File: Parser.cpp

package info (click to toggle)
storm-lang 0.7.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 52,028 kB
  • sloc: ansic: 261,471; cpp: 140,432; sh: 14,891; perl: 9,846; python: 2,525; lisp: 2,504; asm: 860; makefile: 678; pascal: 70; java: 52; xml: 37; awk: 12
file content (597 lines) | stat: -rw-r--r-- 17,091 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
#include "stdafx.h"
#include "Parser.h"
#include "Package.h"
#include "Compiler/Syntax/SStr.h"
#include "Utils/Memory.h"
#include "Core/Runtime.h"
#include "Lib/Parser.h"
#include "Compiler/Lib/Array.h"

namespace storm {
	namespace syntax {
		namespace earley {

			Parser::Parser() {
				rules = new (this) Map<Rule *, RuleInfo>();
				emptyString = new (this) Str(L"");
				lastFinish = -1;
			}

			Nat Parser::stateCount() const {
				Nat r = 0;
				if (steps)
					for (nat i = 0; i < steps->count; i++)
						r += steps->v[i]->count();
				return r;
			}

			Nat Parser::byteCount() const {
				nat stepCount = steps ? Nat(steps->count) : 0;
				return sizeof(Parser)
					+ stepCount * (sizeof(void *) + sizeof(StateSet))
					+ stateCount() * sizeof(State);
			}

			void Parser::add(Rule *rule) {
				// We only keep track of these to get better error messages!
				// Make sure to create an entry for the rule!
				rules->at(rule);
			}

			void Parser::add(ProductionType *t) {
				Rule *owner = as<Rule>(t->super());
				if (!owner)
					throw new (this) InternalError(TO_S(engine(), t->identifier() << S(" is not defined correctly.")));
				if (t->production->parent)
					throw new (this) SyntaxError(t->pos, S("Using parent productions is not supported by the Earley parser."));
				rules->at(owner).push(t->production);
			}

			static Bool find(Production *item, Array<Production *> *in) {
				for (Nat i = 0; i < in->count(); i++)
					if (in->at(i) == item)
						return true;
				return false;
			}

			static Bool compare(Array<Production *> *a, Array<Production *> *b) {
				Nat aCount = a ? a->count() : 0;
				Nat bCount = b ? b->count() : 0;
				if (aCount != bCount)
					return false;

				for (Nat i = 0; i < aCount; i++) {
					if (!find(a->at(i), b))
						return false;
				}

				return true;
			}

			Bool Parser::sameSyntax(ParserBackend *other) {
				if (runtime::typeOf(this) != runtime::typeOf(other))
					return false;
				Parser *o = (Parser *)other;

				for (Map<Rule *, RuleInfo>::Iter i = rules->begin(), end = rules->end(); i != end; i++) {
					RuleInfo ours = i.v();
					RuleInfo their = o->rules->get(i.k(), RuleInfo());
					if (!compare(ours.productions, their.productions))
						return false;
				}

				for (Map<Rule *, RuleInfo>::Iter i = o->rules->begin(), end = o->rules->end(); i != end; i++) {
					if (!rules->has(i.k())) {
						if (i.v().productions && i.v().productions->any())
							return false;
					}
				}

				return true;
			}

			void Parser::clear() {
				steps = null;
				src = null;
			}

			Bool Parser::parse(Rule *root, Str *str, Url *file, Str::Iter start, Str::Iter end) {
				// Remember what we parsed.
				src = str;
				Nat len = end.offset() + 1 - start.offset();
				lastFinish = len + 1;
				srcFile = file;
				srcOffset = start.offset();

				// Set up storage.
				Engine &e = engine();
				steps = runtime::allocArray<StateSet *>(e, &pointerArrayType, len);
				for (nat i = 0; i < len; i++)
					steps->v[i] = new (e) StateSet();

				// Create the initial production.
				rootProd = new (this) Production();
				rootProd->tokens->push(new (this) RuleToken(root, null));

				// Set up the initial state.
				steps->v[0]->push(this, rootProd->firstA(), 0);

				// Process all steps.
				for (nat i = 0; i < len; i++) {
					PARSER_PVAR(i);
					if (process(i))
						lastFinish = i;
				}

				return lastFinish < len;
			}

			bool Parser::process(nat step) {
				bool seenFinish = false;

				StateSet &src = *steps->v[step];
				for (nat i = 0; i < src.count(); i++) {
					StatePtr ptr(step, i);
					const State &at = src[i];
					PARSER_PVAR(at);

					predictor(ptr, at);
					completer(ptr, at);
					scanner(ptr, at);

					if (at.finishes(rootProd))
						seenFinish = true;
				}

				return seenFinish;
			}

			void Parser::predictor(StatePtr ptr, const State &state) {
				RuleToken *rule = state.getRule();
				if (!rule)
					return;

