
Nat fnState = findFunctionState(function, offset);
size_t *fp = (size_t *)framePointer;
// Self pointer, used to find the correct EH information.
fp[-3] = size_t(function);
// Active block + activation.
fp[-2] = fnState;
}
void Arena::resizeStackFrame(Listing *out, Reg tmpReg, Binary *newSz) {
Int offset = Int(newSz->stackOffset());
tmpReg = asSize(tmpReg, Size::sPtr);
*out << mov(tmpReg, ptrFrame);
if (offset > 0)
*out << add(tmpReg, ptrConst(Nat(offset)));
else if (offset < 0)
*out << sub(tmpReg, ptrConst(Nat(-offset)));
*out << mov(ptrStack, tmpReg);
}
}
}
|