File: splay.c

package info (click to toggle)
storm-lang 0.7.5-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 52,028 kB
  • sloc: ansic: 261,471; cpp: 140,432; sh: 14,891; perl: 9,846; python: 2,525; lisp: 2,504; asm: 860; makefile: 678; pascal: 70; java: 52; xml: 37; awk: 12
file content (1442 lines) | stat: -rw-r--r-- 42,398 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
/* splay.c: SPLAY TREE IMPLEMENTATION
 *
 * $Id$
 * Copyright (c) 2001-2020 Ravenbrook Limited.  See end of file for license.
 *
 * .purpose: Splay trees are used to manage potentially unbounded
 * collections of ordered things.  In the MPS these are usually
 * address-ordered memory blocks.
 *
 * .source: <design/splay>
 *
 * .note.stack: It's important that the MPS have a bounded stack size,
 * and this is a problem for tree algorithms. Basically, we have to
 * avoid recursion. <design/sp#.sol.depth.no-recursion>.
 *
 * .critical: In manual-allocation-bound programs using MVFF, many of
 * these functions are on the critical paths via mps_alloc (and then
 * PoolAlloc, MVFFAlloc, failoverFind*, cbsFind*, SplayTreeFind*) and
 * mps_free (and then MVFFFree, failoverInsert, cbsInsert,
 * SplayTreeInsert).
 */


#include "splay.h"
#include "mpm.h"

SRCID(splay, "$Id$");


/* SPLAY_DEBUG -- switch for extra debugging
 *
 * Define SPLAY_DEBUG to enable extra consistency checking when modifying
 * splay tree algorithms, which can be tricky to get right.  This will
 * check the tree size and ordering frequently.
 */

/* #define SPLAY_DEBUG */

#define SplayTreeSetRoot(splay, tree) BEGIN ((splay)->root = (tree)); END
#define SplayCompare(tree, key, node) (((tree)->compare)(node, key))
#define SplayHasUpdate(splay) ((splay)->updateNode != SplayTrivUpdate)


/* SplayTreeCheck -- check consistency of SplayTree
 *
 * See guide.impl.c.adt.check and <design/check>.
 */

Bool SplayTreeCheck(SplayTree splay)
{
  UNUSED(splay);
  CHECKS(SplayTree, splay);
  CHECKL(FUNCHECK(splay->compare));
  CHECKL(FUNCHECK(splay->nodeKey));
  CHECKL(FUNCHECK(splay->updateNode));
  /* Can't use CHECKD_NOSIG because TreeEMPTY is NULL. */
  CHECKL(TreeCheck(splay->root));
  return TRUE;
}


/* SplayTreeInit -- initialise a splay tree
 *
 * ``compare`` must provide a total ordering on node keys.
 *
 * ``nodeKey`` extracts a key from a tree node for passing to ``compare``.
 *
 * ``updateNode`` will be applied to nodes from bottom to top when the
 * tree is restructured in order to maintain client properties
 * <design/splay#.prop>.  If SplayTrivUpdate is be passed, faster
 * algorithms are chosen for splaying.  Compare SplaySplitDown with
 * SplaySplitRev.
 */

void SplayTreeInit(SplayTree splay,
                   TreeCompareFunction compare,
                   TreeKeyFunction nodeKey,
                   SplayUpdateNodeFunction updateNode)
{
  AVER(splay != NULL);
  AVER(FUNCHECK(compare));
  AVER(FUNCHECK(nodeKey));
  AVER(FUNCHECK(updateNode));

  splay->compare = compare;
  splay->nodeKey = nodeKey;
  splay->updateNode = updateNode;
  SplayTreeSetRoot(splay, TreeEMPTY);
  splay->sig = SplayTreeSig;

  AVERT(SplayTree, splay);
}


/* SplayTreeFinish -- finish a splay tree
 *
 * Does not attempt to descend or finish any tree nodes.
 *
 * TODO: Should probably fail on non-empty tree, so that client code is
 * forced to decide what to do about that.
 */

void SplayTreeFinish(SplayTree splay)
{
  AVERT(SplayTree, splay);
  splay->sig = SigInvalid;
  SplayTreeSetRoot(splay, TreeEMPTY);
  splay->compare = NULL;
  splay->nodeKey = NULL;
  splay->updateNode = NULL;
}


/* SplayTrivUpdate -- trivial update method
 *
 * This is passed to SplayTreeInit to indicate that no client property
 * maintenance is required.  It can also be called to do nothing.
 */

void SplayTrivUpdate(SplayTree splay, Tree tree)
{
  AVERT(SplayTree, splay);
  AVERT(Tree, tree);
}


/* compareLess, compareGreater -- trivial comparisons
 *
 * These comparisons can be passed to SplaySplay to find the leftmost
 * or rightmost nodes in a tree quickly.
 *
 * NOTE: It's also possible to make specialised versions of SplaySplit
 * that traverse left and right unconditionally.  These weren't found
 * to have a significant performance advantage when benchmarking.
 * RB 2014-02-23
 */

static Compare compareLess(Tree tree, TreeKey key)
{
  UNUSED(tree);
  UNUSED(key);
  return CompareLESS;
}

static Compare compareGreater(Tree tree, TreeKey key)
{
  UNUSED(tree);
  UNUSED(key);
  return CompareGREATER;
}


/* SplayDebugUpdate -- force update of client property
 *
 * A debugging utility to recursively update the client property of
 * a subtree.  May not be used in production MPS because it has
 * indefinite stack usage.  See .note.stack.
 */

void SplayDebugUpdate(SplayTree splay, Tree tree)
{
  AVERT(SplayTree, splay);
  AVERT(Tree, tree);
  if (tree == TreeEMPTY)
    return;
  SplayDebugUpdate(splay, TreeLeft(tree));
  SplayDebugUpdate(splay, TreeRight(tree));
  splay->updateNode(splay, tree);
}


