File: UThreadData.cpp

package info (click to toggle)
storm-lang 0.7.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 52,028 kB
  • sloc: ansic: 261,471; cpp: 140,432; sh: 14,891; perl: 9,846; python: 2,525; lisp: 2,504; asm: 860; makefile: 678; pascal: 70; java: 52; xml: 37; awk: 12
file content (1314 lines) | stat: -rw-r--r-- 36,312 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
#include "stdafx.h"
#include "UThreadData.h"
#include "UThread.h"
#include "Thread.h"
#include "FnCall.h"
#include "Shared.h"
#include "Sync.h"
#include "Utils/Bitwise.h"
#include "Utils/Lock.h"
#include <limits>

#ifdef POSIX
#include <sys/mman.h>
#endif

namespace os {

	/**
	 * Forward declare machine specific functions at the bottom.
	 */

	typedef Stack::Desc StackDesc;

	// Stack size. (we need about 30k on Windows to do cout).
	// 40k is too small to run the compiler well.
    // TODO: Make compiler UThreads larger somehow? Maybe smaller stacks are enough in release builds...
	// TOOD: On Windows, we want allocations to be 64k-aligned, as that is the allocation granularity there.
	static nat stackSize = 400 * 1024;

	// Switch the currently running threads. *oldEsp is set to the old esp.
	// This returns as another thread, which may mean that it returns to the
	// beginning of another function in the case of newly started UThreads.
	extern "C" void doSwitch(StackDesc **newEsp, StackDesc **oldEsp);

	// Switch back to the previously running UThread, allocating an additional return address on the
	// stack and remembering the location of that stack so that it can be altered later.
	// Returns the function that shall be called, since there may be variants of the function.
	static const void *endDetourFn(bool member);

	// Get a platform-dependent highly accurate timestamp in some unit. This should be monotonically
	// increasing.
	static int64 timestamp();

	// Convert a millisecond interval into the units of the high frequency unit.
	static int64 msInTimestamp(nat ms);

	// Check how much time remains until a given timestamp (in ms).
	static nat remainingMs(int64 timestamp);


	/**
	 * UThread.
	 */

	static ThreadData *threadData(const Thread *thread) {
		if (thread && *thread != Thread::invalid)
			return thread->threadData();
		return Thread::current().threadData();
	}

	// Insert on a specific thread. Makes sure to keep 'data' alive until the function has returned at least.
	UThread UThread::insert(UThreadData *data, ThreadData *on) {
		// We need to take our reference here, from the moment we call 'insert', 'data' may be deleted otherwise!
		UThread result(data);

		on->uState.insert(data);

		return result;
	}

	// End the current thread.
	static void exitUThread() {
		UThreadState::current()->exit();
	}

	const UThread UThread::invalid(null);

	UThread::UThread(UThreadData *data) : data(data) {
		if (data)
			data->addRef();
	}

	bool UThread::leave() {
		return UThreadState::current()->leave();
	}

	bool UThread::anySleeping() {
		return UThreadState::current()->anySleeping();
	}

	void UThread::sleep(nat ms) {
		UThreadState::current()->sleep(ms);
	}

	bool UThread::any() {
		return UThreadState::current()->any();
	}

	UThread UThread::current() {
		return UThread(UThreadState::current()->runningThread());
	}

	static void onUncaughtException() {
		try {
			throw;
		} catch (const PtrThrowable *e) {
			PLN("Uncaught exception from UThread: " << e->toCStr());
		} catch (const ::Exception &e) {
			PLN("Uncaught exception from UThread: " << e);
		} catch (...) {
			PLN("Uncaught exception from UThread: <unknown>");
		}
	}

	static void spawnFn(util::Fn<void, void> *fn) {
		try {
			(*fn)();
		} catch (...) {
			onUncaughtException();
		}

		delete fn;
		exitUThread();
	}

	UThread UThread::spawn(const util::Fn<void, void> &fn, const Thread *on) {
		ThreadData *thread = os::threadData(on);
		UThreadData *t = UThreadData::create(&thread->uState);

		t->pushContext(address(&spawnFn), new util::Fn<void, void>(fn));

		return insert(t, thread);
	}

	struct SpawnParams {
		bool memberFn;
		void *first;
		void **params;
		CallThunk thunk;

		// Only valid when using futures.
		void *target;
		FutureBase *future;
	};

	static void spawnCall(SpawnParams *params) {
		try {
			(*params->thunk)(endDetourFn(params->memberFn), params->memberFn, params->params, params->first, null);
		} catch (...) {
			onUncaughtException();
		}

		// Terminate.
		exitUThread();
	}

	static void spawnCallFuture(SpawnParams *params) {
		// We need to save a local copy of 'future' since 'params' reside on the stack of the
		// caller, which will continue as soon as we try to call the function.
		FutureBase *future = params->future;

		try {
			(*params->thunk)(endDetourFn(params->memberFn), params->memberFn, params->params, params->first, params->target);
			future->posted();
		} catch (...) {
			future->error();
		}

