File: DwarfTable.cpp

package info (click to toggle)
storm-lang 0.7.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 52,028 kB
  • sloc: ansic: 261,471; cpp: 140,432; sh: 14,891; perl: 9,846; python: 2,525; lisp: 2,504; asm: 860; makefile: 678; pascal: 70; java: 52; xml: 37; awk: 12
file content (220 lines) | stat: -rw-r--r-- 5,244 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#include "stdafx.h"
#include "DwarfTable.h"
#include "Gc.h"
#include "Utils/Memory.h"

namespace storm {

	/**
	 * The entire table.
	 */

	DwarfTable &dwarfTable() {
		static DwarfTable t;
		return t;
	}

	DwarfTable::DwarfTable() {}

	DwarfTable::~DwarfTable() {
		for (size_t i = 0; i < chunks.size(); i++)
			delete chunks[i];
	}

	FDE *DwarfTable::alloc(const void *fn, CIE::InitFn init) {
		util::Lock::L z(lock);

		for (size_t i = chunks.size(); i > 0; i--) {
			DwarfChunk *chunk = chunks[i - 1];
			if (chunk->kind == init)
				if (FDE *n = chunks[i-1]->alloc(fn))
					return n;
		}

		// No room anywhere. Allocate a new chunk!
		DwarfChunk *n = new DwarfChunk(init);
		chunks.push_back(n);
		return n->alloc(fn);
	}

	void DwarfTable::free(FDE *fde) {
		util::Lock::L z(lock);

		DwarfChunk::owner(fde)->free(fde);
	}

	FDE *DwarfTable::find(const void *pc) {
		util::Lock::L z(lock);

		for (Nat i = 0; i < chunks.size(); i++)
			if (FDE *f = chunks[i]->find(pc))
				return f;
		return null;
	}

	/**
	 * A single chunk.
	 */

	DwarfChunk::DwarfChunk(CIE::InitFn init) : kind(init) {
		(*init)(&header);
		// Adjust the length a bit, so that the chunk can still be parsed.
		header.setLen(&data[0]);

		// Build the list of free FDEs.
		firstFree = &data[0];
		for (Nat i = 0; i < CHUNK_COUNT - 1; i++) {
			data[i].ptr.nextFree = &data[i+1];
		}
		data[CHUNK_COUNT-1].ptr.nextFree = null;

		// Clear 'sorted'.
		for (Nat i = 0; i < CHUNK_COUNT; i++) {
			sorted[i] = null;
		}

		// Remember that we're good to go!
		atomicWrite(updated, 1);
	}

	FDE *DwarfChunk::alloc(const void *fn) {
		if (firstFree == null)
			return null;

		Entry *use = firstFree;
		firstFree = use->ptr.nextFree;

		// Clear any remains from a previous user.
		memset(&use->data, 0, sizeof(FDE));

		// Initialize the newly found data.
		use->ptr.owner = this;
		use->data.codeStart() = fn;
		use->data.codeSize() = Gc::codeSize(fn);
		use->data.augSize() = 0;
		use->data.setCie(&header);
		use->data.setLen(&use->ptr.nextFree);

		// Remember that we need to update 'sorted' and return.
		atomicWrite(updated, 0);
		return &use->data;
	}

	void DwarfChunk::free(FDE *fde) {
		assert(fde >= &data[0].data && fde < &data[CHUNK_COUNT].data);

		Entry *e = BASE_PTR(Entry, fde, data);
		assert(e->ptr.owner == this);
		e->ptr.nextFree = firstFree;
		firstFree = e;

		// Now, we need to re-sort the array again.
		atomicWrite(updated, 0);
	}

	FDE *DwarfChunk::find(const void *pc) {
		if (atomicRead(updated) == 0) {
			// Sort the data and find the value using a linear search.
			return update(pc);
		}

		FDE *result = search(pc);
		if (result)
			return result;

		if (atomicRead(updated) == 0) {
			// The pointers were updated during the search. Fall back to the slow implementation.
			result = update(pc);
		}

		return result;
	}

	DwarfChunk *DwarfChunk::owner(FDE *fde) {
		Entry *e = BASE_PTR(Entry, fde, data);
		return e->ptr.owner;
	}

	void DwarfChunk::updateFn(FDE *fde, const void *fn) {
		DwarfChunk *chunk = owner(fde);
		if (fde->codeStart() != fn) {
			atomicWrite(chunk->updated, 0);
			fde->codeStart() = fn;
			atomicWrite(chunk->updated, 0);
		}
	}

	Bool DwarfChunk::Entry::contains(const void *pc) {
		size_t addr = size_t(data.codeStart());
		size_t p = size_t(pc);

		return addr <= p && p < addr + data.codeSize();
	}

	struct DwarfChunk::Compare {
		bool operator ()(Entry *a, Entry *b) const {
			size_t as = size_t(a->data.codeStart());
			size_t bs = size_t(b->data.codeStart());
			return as < bs;
		}
		bool operator ()(Entry *a, const void *pc) const {
			// All 'null' values are in the higher indices, so treat 'a = null' as being a large value.
			if (a == null)
				return false;
			size_t as = size_t(a->data.codeStart());
			size_t bs = size_t(pc);
			return as < bs;
		}
	};

	FDE *DwarfChunk::search(const void *pc) {
		Entry **iter = std::lower_bound(sorted, sorted + CHUNK_COUNT, pc, Compare());
		// We need to examine both 'iter' and 'iter - 1'.
		if (iter != sorted + CHUNK_COUNT) {
			Entry *found = *iter;
			if (found && found->contains(pc))
				return &found->data;
		}

		if (iter != sorted) {
			Entry *found = *(iter - 1);
			if (found && found->contains(pc))
				return &found->data;
		}

		return null;
	}

	FDE *DwarfChunk::update(const void *pc) {
		FDE *result = null;

		// Put all entries into 'sorted'.
		Nat used = 0;
		for (Nat i = 0; i < CHUNK_COUNT; i++) {
			// Is it in use?
			if (data[i].ptr.owner == this) {
				sorted[used++] = &data[i];

				// Is it the one we're looking for?
				if (data[i].contains(pc))
					result = &data[i].data;
			}
		}

		// Set the rest of the elements to 'null'.
		for (Nat i = used; i < CHUNK_COUNT; i++)
			sorted[i] = null;

		// Reset the 'updated' flag now, so that any changes the GC makes during the sorting
		// will count as if they were done after the sorting. Otherwise, things may break.
		atomicWrite(updated, 1);

		// Sort! Heap sort will not lose any data or behave wierdly even if things change under our feet.
		std::make_heap(sorted, sorted + used, Compare());
		std::sort_heap(sorted, sorted + used, Compare());

		// Done! Hopefully the array is not altered until next time some information is needed!
		return result;
	}

}