/* SplayDebugCount -- count and check order of tree
 *
 * This function may be called from a debugger or temporarily inserted
 * during development to check a tree's integrity.  It may not be called
 * from the production MPS because it uses indefinite stack depth.
 * See <code/tree.c#.note.stack>.
 */

Count SplayDebugCount(SplayTree splay)
{
  AVERT(SplayTree, splay);
  return TreeDebugCount(SplayTreeRoot(splay), splay->compare, splay->nodeKey);
}


/* SplayZig -- move to left child, prepending to right tree
 *
 * Link the top node of the middle tree into the left child of the
 * right tree, then step to the left child.  Returns new middle.
 *
 * <design/splay#.impl.link.right>.
 *
 *    middle    rightNext            middle
 *      B          E                   A              E
 *     / \        / \          =>                    / \
 *    A   C      D   F                    rightNext D   F
 *          rightFirst                             /
 *                                     rightFirst B
 *                                                 \
 *                                                  C
 */

static Tree SplayZig(Tree middle, Tree *rightFirstIO, Tree *rightNextReturn)
{
  AVERT_CRITICAL(Tree, middle);
  AVER_CRITICAL(rightFirstIO != NULL);
  AVERT_CRITICAL(Tree, *rightFirstIO);
  TreeSetLeft(*rightFirstIO, middle);
  *rightNextReturn = *rightFirstIO;
  *rightFirstIO = middle;
  return TreeLeft(middle);
}

/* SplayZigZig -- move to left child, rotating on on to right tree
 *
 * Rotate the top node of the middle tree over the left child of the
 * right tree, then step to the left child, completing a splay "zig zig"
 * after an initial SplayZig.  Returns new middle.
 *
 *    middle     rightNext           middle       rightNext
 *      B          E                   A              E
 *     / \        / \          =>                    / \
 *    A   C      D   F                   rightFirst B   F
 *          rightFirst                               \
 *                                                    D
 *                                                   /
 *                                                  C
 */

static Tree SplayZigZig(Tree middle, Tree *rightFirstIO, Tree rightNext)
{
  AVERT_CRITICAL(Tree, middle);
  AVER_CRITICAL(rightFirstIO != NULL);
  AVERT_CRITICAL(Tree, *rightFirstIO);
  TreeSetLeft(*rightFirstIO, TreeRight(middle));
  TreeSetRight(middle, *rightFirstIO);
  TreeSetLeft(rightNext, middle);
  *rightFirstIO = middle;
  return TreeLeft(middle);
}

/* SplayZag -- mirror image of SplayZig */

static Tree SplayZag(Tree middle, Tree *leftLastIO, Tree *leftPrevReturn)
{
  AVERT_CRITICAL(Tree, middle);
  AVER_CRITICAL(leftLastIO != NULL);
  AVERT_CRITICAL(Tree, *leftLastIO);
  TreeSetRight(*leftLastIO, middle);
  *leftPrevReturn = *leftLastIO;
  *leftLastIO = middle;
  return TreeRight(middle);
}

/* SplayZagZag -- mirror image of SplayZigZig */

static Tree SplayZagZag(Tree middle, Tree *leftLastIO, Tree leftPrev)
{
  AVERT_CRITICAL(Tree, middle);
  AVER_CRITICAL(leftLastIO != NULL);
  AVERT_CRITICAL(Tree, *leftLastIO);
  TreeSetRight(*leftLastIO, TreeLeft(middle));
  TreeSetLeft(middle, *leftLastIO);
  TreeSetRight(leftPrev, middle);
  *leftLastIO = middle;
  return TreeRight(middle);
}


/* SplayState -- the state of splaying between "split" and "assemble"
 *
 * Splaying is divided into two phases: splitting the tree into three,
 * and then assembling a final tree.  This allows for optimisation of
 * certain operations, the key one being SplayTreeNeighbours, which is
 * critical for coalescing memory blocks (see CBSInsert).
 *
 * Note that SplaySplitDown and SplaySplitRev use the trees slightly
 * differently.  SplaySplitRev does not provide "left" and "right", and
 * "leftLast" and "rightFirst" are pointer-reversed spines.
 */

typedef struct SplayStateStruct {
  Tree middle;      /* always non-empty, has the found node at the root */
  Tree left;        /* nodes less than search key during split */
  Tree leftLast;    /* rightmost node on right spine of "left" */
  Tree right;       /* nodes greater than search key during split */
  Tree rightFirst;  /* leftmost node on left spine of "right" */
} SplayStateStruct, *SplayState;


/* SplaySplitDown -- divide the tree around a key
 *
 * Split a tree into three according to a key and a comparison,
 * splaying nested left and right nodes.  Preserves tree ordering.
 * This is a top-down splay procedure, and does not use any recursion
 * or require any parent pointers <design/impl#.top-down>.
 *
 * Returns cmp, the relationship of the root of the middle tree to the key,
 * and a SplayState.
 *
 * Does *not* call update to maintain client properties.  See SplaySplitRev.
 */

static Compare SplaySplitDown(SplayStateStruct *stateReturn,
                              SplayTree splay, TreeKey key,
                              TreeCompareFunction compare)
{
  TreeStruct sentinel;
  Tree middle, leftLast, rightFirst, leftPrev, rightNext;
  Compare cmp;

  AVERT(SplayTree, splay);
  AVER(FUNCHECK(compare));
  AVER(!SplayTreeIsEmpty(splay));
  AVER(!SplayHasUpdate(splay));