		// Terminate.
		exitUThread();
	}

	typedef void (*SpawnFn)(SpawnParams *params);

	static UThreadData *spawnHelper(SpawnFn spawn, const void *fn, ThreadData *thread,
									SpawnParams *params, bool highPriority = false) {
		UThreadState *current = UThreadState::current();

		// Create a new UThread on the proper thread.
		UThreadData *t = UThreadData::create(&thread->uState);

		// Inherit priority by default, but allow 'highPriority' parameter to create new threads with high priority.
		t->highPriority = current->runningThread()->highPriority | highPriority;

		// Set up the thread for calling 'spawnCall'.
		t->pushContext((const void *)spawn, params);

		// Call the newly created UThread on this thread, and make sure to return directly here later.
		void *returnAddr = current->startDetour(t);

		// Make sure we return to the function we were supposed to call.
		*(const void **)returnAddr = fn;

		// Done!
		return t;
	}

	UThread UThread::spawnRaw(const void *fn, bool memberFn, void *first, const FnCallRaw &call, const Thread *on) {
		ThreadData *thread = os::threadData(on);

		SpawnParams params = {
			memberFn,
			first,
			call.params(),
			call.thunk,
			null,
			null
		};
		UThreadData *t = spawnHelper(&spawnCall, fn, thread, &params);
		return insert(t, thread);
	}

	UThread UThread::spawnRaw(const void *fn, bool memberFn, void *first, const FnCallRaw &call, FutureBase &result,
							void *target, const Thread *on) {
		ThreadData *thread = os::threadData(on);

		SpawnParams params = {
			memberFn,
			first,
			call.params(),
			call.thunk,
			target,
			&result
		};
		// Make the thread high priority if we are waiting for an exclusive Future.
		bool highPriority = result.exclusive();
		UThreadData *t = spawnHelper(&spawnCallFuture, fn, thread, &params, highPriority);
		return insert(t, thread);
	}

	static void detourMain(const util::Fn<void, void> *fn) {
		try {
			(*fn)();
		} catch (...) {
			onUncaughtException();
		}

		// End the detour.
		typedef void (*EndFn)();
		EndFn endFn = (EndFn)(endDetourFn(false));
		(*endFn)();
	}

	bool UThread::detour(const util::Fn<void, void> &fn) {
		UThread current = UThread::current();

		// Current thread?
		if (data == current.data)
			return false;

		// Same Thread?
		if (data->owner() != current.data->owner())
			return false;

		// Running?
		if (!data->stack.desc)
			return false;

		// Should be safe for now.

		// Add the new context on top of the stack frame containing the old resume point.
		StackDesc *old = data->pushSubContext(address(&detourMain), (void *)&fn);

		// Need to reset the owner to make the detour system happy.
		data->setOwner(null);
		current.data->owner()->startDetour(data);
		data->setOwner(current.data->owner());

		// Now, the detour has finished execution. Restore the old state.
		data->restoreContext(old);

		return true;
	}


	/**
	 * UThread data.
	 */

	UThreadData::UThreadData(UThreadState *state, size_t size)
		: references(0), next(null), myOwner(null), stack(size),
		  detourOrigin(null), detourResult(null), highPriority(false) {

		initStack();

		// Notify the GC that we exist and may contain interesting data.
		// Note: This UThread must be scannable by this point!
		state->newStack(this);
	}

	UThreadData::UThreadData(UThreadState *state, void *limit)
		: references(0), next(null), myOwner(null), stack(limit),
		  detourOrigin(null), detourResult(null), highPriority(false) {

		// Notify the GC that we exist and may contain interesting data.
		// Note: This UThread must be scannable by this point!
		state->newStack(this);
	}

	UThreadData *UThreadData::createFirst(UThreadState *thread, void *base) {
		return new UThreadData(thread, base);
	}

	UThreadData *UThreadData::create(UThreadState *thread) {
		return new UThreadData(thread, os::stackSize);
	}

	UThreadData::~UThreadData() {}

	void UThreadData::setOwner(UThreadState *state) {
		myOwner = state;
		updateOwner(state);
	}

	void UThreadData::switchTo(UThreadData *to) {
		doSwitch(&to->stack.desc, &stack.desc);
	}