				// Note: this creates new (empty) entries for any rules referred to but not yet included.
				RuleInfo &info = rules->at(rule->rule);

				StateSet &src = *steps->v[ptr.step];
				if (info.productions) {
					for (Nat i = 0; i < info.productions->count(); i++) {
						Production *p = info.productions->at(i);
						src.push(this, p->firstA(), ptr.step);
						src.push(this, p->firstB(), ptr.step);
					}
				}

				if (matchesEmpty(info)) {
					// The original parser fails with rules like:
					// DELIMITER : " *";
					// Foo : "(" - DELIMITER - Bar - DELIMITER - ")";
					// Bar : DELIMITER;
					// since the completed state of Bar may already have been added and processed when
					// trying to match DELIMITER. Therefore, we need to look for completed instances of
					// Bar (since it may match "") in the current state before continuing. If it is not
					// found, it will be added and processed later, which is OK. This is basically what
					// the completer does (only less general):

					// We do not need to examine further than the current state. Anything else will be
					// examined in the main loop later.
					for (nat i = 0; src[i] != state && i < src.count(); i++) {
						const State &now = src[i];
						if (!now.pos.end())
							continue;

						// Only complete states that were actually instantiated here!
						if (now.from != ptr.step)
							continue;

						Rule *cRule = now.production()->rule();
						if (cRule != rule->rule)
							continue;

						src.push(this, state.pos.nextA(), state.from, ptr, StatePtr(ptr.step, i));
						src.push(this, state.pos.nextB(), state.from, ptr, StatePtr(ptr.step, i));
					}
				}
			}

			void Parser::completer(StatePtr ptr, const State &state) {
				if (!state.pos.end())
					return;

				Rule *completed = state.pos.rule();
				StateSet &from = *steps->v[state.from];
				for (nat i = 0; i < from.count(); i++) {
					const State &s = from[i];
					RuleToken *rule = s.getRule();
					if (!rule)
						continue;
					if (rule->rule != completed)
						continue;

					StatePtr prevPtr(state.from, i);
					steps->v[ptr.step]->push(this, s.pos.nextA(), s.from, prevPtr, ptr);
					steps->v[ptr.step]->push(this, s.pos.nextB(), s.from, prevPtr, ptr);
				}
			}

			void Parser::scanner(StatePtr ptr, const State &state) {
				RegexToken *regex = state.getRegex();
				if (!regex)
					return;

				nat matched = regex->regex.matchRaw(src, ptr.step + srcOffset);
				if (matched == Regex::NO_MATCH)
					return;

				// Should not happen, but better safe than sorry!
				if (matched < srcOffset)
					return;
				matched -= srcOffset;
				if (matched > steps->count)
					return;

				steps->v[matched]->push(this, state.pos.nextA(), state.from, ptr);
				steps->v[matched]->push(this, state.pos.nextB(), state.from, ptr);
			}

			bool Parser::matchesEmpty(Rule *rule) {
				return matchesEmpty(rules->at(rule));
			}

			bool Parser::matchesEmpty(RuleInfo &info) {
				if (info.matchesNull < 2)
					return info.matchesNull != 0;

				// Say the rule matches null in case it is recursive!
				// This will provide correct results and prevent endless recursion.
				info.matchesNull = 1;

				bool match = false;
				if (info.productions) {
					for (Nat i = 0; i < info.productions->count(); i++) {
						if (matchesEmpty(info.productions->at(i))) {
							match = true;
							break;
						}
					}
				}

				info.matchesNull = match ? 1 : 0;
				return match;
			}

			static const ProductionIter &pick(const ProductionIter &a, const ProductionIter &b) {
				if (!b.valid())
					return a;
				if (!a.valid())
					return b;
				if (a.position() < b.position())
					return b;
				else
					return a;
			}

			bool Parser::matchesEmpty(Production *p) {
				// Note: since we try to match against the empty string, we can greedily pick the one of
				// nextA and nextB which is furthest along the production at each step.
				ProductionIter pos = pick(p->firstA(), p->firstB());
				while (pos.valid() && !pos.end()) {
					if (!matchesEmpty(pos.token()))
						return false;

					pos = pick(pos.nextA(), pos.nextB());
				}

				return true;
			}

			bool Parser::matchesEmpty(Token *t) {
				if (RegexToken *r = t->asRegex()) {
					return r->regex.matchRaw(new (this) Str(L"")) != Regex::NO_MATCH;
				} else if (RuleToken *u = t->asRule()) {
					return matchesEmpty(u->rule);
				} else {
					assert(false, L"Unknown syntax token type.");
					return false;
				}
			}

