1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
|
/* splay.c: SPLAY TREE IMPLEMENTATION
*
* $Id$
* Copyright (c) 2001-2020 Ravenbrook Limited. See end of file for license.
*
* .purpose: Splay trees are used to manage potentially unbounded
* collections of ordered things. In the MPS these are usually
* address-ordered memory blocks.
*
* .source: <design/splay>
*
* .note.stack: It's important that the MPS have a bounded stack size,
* and this is a problem for tree algorithms. Basically, we have to
* avoid recursion. <design/sp#.sol.depth.no-recursion>.
*
* .critical: In manual-allocation-bound programs using MVFF, many of
* these functions are on the critical paths via mps_alloc (and then
* PoolAlloc, MVFFAlloc, failoverFind*, cbsFind*, SplayTreeFind*) and
* mps_free (and then MVFFFree, failoverInsert, cbsInsert,
* SplayTreeInsert).
*/
#include "splay.h"
#include "mpm.h"
SRCID(splay, "$Id$");
/* SPLAY_DEBUG -- switch for extra debugging
*
* Define SPLAY_DEBUG to enable extra consistency checking when modifying
* splay tree algorithms, which can be tricky to get right. This will
* check the tree size and ordering frequently.
*/
/* #define SPLAY_DEBUG */
#define SplayTreeSetRoot(splay, tree) BEGIN ((splay)->root = (tree)); END
#define SplayCompare(tree, key, node) (((tree)->compare)(node, key))
#define SplayHasUpdate(splay) ((splay)->updateNode != SplayTrivUpdate)
/* SplayTreeCheck -- check consistency of SplayTree
*
* See guide.impl.c.adt.check and <design/check>.
*/
Bool SplayTreeCheck(SplayTree splay)
{
UNUSED(splay);
CHECKS(SplayTree, splay);
CHECKL(FUNCHECK(splay->compare));
CHECKL(FUNCHECK(splay->nodeKey));
CHECKL(FUNCHECK(splay->updateNode));
/* Can't use CHECKD_NOSIG because TreeEMPTY is NULL. */
CHECKL(TreeCheck(splay->root));
return TRUE;
}
/* SplayTreeInit -- initialise a splay tree
*
* ``compare`` must provide a total ordering on node keys.
*
* ``nodeKey`` extracts a key from a tree node for passing to ``compare``.
*
* ``updateNode`` will be applied to nodes from bottom to top when the
* tree is restructured in order to maintain client properties
* <design/splay#.prop>. If SplayTrivUpdate is be passed, faster
* algorithms are chosen for splaying. Compare SplaySplitDown with
* SplaySplitRev.
*/
void SplayTreeInit(SplayTree splay,
TreeCompareFunction compare,
TreeKeyFunction nodeKey,
SplayUpdateNodeFunction updateNode)
{
AVER(splay != NULL);
AVER(FUNCHECK(compare));
AVER(FUNCHECK(nodeKey));
AVER(FUNCHECK(updateNode));
splay->compare = compare;
splay->nodeKey = nodeKey;
splay->updateNode = updateNode;
SplayTreeSetRoot(splay, TreeEMPTY);
splay->sig = SplayTreeSig;
AVERT(SplayTree, splay);
}
/* SplayTreeFinish -- finish a splay tree
*
* Does not attempt to descend or finish any tree nodes.
*
* TODO: Should probably fail on non-empty tree, so that client code is
* forced to decide what to do about that.
*/
void SplayTreeFinish(SplayTree splay)
{
AVERT(SplayTree, splay);
splay->sig = SigInvalid;
SplayTreeSetRoot(splay, TreeEMPTY);
splay->compare = NULL;
splay->nodeKey = NULL;
splay->updateNode = NULL;
}
/* SplayTrivUpdate -- trivial update method
*
* This is passed to SplayTreeInit to indicate that no client property
* maintenance is required. It can also be called to do nothing.
*/
void SplayTrivUpdate(SplayTree splay, Tree tree)
{
AVERT(SplayTree, splay);
AVERT(Tree, tree);
}
/* compareLess, compareGreater -- trivial comparisons
*
* These comparisons can be passed to SplaySplay to find the leftmost
* or rightmost nodes in a tree quickly.
*
* NOTE: It's also possible to make specialised versions of SplaySplit
* that traverse left and right unconditionally. These weren't found
* to have a significant performance advantage when benchmarking.
* RB 2014-02-23
*/
static Compare compareLess(Tree tree, TreeKey key)
{
UNUSED(tree);
UNUSED(key);
return CompareLESS;
}
static Compare compareGreater(Tree tree, TreeKey key)
{
UNUSED(tree);
UNUSED(key);
return CompareGREATER;
}
/* SplayDebugUpdate -- force update of client property
*
* A debugging utility to recursively update the client property of
* a subtree. May not be used in production MPS because it has
* indefinite stack usage. See .note.stack.
*/
void SplayDebugUpdate(SplayTree splay, Tree tree)
{
AVERT(SplayTree, splay);
AVERT(Tree, tree);
if (tree == TreeEMPTY)
return;
SplayDebugUpdate(splay, TreeLeft(tree));
SplayDebugUpdate(splay, TreeRight(tree));
splay->updateNode(splay, tree);
}
/* SplayDebugCount -- count and check order of tree
*
* This function may be called from a debugger or temporarily inserted
* during development to check a tree's integrity. It may not be called
* from the production MPS because it uses indefinite stack depth.
* See <code/tree.c#.note.stack>.