	/**
	 * UThread state.
	 */

	UThreadState::UThreadState(ThreadData *owner, void *stackBase) : owner(owner), highPriorityCount(0) {
		currentUThreadState(this);

		running = UThreadData::createFirst(this, stackBase);
		running->setOwner(this);
		running->addRef();

		aliveCount = 1;
	}

	UThreadState::~UThreadState() {
		currentUThreadState(null);
		if (running) {
			stacks.erase(&running->stack);
			running->release();
			atomicDecrement(aliveCount);
		}

		dbg_assert(aliveCount == 0, L"An OS thread tried to terminate before all its UThreads terminated.");
		dbg_assert(stacks.empty(), L"Consistency issue. aliveCount says zero, but we still have stacks we can scan!");
	}

	void UThreadState::newStack(UThreadData *v) {
		util::Lock::L z(lock);
		stacks.insert(&v->stack);
	}

	void UThreadState::idleThreads(vector<UThread> &result) {
		// Note: The lock mainly protects against insertions from other threads. We don't have to
		// worry about deletions, as those are always performed by this OS thread.
		util::Lock::L z(lock);
		for (InlineSet<Stack>::iterator at = stacks.begin(), end = stacks.end(); at != end; ++at) {
			if (!at->desc)
				continue;

			result.push_back(UThread(UThreadData::fromStack(at)));
		}
	}

	UThreadState *UThreadState::current() {
		UThreadState *s = currentUThreadState();
		if (!s) {
			Thread::current();
			s = currentUThreadState();
			assert(s);
		}
		return s;
	}

	bool UThreadState::any() {
		return atomicRead(aliveCount) != 1;
	}

	bool UThreadState::leave() {
		reap();

		UThreadData *prev = running;
		{
			UThreadData *next = popReady();
			if (!next)
				return false;
			pushReady(running);
			running = next;
		}

		// Any IO messages for this thread?
		owner->checkIo();

		// NOTE: This does not always return directly. Consider this when writing code after this statement.
		prev->switchTo(running);

		reap();
		return true;
	}

	bool UThreadState::anySleeping() {
		util::Lock::L z(sleepingLock);
		return sleeping.any();
	}

	void UThreadState::sleep(nat ms) {
		struct D : public SleepData {
			D(int64 until) : SleepData(until), sema(0) {}
			os::Sema sema;
			virtual void signal() {
				sema.up();
			}
		};

		D done(sleepTarget(ms));
		addSleep(&done);
		done.sema.down();
	}

	void UThreadState::addSleep(SleepData *item) {
		util::Lock::L z(sleepingLock);
		sleeping.push(item);
	}

	void UThreadState::cancelSleep(SleepData *item) {
		util::Lock::L z(sleepingLock);
		sleeping.erase(item);
	}

	int64 UThreadState::sleepTarget(nat msDelay) {
		return timestamp() + msInTimestamp(msDelay);
	}

	bool UThreadState::nextWake(nat &time) {
		util::Lock::L z(sleepingLock);
		SleepData *first = sleeping.peek();
		if (!first)
			return false;

		time = remainingMs(first->until);
		return true;
	}

	void UThreadState::wakeThreads() {
		wakeThreads(timestamp());
	}

	void UThreadState::wakeThreads(int64 time) {
		util::Lock::L z(sleepingLock);
		while (sleeping.any()) {
			SleepData *first = sleeping.peek();
			if (time >= first->until) {
				sleeping.pop();
				first->signal();
			} else {
				break;
			}
		}
	}

	void UThreadState::exit() {
		// Do we have something to exit to?
		UThreadData *prev = running;
		UThreadData *next = null;

		while (true) {
			next = popReady();
			if (next)
				break;

			// Wait for the signal.
			owner->waitForWork();
		}

		// Now, we have something else to do!
		{
			util::Lock::L z(lock);
			stacks.erase(&prev->stack);
		}
		atomicDecrement(aliveCount);
		exited.push(prev);
		running = next;
		prev->switchTo(running);

		// Should not return.
		assert(false);
	}

	void UThreadState::resurrect(UThreadData *data) {
		if (!data->stack.inASet()) {
			// Removed from the set, add it back!
			stacks.insert(&data->stack);
		}

		// Now we can just insert it!
		insert(data);
	}

	void UThreadState::insert(UThreadData *data) {
		data->setOwner(this);
		dbg_assert(stacks.contains(&data->stack), L"WRONG THREAD");
		atomicIncrement(aliveCount);

		data->addRef();
		pushReady(data);

		// Notify that we need to wake up now!
		owner->reportWake();
	}

	void UThreadState::wait(bool onlyHighPriority) {
		UThreadData *prev = running;
		UThreadData *next = null;
		bool oldHighPriority = false;

		// Respect 'onlyHighPriority' if it is set. Note that we need to make the current UThread
		// temporarily into a high priority UThread as well if it was not one already. Otherwise it
		// will not be able to wake up later on.
		if (onlyHighPriority) {
			highPriorityCount++;
			oldHighPriority = prev->highPriority;
			prev->highPriority = true;
		}

		while (true) {
			next = popReady();

			if (next == prev) {
				// May happen if we are the only UThread running and someone managed to wake the
				// thread before we had time to sleep.
				break;
			} else if (next) {
				running = next;
				prev->switchTo(running);
				break;
			}

			// Nothing to do in the meantime...
			owner->waitForWork();
		}

		// If we changed to high priority, restore now that we woke up.
		if (onlyHighPriority) {
			highPriorityCount--;
			prev->highPriority = oldHighPriority;
		}

		reap();
	}

	void UThreadState::wake(UThreadData *data) {
		pushReady(data);