  TreeInit(&sentinel);
  leftLast = &sentinel;
  rightFirst = &sentinel;
  middle = SplayTreeRoot(splay);
  for (;;) {
    cmp = compare(middle, key);
    switch(cmp) {
    default:
      NOTREACHED;
      /* defensive fall-through */
    case CompareEQUAL:
      goto stop;

    case CompareLESS:
      if (!TreeHasLeft(middle))
        goto stop;
      middle = SplayZig(middle, &rightFirst, &rightNext);
      cmp = compare(middle, key);
      switch(cmp) {
      default:
        NOTREACHED;
        /* defensive fall-through */
      case CompareEQUAL:
        goto stop;
      case CompareLESS:
        if (!TreeHasLeft(middle))
          goto stop;
        middle = SplayZigZig(middle, &rightFirst, rightNext);
        break;
      case CompareGREATER:
        if (!TreeHasRight(middle))
          goto stop;
        middle = SplayZag(middle, &leftLast, &leftPrev);
        break;
      }
      break;

    case CompareGREATER:
      if (!TreeHasRight(middle))
        goto stop;
      middle = SplayZag(middle, &leftLast, &leftPrev);
      cmp = compare(middle, key);
      switch(cmp) {
      default:
        NOTREACHED;
        /* defensive fall-through */
      case CompareEQUAL:
        goto stop;
      case CompareGREATER:
        if (!TreeHasRight(middle))
          goto stop;
        middle = SplayZagZag(middle, &leftLast, leftPrev);
        break;
      case CompareLESS:
        if (!TreeHasLeft(middle))
          goto stop;
        middle = SplayZig(middle, &rightFirst, &rightNext);
        break;
      }
      break;
    }
  }

stop:
  stateReturn->middle = middle;
  stateReturn->left = TreeRight(&sentinel);
  stateReturn->leftLast = leftLast == &sentinel ? TreeEMPTY : leftLast;
  stateReturn->right = TreeLeft(&sentinel);
  stateReturn->rightFirst = rightFirst == &sentinel ? TreeEMPTY : rightFirst;
  return cmp;
}


/* SplayAssembleDown -- assemble left right and middle trees into one
 *
 * Takes the result of a SplaySplit and forms a single tree with the
 * root of the middle tree as the root.
 *
 *   left      middle      right                 middle
 *    B          P          V                      P
 *   / \        / \        / \         =>       /     \
 *  A   C      N   Q      U   X               B         V
 *    leftLast       rightFirst              / \       / \
 *                                          A   C     U   X
 *                                               \   /
 *                                                N Q
 *
 * The children of the middle tree are grafted onto the last and first
 * nodes of the side trees, which become the children of the root.
 *
 * Does *not* maintain client properties.  See SplayAssembleRev.
 *
 * <design/splay#.impl.assemble>.
 */

static void SplayAssembleDown(SplayTree splay, SplayState state)
{
  AVERT(SplayTree, splay);
  AVER(state->middle != TreeEMPTY);
  AVER(!SplayHasUpdate(splay));

  if (state->left != TreeEMPTY) {
    AVER_CRITICAL(state->leftLast != TreeEMPTY);
    TreeSetRight(state->leftLast, TreeLeft(state->middle));
    TreeSetLeft(state->middle, state->left);
  }

  if (state->right != TreeEMPTY) {
    AVER_CRITICAL(state->rightFirst != TreeEMPTY);
    TreeSetLeft(state->rightFirst, TreeRight(state->middle));
    TreeSetRight(state->middle, state->right);
  }
}


/* SplayZigRev -- move to left child, prepending to reversed right tree
 *
 * Same as SplayZig, except that the left spine of the right tree is
 * pointer-reversed, so that its left children point at their parents
 * instead of their children.  This is fixed up in SplayAssembleRev.
 */

static Tree SplayZigRev(Tree middle, Tree *rightFirstIO)
{
  Tree child;
  AVERT_CRITICAL(Tree, middle);
  AVER_CRITICAL(rightFirstIO != NULL);
  AVERT_CRITICAL(Tree, *rightFirstIO);
  child = TreeLeft(middle);
  TreeSetLeft(middle, *rightFirstIO);
  *rightFirstIO = middle;
  return child;
}

/* SplayZigZigRev -- move to left child, rotating onto reversed right tree
 *
 * Same as SplayZigZig, except that the right tree is pointer reversed
 * (see SplayZigRev)
 */

static Tree SplayZigZigRev(Tree middle, Tree *rightFirstIO)
{
  Tree child;
  AVERT_CRITICAL(Tree, middle);
  AVER_CRITICAL(rightFirstIO != NULL);
  AVERT_CRITICAL(Tree, *rightFirstIO);
  child = TreeLeft(middle);
  TreeSetLeft(middle, TreeLeft(*rightFirstIO));
  TreeSetLeft(*rightFirstIO, TreeRight(middle));
  TreeSetRight(middle, *rightFirstIO);
  *rightFirstIO = middle;
  return child;
}

/* SplayZagRev -- mirror image of SplayZigRev */

static Tree SplayZagRev(Tree middle, Tree *leftLastIO)
{
  Tree child;
  AVERT_CRITICAL(Tree, middle);
  AVER_CRITICAL(leftLastIO != NULL);
  AVERT_CRITICAL(Tree, *leftLastIO);
  child = TreeRight(middle);
  TreeSetRight(middle, *leftLastIO);
  *leftLastIO = middle;
  return child;
}

/* SplayZagZagRev -- mirror image of SplayZigZigRev */

static Tree SplayZagZagRev(Tree middle, Tree *leftLastIO)
{
  Tree child;
  AVERT_CRITICAL(Tree, middle);
  AVER_CRITICAL(leftLastIO != NULL);
  AVERT_CRITICAL(Tree, *leftLastIO);
  child = TreeRight(middle);
  TreeSetRight(middle, TreeRight(*leftLastIO));
  TreeSetRight(*leftLastIO, TreeLeft(middle));
  TreeSetLeft(middle, *leftLastIO);
  *leftLastIO = middle;
  return child;
}


/* SplaySplitRev -- divide the tree around a key
 *
 * This is the same as SplaySplit, except that:
 *   - the left and right trees are pointer reversed on their spines
 *   - client properties for rotated nodes (not on the spines) are
 *     updated
 */

static Compare SplaySplitRev(SplayStateStruct *stateReturn,
                             SplayTree splay, TreeKey key,
                             TreeCompareFunction compare)
{
  SplayUpdateNodeFunction updateNode;
  Tree middle, leftLast, rightFirst;
  Compare cmp;