*/
Count SplayDebugCount(SplayTree splay)
{
AVERT(SplayTree, splay);
return TreeDebugCount(SplayTreeRoot(splay), splay->compare, splay->nodeKey);
}
/* SplayZig -- move to left child, prepending to right tree
*
* Link the top node of the middle tree into the left child of the
* right tree, then step to the left child. Returns new middle.
*
* <design/splay#.impl.link.right>.
*
* middle rightNext middle
* B E A E
* / \ / \ => / \
* A C D F rightNext D F
* rightFirst /
* rightFirst B
* \
* C
*/
static Tree SplayZig(Tree middle, Tree *rightFirstIO, Tree *rightNextReturn)
{
AVERT_CRITICAL(Tree, middle);
AVER_CRITICAL(rightFirstIO != NULL);
AVERT_CRITICAL(Tree, *rightFirstIO);
TreeSetLeft(*rightFirstIO, middle);
*rightNextReturn = *rightFirstIO;
*rightFirstIO = middle;
return TreeLeft(middle);
}
/* SplayZigZig -- move to left child, rotating on on to right tree
*
* Rotate the top node of the middle tree over the left child of the
* right tree, then step to the left child, completing a splay "zig zig"
* after an initial SplayZig. Returns new middle.
*
* middle rightNext middle rightNext
* B E A E
* / \ / \ => / \
* A C D F rightFirst B F
* rightFirst \
* D
* /
* C
*/
static Tree SplayZigZig(Tree middle, Tree *rightFirstIO, Tree rightNext)
{
AVERT_CRITICAL(Tree, middle);
AVER_CRITICAL(rightFirstIO != NULL);
AVERT_CRITICAL(Tree, *rightFirstIO);
TreeSetLeft(*rightFirstIO, TreeRight(middle));
TreeSetRight(middle, *rightFirstIO);
TreeSetLeft(rightNext, middle);
*rightFirstIO = middle;
return TreeLeft(middle);
}
/* SplayZag -- mirror image of SplayZig */
static Tree SplayZag(Tree middle, Tree *leftLastIO, Tree *leftPrevReturn)
{
AVERT_CRITICAL(Tree, middle);
AVER_CRITICAL(leftLastIO != NULL);
AVERT_CRITICAL(Tree, *leftLastIO);
TreeSetRight(*leftLastIO, middle);
*leftPrevReturn = *leftLastIO;
*leftLastIO = middle;
return TreeRight(middle);
}
/* SplayZagZag -- mirror image of SplayZigZig */
static Tree SplayZagZag(Tree middle, Tree *leftLastIO, Tree leftPrev)
{
AVERT_CRITICAL(Tree, middle);
AVER_CRITICAL(leftLastIO != NULL);
AVERT_CRITICAL(Tree, *leftLastIO);
TreeSetRight(*leftLastIO, TreeLeft(middle));
TreeSetLeft(middle, *leftLastIO);
TreeSetRight(leftPrev, middle);
*leftLastIO = middle;
return TreeRight(middle);
}
/* SplayState -- the state of splaying between "split" and "assemble"
*
* Splaying is divided into two phases: splitting the tree into three,
* and then assembling a final tree. This allows for optimisation of
* certain operations, the key one being SplayTreeNeighbours, which is
* critical for coalescing memory blocks (see CBSInsert).
*
* Note that SplaySplitDown and SplaySplitRev use the trees slightly
* differently. SplaySplitRev does not provide "left" and "right", and
* "leftLast" and "rightFirst" are pointer-reversed spines.
*/
typedef struct SplayStateStruct {
Tree middle; /* always non-empty, has the found node at the root */
Tree left; /* nodes less than search key during split */
Tree leftLast; /* rightmost node on right spine of "left" */
Tree right; /* nodes greater than search key during split */
Tree rightFirst; /* leftmost node on left spine of "right" */
} SplayStateStruct, *SplayState;
/* SplaySplitDown -- divide the tree around a key
*
* Split a tree into three according to a key and a comparison,
* splaying nested left and right nodes. Preserves tree ordering.
* This is a top-down splay procedure, and does not use any recursion
* or require any parent pointers <design/impl#.top-down>.
*
* Returns cmp, the relationship of the root of the middle tree to the key,
* and a SplayState.
*
* Does *not* call update to maintain client properties. See SplaySplitRev.
*/
static Compare SplaySplitDown(SplayStateStruct *stateReturn,
SplayTree splay, TreeKey key,
TreeCompareFunction compare)
{
TreeStruct sentinel;
Tree middle, leftLast, rightFirst, leftPrev, rightNext;
Compare cmp;
AVERT(SplayTree, splay);
AVER(FUNCHECK(compare));
AVER(!SplayTreeIsEmpty(splay));
AVER(!SplayHasUpdate(splay));
TreeInit(&sentinel);
leftLast = &sentinel;
rightFirst = &sentinel;
middle = SplayTreeRoot(splay);
for (;;) {
cmp = compare(middle, key);
switch(cmp) {
default:
NOTREACHED;
/* defensive fall-through */
case CompareEQUAL:
goto stop;
case CompareLESS:
if (!TreeHasLeft(middle))
goto stop;
middle = SplayZig(middle, &rightFirst, &rightNext);
cmp = compare(middle, key);
switch(cmp) {
default:
NOTREACHED;
/* defensive fall-through */
case CompareEQUAL:
goto stop;
case CompareLESS:
if (!TreeHasLeft(middle))
goto stop;
middle = SplayZigZig(middle, &rightFirst, rightNext);
break;
case CompareGREATER:
if (!TreeHasRight(middle))
goto stop;
middle = SplayZag(middle, &leftLast, &leftPrev);
break;
}
break;
case CompareGREATER:
if (!TreeHasRight(middle))
goto stop;
middle = SplayZag(middle, &leftLast, &leftPrev);
cmp = compare(middle, key);
switch(cmp) {
default:
NOTREACHED;
/* defensive fall-through */
case CompareEQUAL:
goto stop;
case CompareGREATER:
if (!TreeHasRight(middle))
goto stop;
middle = SplayZagZag(middle, &leftLast, leftPrev);
break;
case CompareLESS:
if (!TreeHasLeft(middle))
goto stop;
middle = SplayZig(middle, &rightFirst, &rightNext);
break;
}
break;
}
}
stop:
stateReturn->middle = middle;
stateReturn->left = TreeRight(&sentinel);
stateReturn->leftLast = leftLast == &sentinel ? TreeEMPTY : leftLast;
stateReturn->right = TreeLeft(&sentinel);
stateReturn->rightFirst = rightFirst == &sentinel ? TreeEMPTY : rightFirst;
return cmp;
}
/* SplayAssembleDown -- assemble left right and middle trees into one
*
* Takes the result of a SplaySplit and forms a single tree with the
* root of the middle tree as the root.