			Bool Parser::hasError() const {
				if (!steps)
					return true;
				if (lastFinish < steps->count - 1)
					return true;

				return finish() == null;
			}

			Bool Parser::hasTree() const {
				return finish() != null;
			}

			Str::Iter Parser::matchEnd() const {
				if (finish())
					return src->posIter(srcOffset + lastFinish);
				else
					return src->begin();
			}

			Str *Parser::errorMsg() const {
				nat pos = lastStep();
				StrBuf *msg = new (this) StrBuf();

				if (!steps) {
					*msg << L"No parsing done.";
				} else if (pos == steps->count - 1) {
					*msg << L"Unexpected end of stream.";
				} else {
					Char ch(src->c_str()[pos + srcOffset]);
					Str *chStr = new (this) Str(ch);
					*msg << L"Unexpected '" << chStr->escape() << L"'.";
				}

				*msg << L"\nIn progress:";
				Indent z(msg);
				const StateSet &step = *steps->v[pos];
				for (nat i = 0; i < step.count(); i++) {
					*msg << L"\n" << step[i].pos;
				}

				return msg->toS();
			}

			SrcPos Parser::errorPos() const {
				Nat step = srcOffset + lastStep();
				return SrcPos(srcFile, step, step + 1);
			}

			nat Parser::lastStep() const {
				for (size_t i = steps->count - 1; i > 0; i--) {
					if (steps->v[i]->count() > 0)
						return nat(i);
				}

				// First step is never empty.
				return 0;
			}

			const State *Parser::finish() const {
				if (lastFinish >= steps->count)
					return null;

				const StateSet &states = *steps->v[lastFinish];
				for (nat i = 0; i < states.count(); i++) {
					const State &s = states[i];
					if (s.finishes(rootProd))
						return &s;
				}

				return null;
			}

			const State &Parser::state(const StatePtr &ptr) const {
				return (*steps->v[ptr.step])[ptr.index];
			}

			Node *Parser::tree() const {
				const State *from = finish();
				if (!from)
					return null;

				// 'from' finishes the dummy 'rootProd', which the user is not interested in. The user
				// is interested in the production that finished 'rootProd', which is located in
				// 'from->completed'.
				assert(from->completed != StatePtr(), L"The root state was not completed by anything!");
				return tree(from->completed);
			}

			// See so that 'offset' is exposed as a GC:d pointer.
			static inline void checkOffset(Node *node, int offset) {
#ifdef SLOW_DEBUG
				const GcType *gc = runtime::gcTypeOf(node);
				for (nat i = 0; i < gc->count; i++)
					if (offset == gc->offset[i])
						return;

				PLN(L"The offset " << offset << L" is not present for " << ::toS(gc->type));
				PLN(L"Variables: " << ::toS(gc->type->variables()));
				PLN(L"Offsets present for this type:");
				PLN(L"Size: " << gc->stride);
				for (nat i = 0; i < gc->count; i++)
					PLN(i << L": " << gc->offset[i]);

				dbg_assert(false, L"");
#endif
			}

			template <class T>
			static void setValue(Node *node, MemberVar *target, T *elem) {
				int offset = target->rawOffset().current();
				checkOffset(node, offset);
				if (isArray(target->type)) {
					// Arrays are initialized earlier.
					OFFSET_IN(node, offset, Array<T *> *)->push(elem);
				} else {
					OFFSET_IN(node, offset, T *) = elem;
				}
			}

			Node *Parser::tree(StatePtr fromPtr) const {
				const State &from = state(fromPtr);
				Node *result = allocNode(from, fromPtr.step);
				Production *prod = from.production();

				// Remember capture start and capture end. Set 'repStart' to first token since we will
				// not find it in the loop if the repeat starts at the first token in this production.
				nat repStart = from.from;
				nat repEnd = 0;

				// Traverse the states backwards. The last token in the chain (the one created first) is
				// skipped as that does not contain any information.
				StatePtr atPtr = fromPtr;
				const State *at = &from;
				while (at->prev != StatePtr()) {
					const State *prev = &state(at->prev);
					Token *token = prev->pos.token();

					if (at->pos.repStart())
						repStart = atPtr.step;
					if (at->pos.repEnd())
						repEnd = atPtr.step;

					if (token->target) {
						if (token->asRegex()) {
							Str::Iter from = src->posIter(at->prev.step + srcOffset);
							Str::Iter to = src->posIter(atPtr.step + srcOffset);

