1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
import inspect
from collections.abc import Callable
from typing import (
TYPE_CHECKING,
Any,
Generic,
Optional,
TypeVar,
Union,
overload,
)
from django.db.models.base import Model
from strawberry.exceptions import MissingFieldAnnotationError
from typing_extensions import Self
if TYPE_CHECKING:
from strawberry_django.optimizer import OptimizerStore
from .utils.typing import AnnotateType, PrefetchType, TypeOrMapping, TypeOrSequence
__all__ = [
"ModelProperty",
"model_cached_property",
"model_property",
]
_M = TypeVar("_M", bound=Model)
_R = TypeVar("_R")
class ModelProperty(Generic[_M, _R]):
"""Model property with optimization hinting functionality."""
name: str
store: "OptimizerStore"
def __init__(
self,
func: Callable[[_M], _R],
*,
cached: bool = False,
meta: Optional[dict[Any, Any]] = None,
only: Optional["TypeOrSequence[str]"] = None,
select_related: Optional["TypeOrSequence[str]"] = None,
prefetch_related: Optional["TypeOrSequence[PrefetchType]"] = None,
annotate: Optional["TypeOrMapping[AnnotateType]"] = None,
):
from .optimizer import OptimizerStore
super().__init__()
self.func = func
self.cached = cached
self.meta = meta
self.store = OptimizerStore.with_hints(
only=only,
select_related=select_related,
prefetch_related=prefetch_related,
annotate=annotate,
)
def __set_name__(self, owner: type[_M], name: str):
self.origin = owner
self.name = name
@overload
def __get__(self, obj: _M, cls: type[_M]) -> _R: ...
@overload
def __get__(self, obj: None, cls: type[_M]) -> Self: ...
def __get__(self, obj, cls=None):
if obj is None:
return self
if not self.cached:
return self.func(obj)
try:
ret = obj.__dict__[self.name]
except KeyError:
ret = self.func(obj)
obj.__dict__[self.name] = ret
return ret
@property
def description(self) -> Optional[str]:
if not self.func.__doc__:
return None
return inspect.cleandoc(self.func.__doc__)
@property
def type_annotation(self) -> Union[object, str]:
ret = self.func.__annotations__.get("return")
if ret is None:
raise MissingFieldAnnotationError(self.name, self.origin)
return ret
@overload
def model_property(
func: Callable[[_M], _R],
*,
cached: bool = False,
meta: Optional[dict[Any, Any]] = None,
only: Optional["TypeOrSequence[str]"] = None,
select_related: Optional["TypeOrSequence[str]"] = None,
prefetch_related: Optional["TypeOrSequence[PrefetchType]"] = None,
annotate: Optional["TypeOrMapping[AnnotateType]"] = None,
) -> ModelProperty[_M, _R]: ...
@overload
def model_property(
func: None = ...,
*,
cached: bool = False,
meta: Optional[dict[Any, Any]] = None,
only: Optional["TypeOrSequence[str]"] = None,
select_related: Optional["TypeOrSequence[str]"] = None,
prefetch_related: Optional["TypeOrSequence[PrefetchType]"] = None,
annotate: Optional["TypeOrMapping[AnnotateType]"] = None,
) -> Callable[[Callable[[_M], _R]], ModelProperty[_M, _R]]: ...
def model_property(
func=None,
*,
cached: bool = False,
meta: Optional[dict[Any, Any]] = None,
only: Optional["TypeOrSequence[str]"] = None,
select_related: Optional["TypeOrSequence[str]"] = None,
prefetch_related: Optional["TypeOrSequence[PrefetchType]"] = None,
annotate: Optional["TypeOrMapping[AnnotateType]"] = None,
) -> Any:
def wrapper(f):
return ModelProperty(
f,
cached=cached,
meta=meta,
only=only,
select_related=select_related,
prefetch_related=prefetch_related,
annotate=annotate,
)
if func is not None:
return wrapper(func)
return wrapper
def model_cached_property(
func=None,
*,
meta: Optional[dict[Any, Any]] = None,
only: Optional["TypeOrSequence[str]"] = None,
select_related: Optional["TypeOrSequence[str]"] = None,
prefetch_related: Optional["TypeOrSequence[PrefetchType]"] = None,
annotate: Optional["TypeOrMapping[AnnotateType]"] = None,
):
"""Property with gql optimization hinting.
Decorate a method, just like you would do with a `@property`, and when
accessing it through a graphql resolver, if `DjangoOptimizerExtension`
is enabled, it will automatically optimize the hintings on this field.
Args:
----
func:
The method to decorate.
meta:
Some extra metadata to be attached to the field.
only:
Optional sequence of values to optimize using `QuerySet.only`
select_related:
Optional sequence of values to optimize using `QuerySet.select_related`
prefetch_related:
Optional sequence of values to optimize using `QuerySet.prefetch_related`
annotate:
Optional mapping of values to use in `QuerySet.annotate`
Returns:
-------
The decorated method.
Examples:
--------
In a model, define it like this to have the hintings defined in
`col_b_formatted` automatically optimized.
>>> class SomeModel(models.Model):
... col_a = models.CharField()
... col_b = models.CharField()
...
... @model_cached_property(only=["col_b"])
... def col_b_formatted(self):
... return f"Formatted: {self.col_b}"
...
>>> @gql.django.type(SomeModel)
... class SomeModelType
... col_a: gql.auto
... col_b_formatted: gql.auto
"""
return model_property(
func,
cached=True,
meta=meta,
only=only,
select_related=select_related,
prefetch_related=prefetch_related,
annotate=annotate,
)
|