*
* left middle right middle
* B P V P
* / \ / \ / \ => / \
* A C N Q U X B V
* leftLast rightFirst / \ / \
* A C U X
* \ /
* N Q
*
* The children of the middle tree are grafted onto the last and first
* nodes of the side trees, which become the children of the root.
*
* Does *not* maintain client properties. See SplayAssembleRev.
*
* <design/splay#.impl.assemble>.
*/
static void SplayAssembleDown(SplayTree splay, SplayState state)
{
AVERT(SplayTree, splay);
AVER(state->middle != TreeEMPTY);
AVER(!SplayHasUpdate(splay));
if (state->left != TreeEMPTY) {
AVER_CRITICAL(state->leftLast != TreeEMPTY);
TreeSetRight(state->leftLast, TreeLeft(state->middle));
TreeSetLeft(state->middle, state->left);
}
if (state->right != TreeEMPTY) {
AVER_CRITICAL(state->rightFirst != TreeEMPTY);
TreeSetLeft(state->rightFirst, TreeRight(state->middle));
TreeSetRight(state->middle, state->right);
}
}
/* SplayZigRev -- move to left child, prepending to reversed right tree
*
* Same as SplayZig, except that the left spine of the right tree is
* pointer-reversed, so that its left children point at their parents
* instead of their children. This is fixed up in SplayAssembleRev.
*/
static Tree SplayZigRev(Tree middle, Tree *rightFirstIO)
{
Tree child;
AVERT_CRITICAL(Tree, middle);
AVER_CRITICAL(rightFirstIO != NULL);
AVERT_CRITICAL(Tree, *rightFirstIO);
child = TreeLeft(middle);
TreeSetLeft(middle, *rightFirstIO);
*rightFirstIO = middle;
return child;
}
/* SplayZigZigRev -- move to left child, rotating onto reversed right tree
*
* Same as SplayZigZig, except that the right tree is pointer reversed
* (see SplayZigRev)
*/
static Tree SplayZigZigRev(Tree middle, Tree *rightFirstIO)
{
Tree child;
AVERT_CRITICAL(Tree, middle);
AVER_CRITICAL(rightFirstIO != NULL);
AVERT_CRITICAL(Tree, *rightFirstIO);
child = TreeLeft(middle);
TreeSetLeft(middle, TreeLeft(*rightFirstIO));
TreeSetLeft(*rightFirstIO, TreeRight(middle));
TreeSetRight(middle, *rightFirstIO);
*rightFirstIO = middle;
return child;
}
/* SplayZagRev -- mirror image of SplayZigRev */
static Tree SplayZagRev(Tree middle, Tree *leftLastIO)
{
Tree child;
AVERT_CRITICAL(Tree, middle);
AVER_CRITICAL(leftLastIO != NULL);
AVERT_CRITICAL(Tree, *leftLastIO);
child = TreeRight(middle);
TreeSetRight(middle, *leftLastIO);
*leftLastIO = middle;
return child;
}
/* SplayZagZagRev -- mirror image of SplayZigZigRev */
static Tree SplayZagZagRev(Tree middle, Tree *leftLastIO)
{
Tree child;
AVERT_CRITICAL(Tree, middle);
AVER_CRITICAL(leftLastIO != NULL);
AVERT_CRITICAL(Tree, *leftLastIO);
child = TreeRight(middle);
TreeSetRight(middle, TreeRight(*leftLastIO));
TreeSetRight(*leftLastIO, TreeLeft(middle));
TreeSetLeft(middle, *leftLastIO);
*leftLastIO = middle;
return child;
}
/* SplaySplitRev -- divide the tree around a key
*
* This is the same as SplaySplit, except that:
* - the left and right trees are pointer reversed on their spines
* - client properties for rotated nodes (not on the spines) are
* updated
*/
static Compare SplaySplitRev(SplayStateStruct *stateReturn,
SplayTree splay, TreeKey key,
TreeCompareFunction compare)
{
SplayUpdateNodeFunction updateNode;
Tree middle, leftLast, rightFirst;
Compare cmp;
AVERT_CRITICAL(SplayTree, splay);
AVER_CRITICAL(FUNCHECK(compare));
AVER_CRITICAL(!SplayTreeIsEmpty(splay));
updateNode = splay->updateNode;
leftLast = TreeEMPTY;
rightFirst = TreeEMPTY;
middle = SplayTreeRoot(splay);
for (;;) {
cmp = compare(middle, key);
switch(cmp) {
default:
NOTREACHED;
/* defensive fall-through */
case CompareEQUAL:
goto stop;
case CompareLESS:
if (!TreeHasLeft(middle))
goto stop;
middle = SplayZigRev(middle, &rightFirst);
cmp = compare(middle, key);
switch(cmp) {
default:
NOTREACHED;
/* defensive fall-through */
case CompareEQUAL:
goto stop;
case CompareLESS:
if (!TreeHasLeft(middle))
goto stop;
middle = SplayZigZigRev(middle, &rightFirst);
updateNode(splay, TreeRight(rightFirst));
break;