  AVERT_CRITICAL(SplayTree, splay);
  AVER_CRITICAL(FUNCHECK(compare));
  AVER_CRITICAL(!SplayTreeIsEmpty(splay));

  updateNode = splay->updateNode;
  leftLast = TreeEMPTY;
  rightFirst = TreeEMPTY;
  middle = SplayTreeRoot(splay);
  for (;;) {
    cmp = compare(middle, key);
    switch(cmp) {
    default:
      NOTREACHED;
      /* defensive fall-through */
    case CompareEQUAL:
      goto stop;

    case CompareLESS:
      if (!TreeHasLeft(middle))
        goto stop;
      middle = SplayZigRev(middle, &rightFirst);
      cmp = compare(middle, key);
      switch(cmp) {
      default:
        NOTREACHED;
        /* defensive fall-through */
      case CompareEQUAL:
        goto stop;
      case CompareLESS:
        if (!TreeHasLeft(middle))
          goto stop;
        middle = SplayZigZigRev(middle, &rightFirst);
        updateNode(splay, TreeRight(rightFirst));
        break;
      case CompareGREATER:
        if (!TreeHasRight(middle))
          goto stop;
        middle = SplayZagRev(middle, &leftLast);
        break;
      }
      break;

    case CompareGREATER:
      if (!TreeHasRight(middle))
        goto stop;
      middle = SplayZagRev(middle, &leftLast);
      cmp = compare(middle, key);
      switch(cmp) {
      default:
        NOTREACHED;
        /* defensive fall-through */
      case CompareEQUAL:
        goto stop;
      case CompareGREATER:
        if (!TreeHasRight(middle))
          goto stop;
        middle = SplayZagZagRev(middle, &leftLast);
        updateNode(splay, TreeLeft(leftLast));
        break;
      case CompareLESS:
        if (!TreeHasLeft(middle))
          goto stop;
        middle = SplayZigRev(middle, &rightFirst);
        break;
      }
      break;
    }
  }

stop:
  stateReturn->middle = middle;
  stateReturn->leftLast = leftLast;
  stateReturn->rightFirst = rightFirst;
  return cmp;
}


/* SplayUpdateLeftSpine -- undo pointer reversal, updating client property */

static Tree SplayUpdateLeftSpine(SplayTree splay, Tree node, Tree child)
{
  SplayUpdateNodeFunction updateNode;

  AVERT_CRITICAL(SplayTree, splay);
  AVERT_CRITICAL(Tree, node);
  AVERT_CRITICAL(Tree, child);

  updateNode = splay->updateNode;
  while(node != TreeEMPTY) {
    Tree parent = TreeLeft(node);
    TreeSetLeft(node, child); /* un-reverse pointer */
    updateNode(splay, node);
    child = node;
    node = parent;
  }
  return child;
}

/* SplayUpdateRightSpine -- mirror of SplayUpdateLeftSpine */

static Tree SplayUpdateRightSpine(SplayTree splay, Tree node, Tree child)
{
  SplayUpdateNodeFunction updateNode;

  AVERT_CRITICAL(SplayTree, splay);
  AVERT_CRITICAL(Tree, node);
  AVERT_CRITICAL(Tree, child);

  updateNode = splay->updateNode;
  while (node != TreeEMPTY) {
    Tree parent = TreeRight(node);
    TreeSetRight(node, child); /* un-reverse pointer */
    updateNode(splay, node);
    child = node;
    node = parent;
  }
  return child;
}


/* SplayAssembleRev -- pointer reversed SplayAssemble
 *
 * Does the same job as SplayAssemble, but operates on pointer-reversed
 * left and right trees, updating client properties.  When we reach
 * this function, the nodes on the spines of the left and right trees
 * will have out-of-date client properties because their children have
 * been changed by SplaySplitRev.
 */

static void SplayAssembleRev(SplayTree splay, SplayState state)
{
  Tree left, right;

  AVERT_CRITICAL(SplayTree, splay);
  AVER_CRITICAL(state->middle != TreeEMPTY);

  left = TreeLeft(state->middle);
  left = SplayUpdateRightSpine(splay, state->leftLast, left);
  TreeSetLeft(state->middle, left);

  right = TreeRight(state->middle);
  right = SplayUpdateLeftSpine(splay, state->rightFirst, right);
  TreeSetRight(state->middle, right);

  splay->updateNode(splay, state->middle);
}


/* SplaySplit -- call SplaySplitDown or SplaySplitRev as appropriate */

static Compare SplaySplit(SplayStateStruct *stateReturn,
                          SplayTree splay, TreeKey key,
                          TreeCompareFunction compare)
{
  if (SplayHasUpdate(splay))
    return SplaySplitRev(stateReturn, splay, key, compare);
  else
    return SplaySplitDown(stateReturn, splay, key, compare);
}


/* SplayAssemble -- call SplayAssembleDown or SplayAssembleRev as appropriate */

static void SplayAssemble(SplayTree splay, SplayState state)
{
  if (SplayHasUpdate(splay))
    SplayAssembleRev(splay, state);
  else
    SplayAssembleDown(splay, state);
}


/* SplaySplay -- splay the tree around a given key
 *
 * Uses SplaySplitRev/SplayAssembleRev or SplaySplitDown/SplayAssembleDown
 * as appropriate, but also catches the empty tree case and shortcuts
 * the common case where the wanted node is already at the root (due
 * to a previous splay).  The latter shortcut has a significant effect
 * on run time.
 *
 * If a matching node is found, it is splayed to the root and the function
 * returns CompareEQUAL, or if the tree is empty, will also return
 * CompareEQUAL.  Otherwise, CompareGREATER or CompareLESS is returned
 * meaning either the key is greater or less than the new root.  In this
 * case the new root is the last node visited which is either the closest
 * node left or the closest node right of the key.
 *
 * <design/splay#.impl.splay>.
 */

static Compare SplaySplay(SplayTree splay, TreeKey key,
                          TreeCompareFunction compare)
{
  Compare cmp;
  SplayStateStruct stateStruct;