		// Make sure we're not waiting for something that has already happened.
		owner->reportWake();
	}

	void UThreadState::reap() {
		while (UThreadData *d = exited.pop())
			d->release();

		wakeThreads(timestamp());
		owner->checkIo();
	}

	UThreadData *UThreadState::popReady() {
		util::Lock::L z(lock);
		if (UThreadData *high = readyHighPriority.pop())
			return high;

		// Only examine low priority threads if they are not blocked.
		if (highPriorityCount)
			return null;
		else
			return readyLowPriority.pop();
	}

	void UThreadState::pushReady(UThreadData *thread) {
		util::Lock::L z(lock);
		if (thread->highPriority) {
			readyHighPriority.push(thread);
		} else {
			readyLowPriority.push(thread);
		}
	}

	void *UThreadState::startDetour(UThreadData *to) {
		assert(to->owner() == null, L"The UThread is already associated with a thread, can not use it for detour.");

		UThreadData *prev = running;
		Stack *prevStack = &prev->stack;

		// Since the UThread might be in the process of a stack call, we cannot be sure that
		// "detourTo" is empty. If it contains something, we need to traverse the list of "detourTo"
		// to find the last element and add the detour there. Otherwise, we will trash the scanning
		// due to resetting "detourTo" too early.
		while (Stack *stack = atomicRead(prevStack->detourTo)) {
			prevStack = stack;
		}

		// Remember the currently running UThread so that we can go back to it.
		to->setOwner(this);
		to->detourOrigin = prev;

		// Adopt the new UThread, so that it is scanned as if it belonged to our thread.
		// Note: it is important to do this in the proper order, otherwise there will be a
		// small window where the UThread is not scanned at all.
		atomicWrite(prevStack->detourTo, &to->stack);
		atomicWrite(to->stack.detourActive, 1);

		// Switch threads.
		running = to;
		prev->switchTo(running);

		// Since we returned here from 'switchTo', we know that 'endDetour' was called. Thus, we have
		// a result inside 'to', and we shall release our temporary adoption of the UThread now.
		// Note: We can not do that inside 'endDetour' since the other thread is currently
		// running. If we would alter 'detourTo' or 'detourActive' on a running thread, it is
		// possible that the stack scanning will think the thread is active for the wrong OS thread,
		// which would cause everything to crash due to the mismatch of stack pointers.
		atomicWrite(to->stack.detourActive, 0);
		atomicWrite(prevStack->detourTo, (Stack *)null);

		// Since we returned here from 'switchTo', we know that 'endDetour' has set the result for us!
		return to->detourResult;
	}

	void UThreadState::endDetour(void *result) {
		assert(running->detourOrigin, L"No active detour.");

		// Find the thread to run instead.
		UThreadData *prev = running;
		running = prev->detourOrigin;

		// Release the currently running UThread from our grip.
		prev->detourOrigin = null;
		prev->detourResult = result;
		prev->setOwner(null);

		// Switch threads.
		prev->switchTo(running);

		// When we're back, we're in a different thread. Thus, call "reap" to clean up lingering threads.
		// Note that we cannot re-use UThreadState::current here, as we're possibly in a different thread now!
		UThreadState::current()->reap();
	}


	/**
	 * OS-specific code.
	 */

#if defined(WINDOWS)

	static int64 timestamp() {
		LARGE_INTEGER v;
		QueryPerformanceCounter(&v);
		return v.QuadPart;
	}

	static int64 msInTimestamp(nat ms) {
		LARGE_INTEGER v;
		QueryPerformanceFrequency(&v);
		return (v.QuadPart * ms) / 1000;
	}

	static nat remainingMs(int64 target) {
		int64 now = timestamp();
		if (target <= now)
			return 0;

		LARGE_INTEGER v;
		QueryPerformanceFrequency(&v);
		return nat((1000 * (target - now)) / v.QuadPart);
	}

#elif defined(POSIX)

	static int64 timestamp() {
		struct timespec time = {0, 0};
		clock_gettime(CLOCK_MONOTONIC, &time);

		int64 r = time.tv_sec;
		r *= 1000 * 1000;
		r += time.tv_nsec / 1000;
		return r;
	}

	static int64 msInTimestamp(nat ms) {
		return int64(ms * 1000);
	}

	static nat remainingMs(int64 target) {
		int64 now = timestamp();
		if (target <= now)
			return 0;

		int64 remaining = target - now;
		return nat(remaining / 1000);
	}

#endif


	/**
	 * Machine specific code.
	 */

#if defined(X86) && defined(WINDOWS)