case CompareGREATER:
if (!TreeHasRight(middle))
goto stop;
middle = SplayZagRev(middle, &leftLast);
break;
}
break;
case CompareGREATER:
if (!TreeHasRight(middle))
goto stop;
middle = SplayZagRev(middle, &leftLast);
cmp = compare(middle, key);
switch(cmp) {
default:
NOTREACHED;
/* defensive fall-through */
case CompareEQUAL:
goto stop;
case CompareGREATER:
if (!TreeHasRight(middle))
goto stop;
middle = SplayZagZagRev(middle, &leftLast);
updateNode(splay, TreeLeft(leftLast));
break;
case CompareLESS:
if (!TreeHasLeft(middle))
goto stop;
middle = SplayZigRev(middle, &rightFirst);
break;
}
break;
}
}
stop:
stateReturn->middle = middle;
stateReturn->leftLast = leftLast;
stateReturn->rightFirst = rightFirst;
return cmp;
}
/* SplayUpdateLeftSpine -- undo pointer reversal, updating client property */
static Tree SplayUpdateLeftSpine(SplayTree splay, Tree node, Tree child)
{
SplayUpdateNodeFunction updateNode;
AVERT_CRITICAL(SplayTree, splay);
AVERT_CRITICAL(Tree, node);
AVERT_CRITICAL(Tree, child);
updateNode = splay->updateNode;
while(node != TreeEMPTY) {
Tree parent = TreeLeft(node);
TreeSetLeft(node, child); /* un-reverse pointer */
updateNode(splay, node);
child = node;
node = parent;
}
return child;
}
/* SplayUpdateRightSpine -- mirror of SplayUpdateLeftSpine */
static Tree SplayUpdateRightSpine(SplayTree splay, Tree node, Tree child)
{
SplayUpdateNodeFunction updateNode;
AVERT_CRITICAL(SplayTree, splay);
AVERT_CRITICAL(Tree, node);
AVERT_CRITICAL(Tree, child);
updateNode = splay->updateNode;
while (node != TreeEMPTY) {
Tree parent = TreeRight(node);
TreeSetRight(node, child); /* un-reverse pointer */
updateNode(splay, node);
child = node;
node = parent;
}
return child;
}
/* SplayAssembleRev -- pointer reversed SplayAssemble
*
* Does the same job as SplayAssemble, but operates on pointer-reversed
* left and right trees, updating client properties. When we reach
* this function, the nodes on the spines of the left and right trees
* will have out-of-date client properties because their children have
* been changed by SplaySplitRev.
*/
static void SplayAssembleRev(SplayTree splay, SplayState state)
{
Tree left, right;
AVERT_CRITICAL(SplayTree, splay);
AVER_CRITICAL(state->middle != TreeEMPTY);
left = TreeLeft(state->middle);
left = SplayUpdateRightSpine(splay, state->leftLast, left);
TreeSetLeft(state->middle, left);
right = TreeRight(state->middle);
right = SplayUpdateLeftSpine(splay, state->rightFirst, right);
TreeSetRight(state->middle, right);
splay->updateNode(splay, state->middle);
}
/* SplaySplit -- call SplaySplitDown or SplaySplitRev as appropriate */
static Compare SplaySplit(SplayStateStruct *stateReturn,
SplayTree splay, TreeKey key,
TreeCompareFunction compare)
{
if (SplayHasUpdate(splay))
return SplaySplitRev(stateReturn, splay, key, compare);
else
return SplaySplitDown(stateReturn, splay, key, compare);
}
/* SplayAssemble -- call SplayAssembleDown or SplayAssembleRev as appropriate */
static void SplayAssemble(SplayTree splay, SplayState state)
{
if (SplayHasUpdate(splay))
SplayAssembleRev(splay, state);
else
SplayAssembleDown(splay, state);
}
/* SplaySplay -- splay the tree around a given key
*
* Uses SplaySplitRev/SplayAssembleRev or SplaySplitDown/SplayAssembleDown
* as appropriate, but also catches the empty tree case and shortcuts
* the common case where the wanted node is already at the root (due
* to a previous splay). The latter shortcut has a significant effect
* on run time.
*
* If a matching node is found, it is splayed to the root and the function
* returns CompareEQUAL, or if the tree is empty, will also return
* CompareEQUAL. Otherwise, CompareGREATER or CompareLESS is returned
* meaning either the key is greater or less than the new root. In this
* case the new root is the last node visited which is either the closest
* node left or the closest node right of the key.
*
* <design/splay#.impl.splay>.
