1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
#include "stdafx.h"
#include "VTable.h"
#include "Utils/Memory.h"
#ifdef POSIX
#include <link.h>
#endif
namespace storm {
namespace vtable {
const Nat invalid = -1;
#if defined(VISUAL_STUDIO) && (defined(X86) || defined(X64))
// Visual Studio stores something at offset -1, so we use -2!
const Nat extraOffset = 2;
const Nat dtorOffset = 0;
static void dumpCode(const byte *ptr, Nat size) {
for (Nat i = 0; i < size; i++) {
if (i % 5 != 0)
PNN(" ");
PNN(toHex(ptr[i]));
if ((i + 1) % 5 == 0)
PLN("");
}
if (size % 5 != 0)
PLN("");
}
// In debug mode, Visual Studio links all functions to a global table of "jmp X" (probably
// to make incremental linking easier). We need to detect and follow this! Returns 'code' if
// is not a 'jmp' instruction.
// Note: Some functions only consist of a single jump. Importantly, this means that the
// function can't be a vtable call, so it is fine do do this misclassification.
static const void *followJmp(const void *code) {
const byte *c = (const byte *)code;
if (c[0] == 0xE9) {
// Found you!
const int *rel = (const int *)(c + 1);
return c + *rel + 5;
} else {
return code;
}
}
Nat fnSlot(const void *fn) {
fn = followJmp(fn);
#if defined(X86)
// This is the code the compiler generates for a vtable call using cdecl calling
// convention (VS2008). We simply need to read the machine code and verify it, and then
// extract the last byte/4 bytes and divide them by sizeof(void *)
static const byte fnData[] = {
// mov eax, DWORD PTR [esp+4]
0x8B, 0x44, 0x24, 0x04,
// mov eax, DWORD PTR [eax]
0x8B, 0x00,
// jmp DWORD PTR [eax+XX]
0xFF, //0x60, 0xXX
// or [eax+XXXXXXXX]
// 0xFF, 0xA0, 0xXX, 0xXX, 0xXX, 0xXX
};
#elif defined(X64)
// This is for 64-bit. Similar, but not identical.
static const byte fnData[] = {
// mov rax, [rcx]
0x48, 0x8b, 0x01,
// jmp [rax+xx]
0xFF, // 0x60, 0xXX
// or [eax+xxxxxxxx]
// 0xFF, 0xA0, 0xXX, 0xXX, 0xXX, 0xXX
};
#endif
const byte *data = (const byte *)fn;
Nat size = ARRAY_COUNT(fnData);
if (memcmp(fnData, data, size) != 0) {
return invalid;
// For debugging:
PLN(L"Mismatched machine code. Expected:");
dumpCode(fnData, size);
PLN(L"Got:");
dumpCode(data, size);
return invalid;
}
if (data[size] == 0x60) {
// one byte version
return Nat(data[size + 1]) / sizeof(void *);
} else if (data[size] == 0xA0) {
// four byte version
const Nat *ptr = (const Nat *)(data + size + 1);
return *ptr / sizeof(void *);
} else if (data[size] == 0x20) {
// zero byte version, always jumps to offset 0
return 0;
} else {
PLN(L"Machine code mismatch: Expected 0x60 or 0xA0, got " << toHex(data[size]));
DebugBreak();
return invalid;
}
}
// Crude but useful heurustic to find the start of the next vtable.
static bool isNewVTable(const void *addr) {
const Nat *p = (const Nat *)addr;
if (p[0] < 0xFF && p[1] < 0xFF)
return true;
return false;
}
Nat count(const void *vtable) {
const void *const* table = (const void *const*)vtable;
assert(readable(table));
// This is a table of pointers, so we can find the size by scanning until we find
// something which does not look like a pointer.
Nat size = 1;
while (readable(table + size)) {
// For debugging, try:
// memFlags(table + size);
// memFlags(table[size]);
// TODO: Check if the address is aligned?
// TODO: Make heurustic more similar to what is used on Linux if possible.
if (!readable(table[size]))
return size;
if (isNewVTable(table[size]))
return size;
size++;
}
return size - 1;
}
#elif defined(GCC) && defined(POSIX) && (defined(X64) || defined(ARM64)) // might hold for other architectures as well...