	/**
	 * On Windows in 32-bit mode, SEH is used for exception handling. Since SEH stores function
	 * pointers on the stack, there are some mitigations against stack overflows in place.
	 *
	 * The first, and most obvious one, is SAFESEH. It requires that all exception handler functions
	 * are registered in the .exe file at compile time. We do this for the Storm exception handler,
	 * and it is nothing we need to worry about here.
	 *
	 * The second one, that does not seem to be enabled by default, is called SEHOP. According to
	 * MSDN, it might break compatibility with Cygwin and Skype for example. This might be why it is
	 * not enabled by default [1]. This mitigation can be enabled/disabled in the Registry, by
	 * setting the DWORD key HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Session
	 * Manager\kernel\DisableExceptionValidation to 0. There is likely also a way in Group Policy
	 * Editor to do it. I have seen it enabled on Windows machines in organizations, so Storm should
	 * support it.
	 *
	 * The SEHOP mitigation is described in [2]. The idea is basically that the system inserts a SEH
	 * entry at the end of the SEH list, and verifies that this special frame is present before
	 * traversing the SEH list. This is done to verify that no malicious code has overwritten the
	 * "prev" pointer at any point in the chain. In essence, this has similar effects to SAFESEH
	 * above, but also works for binaries compiled without SAFESEH.
	 *
	 * The tricky part is finding the frame we need to insert. It is supposed to refer to the
	 * function FinalExceptionHandler in ntdll. According to the debug symbols, there are 64
	 * versions of this function in ntdll, so we likely need to pick the right one. Furthermore, the
	 * FinalExceptionHandler symbol is not easily accessible to us. What we do instead is that we
	 * traverse the chain and find the last function from threads started by the standard
	 * library. Then we can insert the same frame in our UThreads, which makes the system
	 * happy. Source [3] describes some details not present in the original proposal [2].
	 *
	 *
	 * [1]: https://support.microsoft.com/en-us/topic/how-to-enable-structured-exception-handling-overwrite-protection-sehop-in-windows-operating-systems-8d4595f7-827f-72ee-8c34-fa8e0fe7b915
	 * [2]: http://www.uninformed.org/?v=5&a=2&t=txt
	 * [3]: https://web.archive.org/web/20120907022250/http://www.sysdream.com/sites/default/files/sehop_en.pdf
	 */

	static void *&stackPtr(Stack &stack) {
		return stack.desc->low;
	}

	static void **rootSEHFrame(Stack &stack) {
		void **frame = (void **)stack.high();
		// Note: We only really need 2 words, but it seems like the runtime expects the
		// EXCEPTION_REGISTRATION_RECORD to be around 3 words in size. We use 4 for some margin, and
		// since it is a power of 2.
		return frame - 4;
	}

	void UThreadData::initStack() {
		// Save a SEH frame in the cold end of the stack. This will then be updated with the
		// appropriate value from our owner.
		void **frame = rootSEHFrame(stack);
		stackPtr(stack) = frame;

		frame[0] = (void *)(-1); // End of SEH chain.
		frame[1] = null; // Function pointer.
	}

	void UThreadData::updateOwner(UThreadState *state) {
		if (!stack.allocated())
			return;

		void **frame = rootSEHFrame(stack);

		// Update the function pointer at the frame.
		if (state)
			frame[1] = state->owner->osExtraData();
		else
			frame[1] = 0;
	}

	void UThreadData::push(void *v) {
		void **esp = (void **)stackPtr(stack);
		*--esp = v;
		stackPtr(stack) = esp;
	}

	void UThreadData::push(uintptr_t v) {
		void **esp = (void **)stackPtr(stack);
		*--esp = (void *)v;
		stackPtr(stack) = esp;
	}

	void UThreadData::push(intptr_t v) {
		void **esp = (void **)stackPtr(stack);
		*--esp = (void *)v;
		stackPtr(stack) = esp;
	}

	void UThreadData::pushContext(const void *fn) {
		push((void *)fn); // return to
		push(0); // ebp
		push(0); // ebx
		push(0); // esi
		push(0); // edi
		push(rootSEHFrame(stack)); // seh (our special element)
		push(stack.desc->high);
		push(stack.limit());
		push(stack.desc->low); // current stack pointer (approximate, this is enough, only needed for GC)

		// Set the 'desc' of 'stack' to the actual stack pointer, so that we can run code on this stack.
		atomicWrite(stack.desc, (StackDesc *)(stack.desc->low));
	}

	void UThreadData::pushContext(const void *fn, void *param) {
		push(param); // Parameter to the function.
		push(null); // return address used for 'fn'.

		pushContext(fn);
	}


	StackDesc *UThreadData::pushSubContext(const void *fn, void *param) {
		StackDesc *old = stack.desc;

		// Extract things from the old context.
		size_t *oldStack = (size_t *)old;
		size_t limit = oldStack[1];
		size_t high = oldStack[2];
		size_t seh = oldStack[3];
		size_t edi = oldStack[4];
		size_t esi = oldStack[5];
		size_t ebx = oldStack[6];
		size_t ebp = oldStack[7];
		size_t eip = oldStack[8];

		// Create a new context. Note: We can't use 'push' since we don't want to destroy the old context.
		size_t *newStack = oldStack - 11;

		// Parameters to the called function.
		newStack[10] = size_t(param);
		newStack[9] = size_t(eip); // return address so that stack traces work even though we don't
								   // assume we will ever return.

		// New context.
		newStack[8] = size_t(fn);
		newStack[7] = size_t(ebp);
		newStack[6] = size_t(ebx);
		newStack[5] = size_t(esi);
		newStack[4] = size_t(edi);
		newStack[3] = size_t(seh);
		newStack[2] = size_t(high);
		newStack[1] = size_t(limit);
		newStack[0] = size_t(stack.desc->low);

		// Set the 'desc' of 'stack' to the actual stack pointer so that we can run code!
		atomicWrite(stack.desc, (StackDesc *)(newStack));

		return old;
	}

	void UThreadData::restoreContext(StackDesc *desc) {
		atomicWrite(stack.desc, desc);
	}

#pragma warning (disable: 4733)
	// Note: we need to keep fs:[4] and fs:[8] updated (stack begin and end) updated
	// for exceptions to work in our threads. These could be saved through the 'stack'
	// member in the UThread itself, but this is much easier and only uses 8 bytes on the
	// stack anyway.
	NAKED void doSwitch(StackDesc **newDesc, StackDesc **oldDesc) {
		__asm {
			// Prolog. Bonus: saves ebp!
			push ebp;
			mov ebp, esp;

			// Store parameters.
			mov eax, oldDesc;
			mov ecx, newDesc;
			mov edx, newDesc; // Trash edx so that the compiler do not accidentally assume it is untouched.

			// Store state.
			push ebx;
			push esi;
			push edi;
			push dword ptr fs:[0];
			push dword ptr fs:[4];
			push dword ptr fs:[8];

			// Current stack pointer, overlaps with 'high' in StackDesc.
			lea ebx, [esp-4];
			push ebx;

			// Report the state for the old thread. This makes it possible for the GC to scan that properly.
			mov [eax], esp;

			// Switch to the new stack.
			mov esp, [ecx];

			// Restore state.
			add esp, 4; // skip 'high'.
			pop dword ptr fs:[8];
			pop dword ptr fs:[4];
			pop dword ptr fs:[0];
			pop edi;
			pop esi;
			pop ebx;

			// Clear the new thread's description. This means that the GC will start scanning the
			// stack based on esp rather than what is in the StackDesc.
			mov DWORD PTR [ecx], 0;

			// Epilog. Bonus: restores ebp!
			pop ebp;
			ret;
		}
	}

	void doEndDetour2() {
		// Figure out the return address from the previous function.
		void *retAddr = null;
		__asm {
			lea eax, [ebp+4];
			mov retAddr, eax;
		}

		// Then call 'endDetour' of the current UThread.
		UThreadState::current()->endDetour(retAddr);
	}

	NAKED void doEndDetour() {
		// 'allocate' an extra return address by simply calling yet another function. This return
		// address can be modified to simulate a direct jump to another function with the same
		// parameters that were passed to this function.
		__asm {
			call doEndDetour2;
			ret; // probably not reached, but better safe than sorry!
		}
	}

	static const void *endDetourFn(bool member) {
		return address(&doEndDetour);
	}

#elif defined(VISUAL_STUDIO) && defined(X64)

	void UThreadData::initStack() {
		// Not necessary on X64.
	}

	void UThreadData::updateOwner(UThreadState *state) {
		// Not necessary on X64.
		(void)state;
	}

	static void *&stackPtr(Stack &stack) {
		return stack.desc->low;
	}

	void UThreadData::push(void *v) {
		void **esp = (void **)stackPtr(stack);
		*--esp = v;
		stackPtr(stack) = esp;
	}

	void UThreadData::push(uintptr_t v) {
		void **esp = (void **)stackPtr(stack);
		*--esp = (void *)v;
		stackPtr(stack) = esp;
	}

	void UThreadData::push(intptr_t v) {
		void **esp = (void **)stackPtr(stack);
		*--esp = (void *)v;
		stackPtr(stack) = esp;
	}

	void UThreadData::pushContext(const void *fn) {
		pushContext(fn, null);
	}

	extern "C" void doStartThread();

	void UThreadData::pushContext(const void *fn, void *param) {
		// Allocate shadow space for register parameters, in case the first function needs it.
		for (size_t i = 0; i < 4; i++)
			push((void *)0);

		push((void *)doStartThread); // Return to.
		push((void *)0); // rbp
		push((void *)fn); // rbx (call function)
		push((void *)param); // rdi (parameter)
		push((void *)0); // rsi (simulated return ptr)
		push((void *)0); // r12
		push((void *)0); // r13
		push((void *)0); // r14
		push((void *)0); // r15

		push((void *)0); // alignment

		for (size_t i = 0; i < 10; i++) {
			push((void *)0); // XMM register
			push((void *)0); // 2 words
		}

		push((void *)0); // alignment

		push(stack.desc->high);
		push(stack.desc->dummy);
		push(stack.desc->low);

		// Note: The asm function does have shadow space for registers allocated, but we compensate
		// for that when allocating a sub context. Otherwise the pointer to our created desc will be
		// wrong.

		// Set the 'desc' of 'stack' to the actual stack pointer, so that we can run code on this stack.
		atomicWrite(stack.desc, (StackDesc *)(stack.desc->low));
	}

	// Logical location where thread switches are made. Used to get good backtraces.
	// Note: This is a label in asm, so the interesting thing about this is its address.
	extern "C" char doSwitchReturnLoc;

	StackDesc *UThreadData::pushSubContext(const void *fn, void *param) {
		StackDesc *old = stack.desc;
		const size_t regCount = 34; // 8 general regs, return ptr, 10*2 xmm regs, 3 desc, 2 alignment

		// Copy the old context to the top of the stack again.
		// Note: the ASM code does not account for shadow space, so we need to compensate here.
		size_t *oldStack = (size_t *)old;
		size_t *newStack = oldStack - regCount - 4; // 4 is for shadow space
		memcpy(newStack, oldStack, sizeof(void *) * regCount);

		// Update the copy:
		newStack[regCount - 1] = size_t(&doStartThread); // return to, use our thunk
		newStack[regCount - 3] = size_t(fn); // rbx, function to call
		newStack[regCount - 4] = size_t(param); // rdi, parameter
		newStack[regCount - 5] = size_t(&doSwitchReturnLoc); // return pointer when called, used for stack traces

		// Install the new frame.
		atomicWrite(stack.desc, (StackDesc *)(newStack));

		return old;
	}

	void UThreadData::restoreContext(StackDesc *desc) {
		atomicWrite(stack.desc, (StackDesc *)desc);
	}

	// Called from UThreadX64.asm64
	extern "C" void doEndDetour2(void **result) {
		UThreadState::current()->endDetour(result);
	}

	extern "C" void doEndDetour();

	static const void *endDetourFn(bool member) {
		// Note: We don't need to do anything special for member functions. MSVC uses thunks for
		// vtable lookups.
		(void)member;
		return address(doEndDetour);
	}

#elif defined(GCC) && defined(X64)

	void UThreadData::initStack() {
		// Not necessary on X64.
	}

	void UThreadData::updateOwner(UThreadState *state) {
		// Not necessary on X64.
		(void)state;
	}

	static void *&stackPtr(Stack &stack) {
		return stack.desc->low;
	}

	void UThreadData::push(void *v) {
		void **esp = (void **)stackPtr(stack);
		*--esp = v;
		stackPtr(stack) = esp;
	}

	void UThreadData::push(uintptr_t v) {
		void **esp = (void **)stackPtr(stack);
		*--esp = (void *)v;
		stackPtr(stack) = esp;
	}

	void UThreadData::push(intptr_t v) {
		void **esp = (void **)stackPtr(stack);
		*--esp = (void *)v;
		stackPtr(stack) = esp;
	}

	void UThreadData::pushContext(const void *fn) {
		pushContext(fn, null);
	}

	void UThreadData::pushContext(const void *fn, void *param) {
		// Previous function's return to. Needed to align the stack properly.  Note: we can not push
		// an address to the start of a function here since that would break stack traces when using
		// DWARF. It is possible we could get away by using a function with no DWARF data.
		push((void *)0);

		push((void *)fn); // return to
		push((void *)0); // rbp
		push(param); // rdi
		push((void *)0); // rbx
		push((void *)0); // r12
		push((void *)0); // r13
		push((void *)0); // r14
		push((void *)0); // r15

		// Dummy value to make it possible to chain contexts.
		push((void *)0);

		push(stack.desc->high);
		push(stack.desc->dummy);
		push(stack.desc->low);

		// Set the 'desc' of 'stack' to the actual stack pointer, so that we can run code on this stack.
		atomicWrite(stack.desc, (StackDesc *)(stack.desc->low));
	}

	// Logical location where thread switches are made. Used to get good backtraces.
	// Note: This is a label in asm, so the interesting thing about this is its address.
	extern "C" char doSwitchReturnLoc;

	StackDesc *UThreadData::pushSubContext(const void *fn, void *param) {
		StackDesc *old = stack.desc;

		// Extract things from the old context.
		size_t *oldStack = (size_t *)old;
		size_t low = oldStack[0];
		size_t dummy = oldStack[1];
		size_t high = oldStack[2];
		size_t r15 = oldStack[4];
		size_t r14 = oldStack[5];
		size_t r13 = oldStack[6];
		size_t r12 = oldStack[7];
		size_t rbx = oldStack[8];
		// size_t rdi = oldStack[9]; // Not needed.
		size_t rbp = oldStack[10];
		// size_t rip = oldStack[11]; // Not needed.