*/
static Compare SplaySplay(SplayTree splay, TreeKey key,
TreeCompareFunction compare)
{
Compare cmp;
SplayStateStruct stateStruct;
#ifdef SPLAY_DEBUG
Count count = SplayDebugCount(splay);
#endif
/* Short-circuit common cases. Splay trees often bring recently
acccessed nodes to the root. */
if (SplayTreeIsEmpty(splay) ||
compare(SplayTreeRoot(splay), key) == CompareEQUAL)
return CompareEQUAL;
if (SplayHasUpdate(splay)) {
cmp = SplaySplitRev(&stateStruct, splay, key, compare);
SplayAssembleRev(splay, &stateStruct);
} else {
cmp = SplaySplitDown(&stateStruct, splay, key, compare);
SplayAssembleDown(splay, &stateStruct);
}
SplayTreeSetRoot(splay, stateStruct.middle);
#ifdef SPLAY_DEBUG
AVER(count == SplayDebugCount(splay));
#endif
return cmp;
}
/* SplayTreeInsert -- insert a node into a splay tree
*
* This function is used to insert a node into the tree. Splays the
* tree at the node's key. If an attempt is made to insert a node that
* compares ``CompareEQUAL`` to an existing node in the tree, then
* ``FALSE`` will be returned and the node will not be inserted.
*
* NOTE: It would be possible to use split here, then assemble around
* the new node, leaving the neighbour where it was, but it's probably
* a good thing for key neighbours to be tree neighbours.
*/
Bool SplayTreeInsert(SplayTree splay, Tree node)
{
Tree neighbour;
AVERT(SplayTree, splay);
AVERT(Tree, node);
AVER(TreeLeft(node) == TreeEMPTY);
AVER(TreeRight(node) == TreeEMPTY);
if (SplayTreeIsEmpty(splay)) {
SplayTreeSetRoot(splay, node);
return TRUE;
}
switch (SplaySplay(splay, splay->nodeKey(node), splay->compare)) {
default:
NOTREACHED;
/* fall through */
case CompareEQUAL: /* duplicate node */
return FALSE;
case CompareGREATER: /* left neighbour is at root */
neighbour = SplayTreeRoot(splay);
SplayTreeSetRoot(splay, node);
TreeSetRight(node, TreeRight(neighbour));
TreeSetLeft(node, neighbour);
TreeSetRight(neighbour, TreeEMPTY);
break;
case CompareLESS: /* right neighbour is at root */
neighbour = SplayTreeRoot(splay);
SplayTreeSetRoot(splay, node);
TreeSetLeft(node, TreeLeft(neighbour));
TreeSetRight(node, neighbour);
TreeSetLeft(neighbour, TreeEMPTY);
break;
}
splay->updateNode(splay, neighbour);
splay->updateNode(splay, node);
return TRUE;
}
/* SplayTreeDelete -- delete a node from a splay tree
*
* Delete a node from the tree. If the tree does not contain the given
* node then ``FALSE`` will be returned. The client must not pass a
* node whose key compares equal to a different node in the tree.
*
* The function first splays the tree at the given key.
*
* TODO: If the node has zero or one children, then the replacement
* would be the leftLast or rightFirst after a SplaySplit, and would
* avoid a search for a replacement in more cases.
*/
Bool SplayTreeDelete(SplayTree splay, Tree node)
{
Tree leftLast;
Compare cmp;
AVERT(SplayTree, splay);
AVERT(Tree, node);
if (SplayTreeIsEmpty(splay))
return FALSE;
cmp = SplaySplay(splay, splay->nodeKey(node), splay->compare);
AVER(cmp != CompareEQUAL || SplayTreeRoot(splay) == node);
if (cmp != CompareEQUAL) {
return FALSE;
} else if (!TreeHasLeft(node)) {
SplayTreeSetRoot(splay, TreeRight(node));
TreeClearRight(node);
} else if (!TreeHasRight(node)) {
SplayTreeSetRoot(splay, TreeLeft(node));
TreeClearLeft(node);
} else {
Tree rightHalf = TreeRight(node);
TreeClearRight(node);
SplayTreeSetRoot(splay, TreeLeft(node));
TreeClearLeft(node);
(void)SplaySplay(splay, NULL, compareGreater);
leftLast = SplayTreeRoot(splay);
AVER(leftLast != TreeEMPTY);
AVER(!TreeHasRight(leftLast));
TreeSetRight(leftLast, rightHalf);
splay->updateNode(splay, leftLast);
}
TreeFinish(node);
return TRUE;
}
/* SplayTreeFind -- search for a node in a splay tree matching a key
*
* Search the tree for a node that compares ``CompareEQUAL`` to a key
* Splays the tree at the key. Returns ``FALSE`` if there is no such
* node in the tree, otherwise ``*nodeReturn`` will be set to the node.
*/
Bool SplayTreeFind(Tree *nodeReturn, SplayTree splay, TreeKey key)
{
AVERT(SplayTree, splay);
AVER(nodeReturn != NULL);
if (SplayTreeIsEmpty(splay))
return FALSE;
if (SplaySplay(splay, key, splay->compare) != CompareEQUAL)
return FALSE;
*nodeReturn = SplayTreeRoot(splay);
return TRUE;
}
/* SplayTreeSuccessor -- splays a tree at the root's successor
*
* Must not be called on en empty tree. Successor need not exist,
* in which case TreeEMPTY is returned, and the tree is unchanged.