#ifdef SPLAY_DEBUG
  Count count = SplayDebugCount(splay);
#endif

  /* Short-circuit common cases.  Splay trees often bring recently
     acccessed nodes to the root. */
  if (SplayTreeIsEmpty(splay) ||
      compare(SplayTreeRoot(splay), key) == CompareEQUAL)
    return CompareEQUAL;

  if (SplayHasUpdate(splay)) {
    cmp = SplaySplitRev(&stateStruct, splay, key, compare);
    SplayAssembleRev(splay, &stateStruct);
  } else {
    cmp = SplaySplitDown(&stateStruct, splay, key, compare);
    SplayAssembleDown(splay, &stateStruct);
  }

  SplayTreeSetRoot(splay, stateStruct.middle);

#ifdef SPLAY_DEBUG
  AVER(count == SplayDebugCount(splay));
#endif

  return cmp;
}


/* SplayTreeInsert -- insert a node into a splay tree
 *
 * This function is used to insert a node into the tree.  Splays the
 * tree at the node's key.  If an attempt is made to insert a node that
 * compares ``CompareEQUAL`` to an existing node in the tree, then
 * ``FALSE`` will be returned and the node will not be inserted.
 *
 * NOTE: It would be possible to use split here, then assemble around
 * the new node, leaving the neighbour where it was, but it's probably
 * a good thing for key neighbours to be tree neighbours.
 */

Bool SplayTreeInsert(SplayTree splay, Tree node)
{
  Tree neighbour;

  AVERT(SplayTree, splay);
  AVERT(Tree, node);
  AVER(TreeLeft(node) == TreeEMPTY);
  AVER(TreeRight(node) == TreeEMPTY);

  if (SplayTreeIsEmpty(splay)) {
    SplayTreeSetRoot(splay, node);
    return TRUE;
  }

  switch (SplaySplay(splay, splay->nodeKey(node), splay->compare)) {
  default:
    NOTREACHED;
    /* fall through */
  case CompareEQUAL: /* duplicate node */
    return FALSE;

  case CompareGREATER: /* left neighbour is at root */
    neighbour = SplayTreeRoot(splay);
    SplayTreeSetRoot(splay, node);
    TreeSetRight(node, TreeRight(neighbour));
    TreeSetLeft(node, neighbour);
    TreeSetRight(neighbour, TreeEMPTY);
    break;

  case CompareLESS: /* right neighbour is at root */
    neighbour = SplayTreeRoot(splay);
    SplayTreeSetRoot(splay, node);
    TreeSetLeft(node, TreeLeft(neighbour));
    TreeSetRight(node, neighbour);
    TreeSetLeft(neighbour, TreeEMPTY);
    break;
  }

  splay->updateNode(splay, neighbour);
  splay->updateNode(splay, node);
  return TRUE;
}


/* SplayTreeDelete -- delete a node from a splay tree
 *
 * Delete a node from the tree.  If the tree does not contain the given
 * node then ``FALSE`` will be returned.  The client must not pass a
 * node whose key compares equal to a different node in the tree.
 *
 * The function first splays the tree at the given key.
 *
 * TODO: If the node has zero or one children, then the replacement
 * would be the leftLast or rightFirst after a SplaySplit, and would
 * avoid a search for a replacement in more cases.
 */

Bool SplayTreeDelete(SplayTree splay, Tree node)
{
  Tree leftLast;
  Compare cmp;

  AVERT(SplayTree, splay);
  AVERT(Tree, node);

  if (SplayTreeIsEmpty(splay))
    return FALSE;

  cmp = SplaySplay(splay, splay->nodeKey(node), splay->compare);
  AVER(cmp != CompareEQUAL || SplayTreeRoot(splay) == node);

  if (cmp != CompareEQUAL) {
    return FALSE;
  } else if (!TreeHasLeft(node)) {
    SplayTreeSetRoot(splay, TreeRight(node));
    TreeClearRight(node);
  } else if (!TreeHasRight(node)) {
    SplayTreeSetRoot(splay, TreeLeft(node));
    TreeClearLeft(node);
  } else {
    Tree rightHalf = TreeRight(node);
    TreeClearRight(node);
    SplayTreeSetRoot(splay, TreeLeft(node));
    TreeClearLeft(node);
    (void)SplaySplay(splay, NULL, compareGreater);
    leftLast = SplayTreeRoot(splay);
    AVER(leftLast != TreeEMPTY);
    AVER(!TreeHasRight(leftLast));
    TreeSetRight(leftLast, rightHalf);
    splay->updateNode(splay, leftLast);
  }

  TreeFinish(node);

  return TRUE;
}


/* SplayTreeFind -- search for a node in a splay tree matching a key
 *
 * Search the tree for a node that compares ``CompareEQUAL`` to a key
 * Splays the tree at the key.  Returns ``FALSE`` if there is no such
 * node in the tree, otherwise ``*nodeReturn`` will be set to the node.
 */

Bool SplayTreeFind(Tree *nodeReturn, SplayTree splay, TreeKey key)
{
  AVERT(SplayTree, splay);
  AVER(nodeReturn != NULL);

  if (SplayTreeIsEmpty(splay))
    return FALSE;

  if (SplaySplay(splay, key, splay->compare) != CompareEQUAL)
    return FALSE;

  *nodeReturn = SplayTreeRoot(splay);
  return TRUE;
}


/* SplayTreeSuccessor -- splays a tree at the root's successor
 *
 * Must not be called on en empty tree.  Successor need not exist,
 * in which case TreeEMPTY is returned, and the tree is unchanged.
 */

static Tree SplayTreeSuccessor(SplayTree splay)
{
  Tree oldRoot, newRoot;