		// Create a new context. Note: We can't use 'push' since we don't want to destroy the old context.
		size_t *newStack = oldStack - 13;

		// Return address for the new function. Needed for stack traces, but we don't expect we will
		// ever return there.
		newStack[12] = size_t(&doSwitchReturnLoc);

		newStack[11] = size_t(fn);
		newStack[10] = size_t(rbp);
		newStack[9] = size_t(param);
		newStack[8] = size_t(rbx);
		newStack[7] = size_t(r12);
		newStack[6] = size_t(r13);
		newStack[5] = size_t(r14);
		newStack[4] = size_t(r15);
		newStack[3] = 0;
		newStack[2] = size_t(high);
		newStack[1] = size_t(dummy);
		newStack[0] = size_t(low);

		// Set the 'desc'!
		atomicWrite(stack.desc, (StackDesc *)(newStack));

		return old;
	}

	void UThreadData::restoreContext(StackDesc *desc) {
		atomicWrite(stack.desc, (StackDesc *)desc);
	}

	// Called from UThreadX64.S
	extern "C" void doEndDetour2(void **result) {
		UThreadState::current()->endDetour(result);
	}

	extern "C" void doEndDetour();
	extern "C" void doEndDetourMember();

	static const void *endDetourFn(bool member) {
		return member
			? address(doEndDetourMember)
			: address(doEndDetour);
	}

#elif defined(GCC) && defined(ARM64)

	void UThreadData::initStack() {
		// Not necessary on ARM.
	}

	void UThreadData::updateOwner(UThreadState *state) {
		// Not necessary on ARM.
		(void)state;
	}

	static void *&stackPtr(Stack &stack) {
		return stack.desc->low;
	}

	void UThreadData::push(void *v) {
		void **sp = (void **)stackPtr(stack);
		*--sp = v;
		stackPtr(stack) = sp;
	}

	void UThreadData::push(uintptr_t v) {
		void **sp = (void **)stackPtr(stack);
		*--sp = (void *)v;
		stackPtr(stack) = sp;
	}

	void UThreadData::push(intptr_t v) {
		void **sp = (void **)stackPtr(stack);
		*--sp = (void *)v;
		stackPtr(stack) = sp;
	}

	void UThreadData::pushContext(const void *fn) {
		pushContext(fn, null);
	}

	// Function for launching new threads. Not callable from C, so a regular variable.
	extern "C" char launchThreadStub;

	const int arm64FrameWords = 24; // Size of the arm64 context in 8-byte words.

	void UThreadData::pushContext(const void *fn, void *param) {
		void **sp = (void **)stackPtr(stack);

		// We need a bit of padding for exceptions to work. They read a few words here (maybe due to
		// incorrect unwind info?) Remember: Stack must be 16-byte aligned.
		// sp -= 2*sizeof(void *);

		sp -= arm64FrameWords;
		stackPtr(stack) = sp;

		// Zero everything.
		memset(sp, 0, sizeof(void *)*arm64FrameWords);

		// Store the state we need.
		sp[1] = &launchThreadStub; // Return to.
		sp[23] = param;
		sp[20] = stack.desc->low;
		sp[21] = stack.desc->dummy;
		sp[22] = stack.desc->high;

		// Parameters to 'launchThread':
		sp[0] = null; // base pointer of prev frame.
		sp[2] = (void *)fn; // function to call
		sp[3] = param; // parameter
		sp[4] = null; // apparent caller (none).

		// Now we can use the new Desc on the stack.
		atomicWrite(stack.desc, (StackDesc *)(sp + 20));
	}

	// Logical location where thread switches are made. Used to get good backtraces.
	// Note: This is a label in asm, so the interesting thing about this is its address.
	extern "C" char doSwitchReturnLoc;

	StackDesc *UThreadData::pushSubContext(const void *fn, void *param) {
		void **sp = (void **)stackPtr(stack);
		void *oldSp = sp;
		sp -= arm64FrameWords;
		// Note: We don't save the sp in the old desc, since we don't want to trash it!

		// Zero the stack frame.
		memset(sp, 0, sizeof(void *)*arm64FrameWords);

		// Store the state we need. Similar to pushContext.
		sp[1] = &launchThreadStub; // Return to.
		sp[20] = sp; // low of new desc.
		sp[21] = stack.desc->dummy;
		sp[22] = stack.desc->high;

		// Parameters to 'launchThread':
		sp[0] = oldSp; // stored frame pointer.
		sp[2] = (void *)fn; // function to call.
		sp[3] = param; // parameter
		sp[4] = &doSwitchReturnLoc; // apparent return address (for stack traces to work properly)

		StackDesc *old = stack.desc;

		// Set the new desc.
		atomicWrite(stack.desc, (StackDesc *)(sp + 20));

		return old;
	}

	void UThreadData::restoreContext(StackDesc *desc) {
		atomicWrite(stack.desc, (StackDesc *)desc);
	}

	// Called from ASM.
	extern "C" void doEndDetour2(void **result) {
		UThreadState::current()->endDetour(result);
	}

	extern "C" void doEndDetour();
	extern "C" void doEndDetourMember();

	static const void *endDetourFn(bool member) {
		return member
			? address(doEndDetourMember)
			: address(doEndDetour);
	}

#endif

}