*/
static Tree SplayTreeSuccessor(SplayTree splay)
{
Tree oldRoot, newRoot;
AVERT(SplayTree, splay);
AVER(!SplayTreeIsEmpty(splay));
oldRoot = SplayTreeRoot(splay);
if (!TreeHasRight(oldRoot))
return TreeEMPTY; /* No successor */
/* temporarily chop off the left half-tree, inclusive of root */
SplayTreeSetRoot(splay, TreeRight(oldRoot));
TreeSetRight(oldRoot, TreeEMPTY);
(void)SplaySplay(splay, NULL, compareLess);
newRoot = SplayTreeRoot(splay);
AVER(newRoot != TreeEMPTY);
AVER(TreeLeft(newRoot) == TreeEMPTY);
TreeSetLeft(newRoot, oldRoot);
splay->updateNode(splay, oldRoot);
splay->updateNode(splay, newRoot);
return newRoot;
}
/* SplayTreeNeighbours
*
* Search for the two nodes in a splay tree neighbouring a key.
* Splays the tree at the key. ``*leftReturn`` will be the neighbour
* which compares less than the key if such a neighbour exists; otherwise
* it will be ``TreeEMPTY``. ``*rightReturn`` will be the neighbour which
* compares greater than the key if such a neighbour exists; otherwise
* it will be ``TreeEMPTY``. The function returns ``FALSE`` if any node
* in the tree compares ``CompareEQUAL`` with the given key.
*
* TODO: Change to SplayTreeCoalesce that takes a function that can
* direct the deletion of one of the neighbours, since this is a
* good moment to do it, avoiding another search and splay.
*
* This implementation uses SplaySplit to find both neighbours in a
* single splay <design/splay#.impl.neighbours>.
*/
Bool SplayTreeNeighbours(Tree *leftReturn, Tree *rightReturn,
SplayTree splay, TreeKey key)
{
SplayStateStruct stateStruct;
Bool found;
Compare cmp;
#ifdef SPLAY_DEBUG
Count count = SplayDebugCount(splay);
#endif
AVERT_CRITICAL(SplayTree, splay);
AVER_CRITICAL(leftReturn != NULL);
AVER_CRITICAL(rightReturn != NULL);
if (SplayTreeIsEmpty(splay)) {
*leftReturn = *rightReturn = TreeEMPTY;
return TRUE;
}
cmp = SplaySplit(&stateStruct, splay, key, splay->compare);
switch (cmp) {
default:
NOTREACHED;
/* fall through */
case CompareEQUAL:
found = FALSE;
break;
case CompareLESS:
AVER_CRITICAL(!TreeHasLeft(stateStruct.middle));
*rightReturn = stateStruct.middle;
*leftReturn = stateStruct.leftLast;
found = TRUE;
break;
case CompareGREATER:
AVER_CRITICAL(!TreeHasRight(stateStruct.middle));
*leftReturn = stateStruct.middle;
*rightReturn = stateStruct.rightFirst;
found = TRUE;
break;
}
SplayAssemble(splay, &stateStruct);
SplayTreeSetRoot(splay, stateStruct.middle);
#ifdef SPLAY_DEBUG
AVER(count == SplayDebugCount(splay));
#endif
return found;
}
/* SplayTreeFirst, SplayTreeNext -- iterators
*
* SplayTreeFirst returns TreeEMPTY if the tree is empty. Otherwise,
* it splays the tree to the first node, and returns the new root.
*
* SplayTreeNext takes a tree and splays it to the successor of a key
* and returns the new root. Returns TreeEMPTY is there are no
* successors.
*
* SplayTreeFirst and SplayTreeNext do not require the tree to remain
* unmodified.
*
* IMPORTANT: Iterating over the tree using these functions will leave
* the tree totally unbalanced, throwing away optimisations of the tree
* shape caused by previous splays. Consider using TreeTraverse instead.
*/
Tree SplayTreeFirst(SplayTree splay)
{
Tree node;
AVERT(SplayTree, splay);
if (SplayTreeIsEmpty(splay))
return TreeEMPTY;
(void)SplaySplay(splay, NULL, compareLess);
node = SplayTreeRoot(splay);
AVER(node != TreeEMPTY);
AVER(TreeLeft(node) == TreeEMPTY);
return node;
}
Tree SplayTreeNext(SplayTree splay, TreeKey oldKey)
{
AVERT(SplayTree, splay);
if (SplayTreeIsEmpty(splay))
return TreeEMPTY;
/* Make old node the root. Probably already is. We don't mind if the
node has been deleted, or replaced by a node with the same key. */
switch (SplaySplay(splay, oldKey, splay->compare)) {
default:
NOTREACHED;
/* fall through */
case CompareLESS:
return SplayTreeRoot(splay);
case CompareGREATER:
case CompareEQUAL:
return SplayTreeSuccessor(splay);
}
}
/* SplayNodeDescribe -- Describe a node in the splay tree
*
* Note that this breaks the restriction of .note.stack.
* This is alright as the function is debug only.
*/
static Res SplayNodeDescribe(Tree node, mps_lib_FILE *stream,
TreeDescribeFunction nodeDescribe)
{
Res res;
if (!TreeCheck(node))
return ResFAIL;
if (stream == NULL)
return ResFAIL;
if (nodeDescribe == NULL)
return ResFAIL;
res = WriteF(stream, 0, "( ", NULL);
if (res != ResOK)
return res;
if (TreeHasLeft(node)) {
res = SplayNodeDescribe(TreeLeft(node), stream, nodeDescribe);
if (res != ResOK)
return res;
res = WriteF(stream, 0, " / ", NULL);
if (res != ResOK)
return res;
}
res = (*nodeDescribe)(node, stream);
if (res != ResOK)
return res;
if (TreeHasRight(node)) {
res = WriteF(stream, 0, " \\ ", NULL);
if (res != ResOK)
return res;
res = SplayNodeDescribe(TreeRight(node), stream, nodeDescribe);
if (res != ResOK)
return res;
}
res = WriteF(stream, 0, " )", NULL);
if (res != ResOK)
return res;
return ResOK;
}
/* SplayFindFirstCompare, SplayFindLastCompare -- filtering searches
*
* These are used by SplayFindFirst and SplayFindLast as comparison
* functions to SplaySplit in order to home in on a node using client
* tests. The way to understand them is that the comparison values
* they return have nothing to do with the tree ordering, but are instead
* like commands that tell SplaySplit whether to "go left", "stop", or
* "go right" according to the results of testNode and testTree.
* Since splaying preserves the order of the tree, any tests can be
* applied to navigate to a destination.
*
* In the MPS these are mainly used by the CBS to search for memory
* blocks above a certain size. Their performance is quite critical.
*/
typedef struct SplayFindClosureStruct {
SplayTestNodeFunction testNode;
SplayTestTreeFunction testTree;
void *testClosure;
SplayTree splay;
Bool found;
} SplayFindClosureStruct, *SplayFindClosure;
static Compare SplayFindFirstCompare(Tree node, TreeKey key)
{
SplayFindClosure my;
SplayTestNodeFunction testNode;
SplayTestTreeFunction testTree;
void *testClosure;
SplayTree splay;
AVERT_CRITICAL(Tree, node);
AVER_CRITICAL(key != NULL);
/* Lift closure values into variables so that they aren't aliased by
calls to the test functions. */
my = (SplayFindClosure)key;
testClosure = my->testClosure;
testNode = my->testNode;
testTree = my->testTree;
splay = my->splay;
if (TreeHasLeft(node) &&
(*testTree)(splay, TreeLeft(node), testClosure)) {
return CompareLESS;
} else if ((*testNode)(splay, node, testClosure)) {
my->found = TRUE;
return CompareEQUAL;
} else {
/* If there's a right subtree but it doesn't satisfy the tree test
then we want to terminate the splay right now. SplaySplay will
return TRUE, so the caller must check closure->found to find out
whether the result node actually satisfies testNode. */
if (TreeHasRight(node) &&
!(*testTree)(splay, TreeRight(node), testClosure)) {
my->found = FALSE;
return CompareEQUAL;
}
return CompareGREATER;
}
}
static Compare SplayFindLastCompare(Tree node, TreeKey key)
{
SplayFindClosure my;
SplayTestNodeFunction testNode;
SplayTestTreeFunction testTree;
void *testClosure;
SplayTree splay;
AVERT_CRITICAL(Tree, node);
AVER_CRITICAL(key != NULL);
/* Lift closure values into variables so that they aren't aliased by
calls to the test functions. */
my = (SplayFindClosure)key;
testClosure = my->testClosure;
testNode = my->testNode;
testTree = my->testTree;
splay = my->splay;
if (TreeHasRight(node) &&
(*testTree)(splay, TreeRight(node), testClosure)) {
return CompareGREATER;
} else if ((*testNode)(splay, node, testClosure)) {
my->found = TRUE;
return CompareEQUAL;
} else {
/* See SplayFindFirstCompare. */
if (TreeHasLeft(node) &&
!(*testTree)(splay, TreeLeft(node), testClosure)) {
my->found = FALSE;
return CompareEQUAL;
}
return CompareLESS;
}
}
/* SplayFindFirst -- Find first node that satisfies client property
*
* This function finds the first node (in address order) in the given
* tree that satisfies some property defined by the client. The
* property is such that the client can detect, given a sub-tree,
* whether that sub-tree contains any nodes satisfying the property.
* If there is no satisfactory node, ``FALSE`` is returned, otherwise
* ``*nodeReturn`` is set to the node.
*
* The given callbacks testNode and testTree detect this property in
* a single node or a sub-tree rooted at a node, and both receive an
* arbitrary closure.
*
* TODO: This repeatedly splays failed matches to the root and rotates
* them, so it could have quite an unbalancing effect if size is small.
* Think about a better search, perhaps using TreeTraverse?
*/
Bool SplayFindFirst(Tree *nodeReturn, SplayTree splay,
SplayTestNodeFunction testNode,
SplayTestTreeFunction testTree,
void *testClosure)
{
SplayFindClosureStruct closureStruct;
Bool found;
AVER_CRITICAL(nodeReturn != NULL);
AVERT_CRITICAL(SplayTree, splay);
AVER_CRITICAL(FUNCHECK(testNode));
AVER_CRITICAL(FUNCHECK(testTree));
if (SplayTreeIsEmpty(splay) ||
!testTree(splay, SplayTreeRoot(splay), testClosure))
return FALSE; /* no suitable nodes in tree */
closureStruct.testClosure = testClosure;
closureStruct.testNode = testNode;
closureStruct.testTree = testTree;
closureStruct.splay = splay;
closureStruct.found = FALSE;
found = SplaySplay(splay, &closureStruct,
SplayFindFirstCompare) == CompareEQUAL &&
closureStruct.found;
while (!found) {
Tree oldRoot, newRoot;
/* TODO: Rename to "seen" and "not yet seen" to make it clear what
these are for, and because there's nothing particularly
temporal about them. */
oldRoot = SplayTreeRoot(splay);
newRoot = TreeRight(oldRoot);
if (newRoot == TreeEMPTY || !(*testTree)(splay, newRoot, testClosure))
return FALSE; /* no suitable nodes in the rest of the tree */
/* Temporarily chop off the left half-tree, inclusive of root,
so that the search excludes any nodes we've seen already. */
SplayTreeSetRoot(splay, newRoot);
TreeSetRight(oldRoot, TreeEMPTY);
found = SplaySplay(splay, &closureStruct,
SplayFindFirstCompare) == CompareEQUAL &&
closureStruct.found;
/* Restore the left tree, then rotate left so that the node we
just splayed is at the root. Update both. */
newRoot = SplayTreeRoot(splay);
TreeSetRight(oldRoot, newRoot);
SplayTreeSetRoot(splay, oldRoot);
TreeRotateLeft(&splay->root);
splay->updateNode(splay, oldRoot);
splay->updateNode(splay, newRoot);
}
*nodeReturn = SplayTreeRoot(splay);
return TRUE;
}
/* SplayFindLast -- As SplayFindFirst but in reverse address order */
Bool SplayFindLast(Tree *nodeReturn, SplayTree splay,
SplayTestNodeFunction testNode,
SplayTestTreeFunction testTree,
void *testClosure)
{
SplayFindClosureStruct closureStruct;
Bool found;
AVER_CRITICAL(nodeReturn != NULL);
AVERT_CRITICAL(SplayTree, splay);
AVER_CRITICAL(FUNCHECK(testNode));
AVER_CRITICAL(FUNCHECK(testTree));
if (SplayTreeIsEmpty(splay) ||
!testTree(splay, SplayTreeRoot(splay), testClosure))
return FALSE; /* no suitable nodes in tree */
closureStruct.testClosure = testClosure;
closureStruct.testNode = testNode;
closureStruct.testTree = testTree;
closureStruct.splay = splay;
found = SplaySplay(splay, &closureStruct,
SplayFindLastCompare) == CompareEQUAL &&
closureStruct.found;
while (!found) {
Tree oldRoot, newRoot;
oldRoot = SplayTreeRoot(splay);
newRoot = TreeLeft(oldRoot);
if (newRoot == TreeEMPTY || !(*testTree)(splay, newRoot, testClosure))
return FALSE; /* no suitable nodes in the rest of the tree */
/* Temporarily chop off the right half-tree, inclusive of root,
so that the search excludes any nodes we've seen already. */
SplayTreeSetRoot(splay, newRoot);
TreeSetLeft(oldRoot, TreeEMPTY);
found = SplaySplay(splay, &closureStruct,
SplayFindLastCompare) == CompareEQUAL &&
closureStruct.found;
/* Restore the right tree, then rotate right so that the node we
just splayed is at the root. Update both. */
newRoot = SplayTreeRoot(splay);
TreeSetLeft(oldRoot, newRoot);
SplayTreeSetRoot(splay, oldRoot);
TreeRotateRight(&splay->root);
splay->updateNode(splay, oldRoot);
splay->updateNode(splay, newRoot);
}
*nodeReturn = SplayTreeRoot(splay);
return TRUE;
}
/* SplayNodeRefresh -- updates the client property that has changed at a node
*
* This function undertakes to call the client updateNode callback for each
* node affected by the change in properties at the given node (which has
* the given key) in an appropriate order.
*
* The function fullfils its job by first splaying at the given node, and
* updating the single node. In the MPS it is used by the CBS during
* coalescing, when the node is likely to be at (or adjacent to) the top
* of the tree anyway.
*/
void SplayNodeRefresh(SplayTree splay, Tree node)
{
Compare cmp;
AVERT(SplayTree, splay);
AVERT(Tree, node);
AVER(!SplayTreeIsEmpty(splay)); /* must contain node, at least */
cmp = SplaySplay(splay, splay->nodeKey(node), splay->compare);
AVER(cmp == CompareEQUAL);
AVER(SplayTreeRoot(splay) == node);
splay->updateNode(splay, node);
}
/* SplayNodeInit -- initialize client property without splaying */
void SplayNodeInit(SplayTree splay, Tree node)
{
AVERT(SplayTree, splay);
AVERT(Tree, node);
AVER(!TreeHasLeft(node)); /* otherwise, call SplayNodeRefresh */
AVER(!TreeHasRight(node)); /* otherwise, call SplayNodeRefresh */
splay->updateNode(splay, node);
}
/* SplayTreeDescribe -- Describe a splay tree
*
* <design/splay#.function.splay.tree.describe>.
*/
Res SplayTreeDescribe(SplayTree splay, mps_lib_FILE *stream, Count depth,
TreeDescribeFunction nodeDescribe)
{
Res res;
if (!TESTT(SplayTree, splay))
return ResFAIL;
if (stream == NULL)
return ResFAIL;
if (nodeDescribe == NULL)
return ResFAIL;
res = WriteF(stream, depth,
"Splay $P {\n", (WriteFP)splay,
" compare $F\n", (WriteFF)splay->compare,
" nodeKey $F\n", (WriteFF)splay->nodeKey,
" updateNode $F\n", (WriteFF)splay->updateNode,
NULL);
if (res != ResOK)
return res;
if (SplayTreeRoot(splay) != TreeEMPTY) {
res = WriteF(stream, depth, " tree ", NULL);
if (res != ResOK)
return res;
res = SplayNodeDescribe(SplayTreeRoot(splay), stream, nodeDescribe);
if (res != ResOK)
return res;
}
res = WriteF(stream, depth, "\n} Splay $P\n", (WriteFP)splay, NULL);
return res;
}
/* C. COPYRIGHT AND LICENSE
*
* Copyright (C) 2001-2020 Ravenbrook Limited <https://www.ravenbrook.com/>.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
|