  AVERT(SplayTree, splay);
  AVER(!SplayTreeIsEmpty(splay));

  oldRoot = SplayTreeRoot(splay);

  if (!TreeHasRight(oldRoot))
    return TreeEMPTY; /* No successor */

  /* temporarily chop off the left half-tree, inclusive of root */
  SplayTreeSetRoot(splay, TreeRight(oldRoot));
  TreeSetRight(oldRoot, TreeEMPTY);
  (void)SplaySplay(splay, NULL, compareLess);
  newRoot = SplayTreeRoot(splay);
  AVER(newRoot != TreeEMPTY);
  AVER(TreeLeft(newRoot) == TreeEMPTY);
  TreeSetLeft(newRoot, oldRoot);
  splay->updateNode(splay, oldRoot);
  splay->updateNode(splay, newRoot);

  return newRoot;
}


/* SplayTreeNeighbours
 *
 * Search for the two nodes in a splay tree neighbouring a key.
 * Splays the tree at the key. ``*leftReturn`` will be the neighbour
 * which compares less than the key if such a neighbour exists; otherwise
 * it will be ``TreeEMPTY``. ``*rightReturn`` will be the neighbour which
 * compares greater than the key if such a neighbour exists; otherwise
 * it will be ``TreeEMPTY``. The function returns ``FALSE`` if any node
 * in the tree compares ``CompareEQUAL`` with the given key.
 *
 * TODO: Change to SplayTreeCoalesce that takes a function that can
 * direct the deletion of one of the neighbours, since this is a
 * good moment to do it, avoiding another search and splay.
 *
 * This implementation uses SplaySplit to find both neighbours in a
 * single splay <design/splay#.impl.neighbours>.
 */

Bool SplayTreeNeighbours(Tree *leftReturn, Tree *rightReturn,
                         SplayTree splay, TreeKey key)
{
  SplayStateStruct stateStruct;
  Bool found;
  Compare cmp;
#ifdef SPLAY_DEBUG
  Count count = SplayDebugCount(splay);
#endif

  AVERT_CRITICAL(SplayTree, splay);
  AVER_CRITICAL(leftReturn != NULL);
  AVER_CRITICAL(rightReturn != NULL);

  if (SplayTreeIsEmpty(splay)) {
    *leftReturn = *rightReturn = TreeEMPTY;
    return TRUE;
  }

  cmp = SplaySplit(&stateStruct, splay, key, splay->compare);

  switch (cmp) {
  default:
    NOTREACHED;
    /* fall through */
  case CompareEQUAL:
    found = FALSE;
    break;

  case CompareLESS:
    AVER_CRITICAL(!TreeHasLeft(stateStruct.middle));
    *rightReturn = stateStruct.middle;
    *leftReturn = stateStruct.leftLast;
    found = TRUE;
    break;

  case CompareGREATER:
    AVER_CRITICAL(!TreeHasRight(stateStruct.middle));
    *leftReturn = stateStruct.middle;
    *rightReturn = stateStruct.rightFirst;
    found = TRUE;
    break;
  }

  SplayAssemble(splay, &stateStruct);
  SplayTreeSetRoot(splay, stateStruct.middle);

#ifdef SPLAY_DEBUG
  AVER(count == SplayDebugCount(splay));
#endif

  return found;
}


/* SplayTreeFirst, SplayTreeNext -- iterators
 *
 * SplayTreeFirst returns TreeEMPTY if the tree is empty. Otherwise,
 * it splays the tree to the first node, and returns the new root.
 *
 * SplayTreeNext takes a tree and splays it to the successor of a key
 * and returns the new root. Returns TreeEMPTY is there are no
 * successors.
 *
 * SplayTreeFirst and SplayTreeNext do not require the tree to remain
 * unmodified.
 *
 * IMPORTANT: Iterating over the tree using these functions will leave
 * the tree totally unbalanced, throwing away optimisations of the tree
 * shape caused by previous splays. Consider using TreeTraverse instead.
 */

Tree SplayTreeFirst(SplayTree splay)
{
  Tree node;

  AVERT(SplayTree, splay);

  if (SplayTreeIsEmpty(splay))
    return TreeEMPTY;

  (void)SplaySplay(splay, NULL, compareLess);
  node = SplayTreeRoot(splay);
  AVER(node != TreeEMPTY);
  AVER(TreeLeft(node) == TreeEMPTY);

  return node;
}

Tree SplayTreeNext(SplayTree splay, TreeKey oldKey)
{
  AVERT(SplayTree, splay);

  if (SplayTreeIsEmpty(splay))
    return TreeEMPTY;

  /* Make old node the root.  Probably already is.  We don't mind if the
     node has been deleted, or replaced by a node with the same key. */
  switch (SplaySplay(splay, oldKey, splay->compare)) {
  default:
    NOTREACHED;
    /* fall through */
  case CompareLESS:
    return SplayTreeRoot(splay);

  case CompareGREATER:
  case CompareEQUAL:
    return SplayTreeSuccessor(splay);
  }
}


/* SplayNodeDescribe -- Describe a node in the splay tree
 *
 * Note that this breaks the restriction of .note.stack.
 * This is alright as the function is debug only.
 */

static Res SplayNodeDescribe(Tree node, mps_lib_FILE *stream,
                             TreeDescribeFunction nodeDescribe)
{
  Res res;

  if (!TreeCheck(node))
    return ResFAIL;
  if (stream == NULL)
    return ResFAIL;
  if (nodeDescribe == NULL)
    return ResFAIL;

  res = WriteF(stream, 0, "( ", NULL);
  if (res != ResOK)
    return res;

  if (TreeHasLeft(node)) {
    res = SplayNodeDescribe(TreeLeft(node), stream, nodeDescribe);
    if (res != ResOK)
      return res;

    res = WriteF(stream, 0, " / ", NULL);
    if (res != ResOK)
      return res;
  }

  res = (*nodeDescribe)(node, stream);
  if (res != ResOK)
    return res;