							SrcPos pos(srcFile, srcOffset + repStart, srcOffset + repEnd);
							setValue(result, token->target, new (this) SStr(src->substr(from, to), pos));
						} else if (token->asRule()) {
							assert(at->completed != StatePtr(), L"Rule token not completed!");
							setValue(result, token->target, tree(at->completed));
						} else {
							assert(false, L"Unknown token type used for match.");
						}
					}

					atPtr = at->prev;
					at = prev;
				}

				// Remember the capture.
				if (prod->repCapture && prod->repCapture->target && repStart <= repEnd) {
					Str::Iter from = src->posIter(repStart + srcOffset);
					Str::Iter to = src->posIter(repEnd + srcOffset);

					SrcPos pos(srcFile, srcOffset + repStart, srcOffset + repEnd);
					setValue(result, prod->repCapture->target, new (this) SStr(src->substr(from, to), pos));
				}

				// Reverse all arrays in this node, as we're adding them backwards.
				reverseNode(result);
				return result;
			}

			Node *Parser::allocNode(const State &from, Nat endStep) const {
				ProductionType *type = from.production()->type();

				// A bit ugly, but this is enough for the object to be considered a proper object when
				// it is populated.
				void *mem = runtime::allocObject(type->size().current(), type);
				Node *r = new (Place(mem)) Node(SrcPos(srcFile, srcOffset + from.from, srcOffset + endStep));
				type->vtable()->insert(r);

				// Create any arrays needed.
				for (nat i = 0; i < type->arrayMembers->count(); i++) {
					MemberVar *v = type->arrayMembers->at(i);
					int offset = v->rawOffset().current();
					checkOffset(r, offset);
					// This will actually create the correct subtype as long as we're creating something
					// inherited from Object (which we are).
					Array<Object *> *arr = new (v->type.type) Array<Object *>();
					OFFSET_IN(r, offset, Object *) = arr;
				}

				return r;
			}

			void Parser::reverseNode(Node *node) const {
				ProductionType *t = as<ProductionType>(runtime::typeOf(node));
				if (!t) {
					WARNING(L"Invalid node type found!");
					return;
				}

				for (nat i = 0; i < t->arrayMembers->count(); i++) {
					MemberVar *v = t->arrayMembers->at(i);
					int offset = v->rawOffset().current();

					Array<Object *> *array = OFFSET_IN(node, offset, Array<Object *> *);
					array->reverse();
				}
			}

			InfoNode *Parser::infoTree() const {
				// TODO: Make this robust in case of parser errors!
				const State *from = finish();
				if (!from)
					return null;

				assert(from->completed != StatePtr(), L"The root state was not completed by anything!");
				return infoTree(from->completed);
			}

			InfoNode *Parser::infoTree(StatePtr endPtr) const {
				const State &end = state(endPtr);

				// Compute the number of child nodes required for this internal node.
				Nat children = 0;
				StatePtr atPtr = endPtr;
				const State *at = &end;
				while (at->prev != StatePtr()) {
					children++;

					atPtr = at->prev;
					at = &state(at->prev);
				}

				// Allocate the node and fill it!
				Production *p = end.pos.production();
				InfoInternal *result = new (this) InfoInternal(p, children);
				if (p->indentType != indentNone)
					result->indent = new (this) InfoIndent(0, children, p->indentType);

				atPtr = endPtr;
				at = &end;
				while (at->prev != StatePtr()) {
					const State *prev = &state(at->prev);
					Token *token = prev->pos.token();

					if (result->indent) {
						if (at->pos.position() == p->indentStart)
							result->indent->start = children;
						else if (at->pos.position() == p->indentEnd)
							result->indent->end = children;
					}

					InfoNode *child = null;
					if (at->completed != StatePtr()) {
						child = infoTree(at->completed);
						if (token->asDelim())
							child->delimiter(true);
					} else {
						Str::Iter from = src->posIter(at->prev.step + srcOffset);
						Str::Iter to = src->posIter(atPtr.step + srcOffset);
						Str *s = emptyString;
						if (from != to)
							s = src->substr(from, to);
						child = new (this) InfoLeaf(token->asRegex(), s);
					}

					child->color = token->color;
					result->set(--children, child);

					atPtr = at->prev;
					at = prev;
				}

				return result;
			}


			/**
			 * Rule info struct.
			 */

			Parser::RuleInfo::RuleInfo() : productions(null), matchesNull(2) {}

			void Parser::RuleInfo::push(Production *p) {
				if (!productions)
					productions = new (p) Array<Production *>();
				productions->push(p);
			}

		}
	}
}