// GCC stores a zero (probably base offset or similar) and type info at the two first
// indices (as -2 and -1). We use -3!
const Nat extraOffset = 3;
// NOTE: There seem to bet two destructors in the VTable. I have not yet investigated the
// difference between them.
const Nat dtorOffset = 1;
// GCC defines these. They are located at the start and end of the text section,
// respectively. It is not useful to read from these, only their addresses are useful.
extern "C" const char __executable_start;
extern "C" const char __etext;
extern "C" const char _edata;
enum AddrInfo {
addrUnknown,
addrText,
addrData,
};
// Is the address in the text section of the current executable?
static inline bool inMyText(const void *addr) {
const char *a = (const char *)addr;
return &__executable_start <= a
&& a < &__etext;
}
// Is the address in the data section of any loaded library?
static inline bool inMyData(const void *addr) {
const char *a = (const char *)addr;
return &__etext <= a
&& a <= &_edata;
}
struct CheckData {
const void *addr;
AddrInfo result;
};
// Callback from 'dl_iterate_phdr'.
static int checkLibrary(struct dl_phdr_info *info, size_t size, void *voidData) {
CheckData *data = (CheckData *)voidData;
size_t addr = (size_t)data->addr;
// Early out?
if (addr < info->dlpi_addr)
return 0;
const ElfW(Phdr) *found = null;
for (size_t i = 0; i < info->dlpi_phnum; i++) {
const ElfW(Phdr) *header = &info->dlpi_phdr[i];
size_t start = info->dlpi_addr + header->p_vaddr;
size_t end = start + header->p_memsz;
if (addr >= start && addr < end) {
found = header;
break;
}
}
if (!found)
return 0;
if (found->p_type == PT_LOAD) {
if (found->p_flags & PF_X)
data->result = addrText;
else
data->result = addrData;
}
return 0;
}
// Get information on the address provided.
// TODO: We might want to provide some kind of cache of the data we get when calling 'dl_iterate_phdr',
// since that call is potentially expensive.
static AddrInfo addrInfo(const void *addr) {
if (inMyText(addr))
return addrText;
if (inMyData(addr))
return addrData;
// See if it is inside a dynamic library.
CheckData result = {
addr,
addrUnknown
};
dl_iterate_phdr(&checkLibrary, &result);
return result.result;
}
Nat fnSlot(const void *fn) {
// See if the pointer is odd. Then it contains the offset into the vtable + 1.
size_t ptr = (size_t)fn;
if ((ptr & 0x1) != 0 && addrInfo(fn) != addrText) {
return Nat((ptr - 1) / sizeof(void *));
} else {
return invalid;
}
}
Nat count(const void *vtable) {
const void *const* table = (const void *const*)vtable;
assert(addrInfo(table) == addrData);
// This is a table of pointers, so we can find the size by scanning until we find
// something which does not look like a pointer. We also know that all member functions
// are aligned at even addresses at the very least. Since vtables generally start with
// null or something that is not code, we can use that to find the end of the VTable.
// The layout of VTables for GCC seems to be (at least in our case):
// -2: Some kind of offset, probably for multiple inheritance.
// -1: Type information.
// 0: Destructor (scalar or array)
// 1: Destructor (scalar or array)
// 2: Function 1.
// Since the destructors might be null in some cases (abstract classes), we always assume they are there.
Nat size = 2;
while (addrInfo(table + size) == addrData) {
const void *entry = table[size];
if (size_t(entry) & 0x1)
return size;
if (addrInfo(entry) != addrText)
return size;
size++;
}
return size + 1;
}
#else
#error "I do not know how VTables work on your machine!"
#endif
#if defined(VISUAL_STUDIO) || defined(GCC)
const void *from(const RootObject *object) {
const void *const*o = (const void *const*)object;
return o[0];
}
void set(const void *vtable, RootObject *to) {
const void **o = (const void **)to;
o[0] = vtable;
}
#else
#error "I do not know how VTables work on your compiler!"
#endif
const void *deVirtualize(const void *vtable, const void *fnPtr) {
Nat id = fnSlot(fnPtr);
if (id == invalid)
return null;
const void *const*v = (const void *const*)vtable;
return v[id];
}
Nat find(const void *vtable, const void *fn) {
return find(vtable, fn, 0);
}
Nat find(const void *vtable, const void *fn, Nat size) {
Nat slot = fnSlot(fn);
if (slot != invalid)
return slot;
if (size == 0)
size = count(vtable);
const void *const*v = (const void *const*)vtable;
Nat result = invalid;
for (Nat i = 0; i < size; i++) {
if (v[i] == fn) {
if (result != invalid) {
WARNING(L"Multiple entries with the same address in the VTable!");
WARNING(L"Please use a non de-virtualized pointer instead!");
} else {
// Prefer the first match if multiple matches exist. Sometimes vtables are
// close together so the second match is probably another vtable anyway.
result = i;
}
}
}
return result;
}
const void *slot(const void *vtable, Nat slot) {
const void *const*v = (const void *const*)vtable;
return v[slot];
}
}
}
|