  if (TreeHasRight(node)) {
    res = WriteF(stream, 0, " \\ ", NULL);
    if (res != ResOK)
      return res;

    res = SplayNodeDescribe(TreeRight(node), stream, nodeDescribe);
    if (res != ResOK)
      return res;
  }

  res = WriteF(stream, 0, " )", NULL);
  if (res != ResOK)
    return res;

  return ResOK;
}


/* SplayFindFirstCompare, SplayFindLastCompare -- filtering searches
 *
 * These are used by SplayFindFirst and SplayFindLast as comparison
 * functions to SplaySplit in order to home in on a node using client
 * tests.  The way to understand them is that the comparison values
 * they return have nothing to do with the tree ordering, but are instead
 * like commands that tell SplaySplit whether to "go left", "stop", or
 * "go right" according to the results of testNode and testTree.
 * Since splaying preserves the order of the tree, any tests can be
 * applied to navigate to a destination.
 *
 * In the MPS these are mainly used by the CBS to search for memory
 * blocks above a certain size.  Their performance is quite critical.
 */

typedef struct SplayFindClosureStruct {
  SplayTestNodeFunction testNode;
  SplayTestTreeFunction testTree;
  void *testClosure;
  SplayTree splay;
  Bool found;
} SplayFindClosureStruct, *SplayFindClosure;

static Compare SplayFindFirstCompare(Tree node, TreeKey key)
{
  SplayFindClosure my;
  SplayTestNodeFunction testNode;
  SplayTestTreeFunction testTree;
  void *testClosure;
  SplayTree splay;

  AVERT_CRITICAL(Tree, node);
  AVER_CRITICAL(key != NULL);

  /* Lift closure values into variables so that they aren't aliased by
     calls to the test functions. */
  my = (SplayFindClosure)key;
  testClosure = my->testClosure;
  testNode = my->testNode;
  testTree = my->testTree;
  splay = my->splay;

  if (TreeHasLeft(node) &&
      (*testTree)(splay, TreeLeft(node), testClosure)) {
    return CompareLESS;
  } else if ((*testNode)(splay, node, testClosure)) {
    my->found = TRUE;
    return CompareEQUAL;
  } else {
    /* If there's a right subtree but it doesn't satisfy the tree test
       then we want to terminate the splay right now.  SplaySplay will
       return TRUE, so the caller must check closure->found to find out
       whether the result node actually satisfies testNode. */
    if (TreeHasRight(node) &&
        !(*testTree)(splay, TreeRight(node), testClosure)) {
      my->found = FALSE;
      return CompareEQUAL;
    }
    return CompareGREATER;
  }
}

static Compare SplayFindLastCompare(Tree node, TreeKey key)
{
  SplayFindClosure my;
  SplayTestNodeFunction testNode;
  SplayTestTreeFunction testTree;
  void *testClosure;
  SplayTree splay;

  AVERT_CRITICAL(Tree, node);
  AVER_CRITICAL(key != NULL);

  /* Lift closure values into variables so that they aren't aliased by
     calls to the test functions. */
  my = (SplayFindClosure)key;
  testClosure = my->testClosure;
  testNode = my->testNode;
  testTree = my->testTree;
  splay = my->splay;

  if (TreeHasRight(node) &&
      (*testTree)(splay, TreeRight(node), testClosure)) {
    return CompareGREATER;
  } else if ((*testNode)(splay, node, testClosure)) {
    my->found = TRUE;
    return CompareEQUAL;
  } else {
    /* See SplayFindFirstCompare. */
    if (TreeHasLeft(node) &&
        !(*testTree)(splay, TreeLeft(node), testClosure)) {
      my->found = FALSE;
      return CompareEQUAL;
    }
    return CompareLESS;
  }
}


/* SplayFindFirst -- Find first node that satisfies client property
 *
 * This function finds the first node (in address order) in the given
 * tree that satisfies some property defined by the client.  The
 * property is such that the client can detect, given a sub-tree,
 * whether that sub-tree contains any nodes satisfying the property.
 * If there is no satisfactory node, ``FALSE`` is returned, otherwise
 * ``*nodeReturn`` is set to the node.
 *
 * The given callbacks testNode and testTree detect this property in
 * a single node or a sub-tree rooted at a node, and both receive an
 * arbitrary closure.
 *
 * TODO: This repeatedly splays failed matches to the root and rotates
 * them, so it could have quite an unbalancing effect if size is small.
 * Think about a better search, perhaps using TreeTraverse?
 */

Bool SplayFindFirst(Tree *nodeReturn, SplayTree splay,
                    SplayTestNodeFunction testNode,
                    SplayTestTreeFunction testTree,
                    void *testClosure)
{
  SplayFindClosureStruct closureStruct;
  Bool found;

  AVER_CRITICAL(nodeReturn != NULL);
  AVERT_CRITICAL(SplayTree, splay);
  AVER_CRITICAL(FUNCHECK(testNode));
  AVER_CRITICAL(FUNCHECK(testTree));

  if (SplayTreeIsEmpty(splay) ||
      !testTree(splay, SplayTreeRoot(splay), testClosure))
    return FALSE; /* no suitable nodes in tree */

  closureStruct.testClosure = testClosure;
  closureStruct.testNode = testNode;
  closureStruct.testTree = testTree;
  closureStruct.splay = splay;
  closureStruct.found = FALSE;

  found = SplaySplay(splay, &closureStruct,
                     SplayFindFirstCompare) == CompareEQUAL &&
          closureStruct.found;

  while (!found) {
    Tree oldRoot, newRoot;

    /* TODO: Rename to "seen" and "not yet seen" to make it clear what
       these are for, and because there's nothing particularly
       temporal about them. */
    oldRoot = SplayTreeRoot(splay);
    newRoot = TreeRight(oldRoot);

    if (newRoot == TreeEMPTY || !(*testTree)(splay, newRoot, testClosure))
      return FALSE; /* no suitable nodes in the rest of the tree */

    /* Temporarily chop off the left half-tree, inclusive of root,
       so that the search excludes any nodes we've seen already. */
    SplayTreeSetRoot(splay, newRoot);
    TreeSetRight(oldRoot, TreeEMPTY);

    found = SplaySplay(splay, &closureStruct,
                       SplayFindFirstCompare) == CompareEQUAL &&
            closureStruct.found;

    /* Restore the left tree, then rotate left so that the node we
       just splayed is at the root.  Update both. */
    newRoot = SplayTreeRoot(splay);
    TreeSetRight(oldRoot, newRoot);
    SplayTreeSetRoot(splay, oldRoot);
    TreeRotateLeft(&splay->root);
    splay->updateNode(splay, oldRoot);
    splay->updateNode(splay, newRoot);
  }

  *nodeReturn = SplayTreeRoot(splay);
  return TRUE;
}


/* SplayFindLast -- As SplayFindFirst but in reverse address order */

Bool SplayFindLast(Tree *nodeReturn, SplayTree splay,
                   SplayTestNodeFunction testNode,
                   SplayTestTreeFunction testTree,
                   void *testClosure)
{
  SplayFindClosureStruct closureStruct;
  Bool found;

  AVER_CRITICAL(nodeReturn != NULL);
  AVERT_CRITICAL(SplayTree, splay);
  AVER_CRITICAL(FUNCHECK(testNode));
  AVER_CRITICAL(FUNCHECK(testTree));

  if (SplayTreeIsEmpty(splay) ||
      !testTree(splay, SplayTreeRoot(splay), testClosure))
    return FALSE; /* no suitable nodes in tree */

  closureStruct.testClosure = testClosure;
  closureStruct.testNode = testNode;
  closureStruct.testTree = testTree;
  closureStruct.splay = splay;

  found = SplaySplay(splay, &closureStruct,
                     SplayFindLastCompare) == CompareEQUAL &&
          closureStruct.found;

  while (!found) {
    Tree oldRoot, newRoot;

    oldRoot = SplayTreeRoot(splay);
    newRoot = TreeLeft(oldRoot);

    if (newRoot == TreeEMPTY || !(*testTree)(splay, newRoot, testClosure))
      return FALSE; /* no suitable nodes in the rest of the tree */

    /* Temporarily chop off the right half-tree, inclusive of root,
       so that the search excludes any nodes we've seen already. */
    SplayTreeSetRoot(splay, newRoot);
    TreeSetLeft(oldRoot, TreeEMPTY);

    found = SplaySplay(splay, &closureStruct,
                       SplayFindLastCompare) == CompareEQUAL &&
            closureStruct.found;

    /* Restore the right tree, then rotate right so that the node we
       just splayed is at the root.  Update both. */
    newRoot = SplayTreeRoot(splay);
    TreeSetLeft(oldRoot, newRoot);
    SplayTreeSetRoot(splay, oldRoot);
    TreeRotateRight(&splay->root);
    splay->updateNode(splay, oldRoot);
    splay->updateNode(splay, newRoot);
  }

  *nodeReturn = SplayTreeRoot(splay);
  return TRUE;
}


/* SplayNodeRefresh -- updates the client property that has changed at a node
 *
 * This function undertakes to call the client updateNode callback for each
 * node affected by the change in properties at the given node (which has
 * the given key) in an appropriate order.
 *
 * The function fullfils its job by first splaying at the given node, and
 * updating the single node.  In the MPS it is used by the CBS during
 * coalescing, when the node is likely to be at (or adjacent to) the top
 * of the tree anyway.
 */

void SplayNodeRefresh(SplayTree splay, Tree node)
{
  Compare cmp;

  AVERT(SplayTree, splay);
  AVERT(Tree, node);
  AVER(!SplayTreeIsEmpty(splay)); /* must contain node, at least */

  cmp = SplaySplay(splay, splay->nodeKey(node), splay->compare);
  AVER(cmp == CompareEQUAL);
  AVER(SplayTreeRoot(splay) == node);

  splay->updateNode(splay, node);
}


/* SplayNodeInit -- initialize client property without splaying */

void SplayNodeInit(SplayTree splay, Tree node)
{
  AVERT(SplayTree, splay);
  AVERT(Tree, node);
  AVER(!TreeHasLeft(node)); /* otherwise, call SplayNodeRefresh */
  AVER(!TreeHasRight(node)); /* otherwise, call SplayNodeRefresh */

  splay->updateNode(splay, node);
}


/* SplayTreeDescribe -- Describe a splay tree
 *
 * <design/splay#.function.splay.tree.describe>.
 */

Res SplayTreeDescribe(SplayTree splay, mps_lib_FILE *stream, Count depth,
                      TreeDescribeFunction nodeDescribe)
{
  Res res;

  if (!TESTT(SplayTree, splay))
    return ResFAIL;
  if (stream == NULL)
    return ResFAIL;
  if (nodeDescribe == NULL)
    return ResFAIL;

  res = WriteF(stream, depth,
               "Splay $P {\n", (WriteFP)splay,
               "  compare $F\n", (WriteFF)splay->compare,
               "  nodeKey $F\n", (WriteFF)splay->nodeKey,
               "  updateNode $F\n", (WriteFF)splay->updateNode,
               NULL);
  if (res != ResOK)
    return res;

  if (SplayTreeRoot(splay) != TreeEMPTY) {
    res = WriteF(stream, depth, "  tree ", NULL);
    if (res != ResOK)
      return res;
    res = SplayNodeDescribe(SplayTreeRoot(splay), stream, nodeDescribe);
    if (res != ResOK)
      return res;
  }

  res = WriteF(stream, depth, "\n} Splay $P\n", (WriteFP)splay, NULL);
  return res;
}


/* C. COPYRIGHT AND LICENSE
 *
 * Copyright (C) 2001-2020 Ravenbrook Limited <https://www.ravenbrook.com/>.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the
 *    distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */