1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
|
#ifndef __GBITVEC_H__
#define __GBITVEC_H__
#include "GBase.h"
//this code is lifted from LLVM (llvm.org, BitVector.h)
/// bitCount_32 - this function counts the number of set bits in a value.
/// Ex. CountPopulation(0xF000F000) = 8
/// Returns 0 if the word is zero.
inline uint bitCount_32(uint32_t Value) {
#if __GNUC__ >= 4
return __builtin_popcount(Value);
#else
uint32_t v = Value - ((Value >> 1) & 0x55555555);
v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
#endif
}
/// bitCount_64 - this function counts the number of set bits in a value,
/// (64 bit edition.)
inline uint bitCount_64(uint64_t Value) {
#if __GNUC__ >= 4
return __builtin_popcountll(Value);
#else
uint64_t v = Value - ((Value >> 1) & 0x5555555555555555ULL);
v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
return uint((uint64_t)(v * 0x0101010101010101ULL) >> 56);
#endif
}
/// CountTrailingZeros_32 - this function performs the platform optimal form of
/// counting the number of zeros from the least significant bit to the first one
/// bit. Ex. CountTrailingZeros_32(0xFF00FF00) == 8.
/// Returns 32 if the word is zero.
inline unsigned bitCountTrailingZeros_32(uint32_t Value) {
#if __GNUC__ >= 4
return Value ? __builtin_ctz(Value) : 32;
#else
static const unsigned Mod37BitPosition[] = {
32, 0, 1, 26, 2, 23, 27, 0, 3, 16, 24, 30, 28, 11, 0, 13,
4, 7, 17, 0, 25, 22, 31, 15, 29, 10, 12, 6, 0, 21, 14, 9,
5, 20, 8, 19, 18
};
return Mod37BitPosition[(-Value & Value) % 37];
#endif
}
// CountTrailingZeros_64 - This function performs the platform optimal form
/// of counting the number of zeros from the least significant bit to the first
/// one bit (64 bit edition.)
/// Returns 64 if the word is zero.
inline unsigned bitCountTrailingZeros_64(uint64_t Value) {
#if __GNUC__ >= 4
return Value ? __builtin_ctzll(Value) : 64;
#else
static const unsigned Mod67Position[] = {
64, 0, 1, 39, 2, 15, 40, 23, 3, 12, 16, 59, 41, 19, 24, 54,
4, 64, 13, 10, 17, 62, 60, 28, 42, 30, 20, 51, 25, 44, 55,
47, 5, 32, 65, 38, 14, 22, 11, 58, 18, 53, 63, 9, 61, 27,
29, 50, 43, 46, 31, 37, 21, 57, 52, 8, 26, 49, 45, 36, 56,
7, 48, 35, 6, 34, 33, 0
};
return Mod67Position[(-Value & Value) % 67];
#endif
}
class GBitVec {
typedef unsigned long BitWord;
enum { BITWORD_SIZE = (uint)sizeof(BitWord) * CHAR_BIT };
BitWord *fBits; // Actual bits.
uint Size; // Size of GBitVec in bits.
uint Capacity; // Size of allocated memory in BitWord.
public:
// Encapsulation of a single bit.
class GBitRef {
friend class GBitVec;
BitWord *WordRef;
uint BitPos;
GBitRef(); // Undefined
public:
GBitRef(GBitVec &b, uint Idx) {
WordRef = &b.fBits[Idx / BITWORD_SIZE];
BitPos = Idx % BITWORD_SIZE;
}
~GBitRef() {}
GBitRef &operator=(GBitRef t) {
*this = bool(t);
return *this;
}
GBitRef& operator=(bool t) {
if (t)
*WordRef |= 1L << BitPos;
else
*WordRef &= ~(1L << BitPos);
return *this;
}
operator bool() const {
return ((*WordRef) & (1L << BitPos)) ? true : false;
}
};
/// GBitVec default ctor - Creates an empty GBitVec.
GBitVec() : Size(0), Capacity(0) {
fBits = 0;
}
/// GBitVec ctor - Creates a GBitVec of specified number of bits. All
/// bits are initialized to the specified value.
explicit GBitVec(uint bitsize, bool value = false) : Size(bitsize) {
if (bitsize==0) {
Capacity=0;
fBits=0;
return;
}
Capacity = NumBitWords(bitsize);
//fBits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
GMALLOC(fBits, Capacity * sizeof(BitWord));
init_words(fBits, Capacity, value);
if (value)
clear_unused_bits();
}
unsigned long getMemorySize() const {
unsigned long r = ((unsigned long) Capacity) * sizeof(BitWord);
return r;
}
GBitVec(const GBitVec* RHS) {
if (RHS==NULL) {
Size = 0;
fBits = 0;
Capacity = 0;
return;
}
Capacity = NumBitWords(RHS->size());
GMALLOC(fBits, Capacity * sizeof(BitWord));
memcpy(fBits, RHS->fBits, Capacity * sizeof(BitWord));
}
/// GBitVec copy ctor.
GBitVec(const GBitVec &RHS) : Size(RHS.size()) {
if (Size == 0) {
fBits = 0;
Capacity = 0;
return;
}
Capacity = NumBitWords(RHS.size());
GMALLOC(fBits, Capacity * sizeof(BitWord));
memcpy(fBits, RHS.fBits, Capacity * sizeof(BitWord));
}
~GBitVec() {
GFREE(fBits);
}
/// empty - Tests whether there are no bits in this GBitVec.
bool empty() const { return Size == 0; }
/// size - Returns the number of bits in this GBitVec.
uint size() const { return Size; }
void bitSizeError() {
GError("Error at GBitVec: unsupported BitWord size (%d)!\n",
sizeof(BitWord));
}
/// count - Returns the number of bits which are set.
uint count() {
uint NumBits = 0;
for (uint i = 0; i < NumBitWords(size()); ++i)
if (sizeof(BitWord) == 4)
NumBits += bitCount_32((uint32_t)fBits[i]);
else if (sizeof(BitWord) == 8)
NumBits += bitCount_64(fBits[i]);
else
bitSizeError();
return NumBits;
}
/// any - Returns true if any bit is set.
bool any() {
for (uint i = 0; i < NumBitWords(size()); ++i)
if (fBits[i] != 0)
return true;
return false;
}
/// all - Returns true if all bits are set.
bool all() {
// TODO: Optimize this.
return count() == size();
}
/// none - Returns true if none of the bits are set.
bool none() {
return !any();
}
/// find_first - Returns the index of the first set bit, -1 if none
/// of the bits are set.
int find_first() {
for (uint i = 0; i < NumBitWords(size()); ++i)
if (fBits[i] != 0) {
if (sizeof(BitWord) == 4)
return i * BITWORD_SIZE + bitCountTrailingZeros_32((uint32_t)fBits[i]);
else if (sizeof(BitWord) == 8)
return i * BITWORD_SIZE + bitCountTrailingZeros_64(fBits[i]);
else
bitSizeError();
}
return -1;
}
/// find_next - Returns the index of the next set bit following the
/// "Prev" bit. Returns -1 if the next set bit is not found.
int find_next(uint Prev) {
++Prev;
if (Prev >= Size)
return -1;
uint WordPos = Prev / BITWORD_SIZE;
uint BitPos = Prev % BITWORD_SIZE;
BitWord Copy = fBits[WordPos];
// Mask off previous bits.
Copy &= ~0UL << BitPos;
if (Copy != 0) {
if (sizeof(BitWord) == 4)
return WordPos * BITWORD_SIZE + bitCountTrailingZeros_32((uint32_t)Copy);
else if (sizeof(BitWord) == 8)
return WordPos * BITWORD_SIZE + bitCountTrailingZeros_64(Copy);
else
bitSizeError();
}
// Check subsequent words.
for (uint i = WordPos+1; i < NumBitWords(size()); ++i)
if (fBits[i] != 0) {
if (sizeof(BitWord) == 4)
return i * BITWORD_SIZE + bitCountTrailingZeros_32((uint32_t)fBits[i]);
else if (sizeof(BitWord) == 8)
return i * BITWORD_SIZE + bitCountTrailingZeros_64(fBits[i]);
else
bitSizeError();
}
return -1;
}
/// clear - Clear all bits; does NOT release memory
void clear() {
Size = 0;
}
/// resize - Grow or shrink the GBitVec.
void resize(uint N, bool value = false) {
if (N > Capacity * BITWORD_SIZE) {
uint OldCapacity = Capacity;
grow(N);
init_words(&fBits[OldCapacity], (Capacity-OldCapacity), value);
}
// Set any old unused bits that are now included in the GBitVec. This
// may set bits that are not included in the new vector, but we will clear
// them back out below.
if (N > Size)
set_unused_bits(value);
// Update the size, and clear out any bits that are now unused
uint OldSize = Size;
Size = N;
if (value || N < OldSize)
clear_unused_bits();
}
void reserve(uint N) {
if (N > Capacity * BITWORD_SIZE)
grow(N);
}
// Set, reset, flip
GBitVec &set() {
init_words(fBits, Capacity, true);
clear_unused_bits();
return *this;
}
GBitVec &set(uint Idx) {
#ifndef NDEBUG
indexCheck(Idx, Size);
#endif
fBits[Idx / BITWORD_SIZE] |= 1L << (Idx % BITWORD_SIZE);
return *this;
}
GBitVec &reset() {
init_words(fBits, Capacity, false);
return *this;
}
GBitVec &reset(uint Idx) {
#ifndef NDEBUG
indexCheck(Idx, Size);
#endif
fBits[Idx / BITWORD_SIZE] &= ~(1L << (Idx % BITWORD_SIZE));
return *this;
}
GBitVec &flip() {
for (uint i = 0; i < NumBitWords(size()); ++i)
fBits[i] = ~fBits[i];
clear_unused_bits();
return *this;
}
GBitVec &flip(uint Idx) {
#ifndef NDEBUG
indexCheck(Idx, Size);
#endif
fBits[Idx / BITWORD_SIZE] ^= 1L << (Idx % BITWORD_SIZE);
return *this;
}
// No argument flip.
GBitVec operator~() const {
return GBitVec(*this).flip();
}
inline static void indexCheck(uint vIdx, uint vSize) {
if (vIdx >= vSize)
GError("Error at GBitVec: index %d out of bounds (size %d)\n",
(int)vIdx, vSize);
}
// Indexing.
GBitRef operator[](uint Idx) {
//assert (Idx < Size && "Out-of-bounds Bit access.");
#ifndef NDEBUG
indexCheck(Idx, Size);
#endif
return GBitRef(*this, Idx);
}
bool operator[](uint Idx) const {
#ifndef NDEBUG
indexCheck(Idx, Size);
#endif
BitWord Mask = 1L << (Idx % BITWORD_SIZE);
return (fBits[Idx / BITWORD_SIZE] & Mask) != 0;
}
bool test(uint Idx) const {
return (*this)[Idx];
}
// Comparison operators.
bool operator==(const GBitVec &RHS) const {
uint ThisWords = NumBitWords(size());
uint RHSWords = NumBitWords(RHS.size());
uint i;
uint imax=GMIN(ThisWords, RHSWords);
for (i = 0; i != imax; ++i)
if (fBits[i] != RHS.fBits[i])
return false;
// Verify that any extra words are all zeros.
if (i != ThisWords) {
for (; i != ThisWords; ++i)
if (fBits[i])
return false;
} else if (i != RHSWords) {
for (; i != RHSWords; ++i)
if (RHS.fBits[i])
return false;
}
return true;
}
bool operator!=(const GBitVec &RHS) const {
return !(*this == RHS);
}
// Intersection, union, disjoint union.
GBitVec &operator&=(const GBitVec &RHS) {
uint ThisWords = NumBitWords(size());
uint RHSWords = NumBitWords(RHS.size());
uint i;
uint imax=GMIN(ThisWords, RHSWords);
for (i = 0; i != imax; ++i)
fBits[i] &= RHS.fBits[i];
// Any bits that are just in this GBitVec become zero, because they aren't
// in the RHS bit vector. Any words only in RHS are ignored because they
// are already zero in the LHS.
for (; i != ThisWords; ++i)
fBits[i] = 0;
return *this;
}
GBitVec &operator|=(const GBitVec &RHS) {
if (size() < RHS.size())
resize(RHS.size());
for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
fBits[i] |= RHS.fBits[i];
return *this;
}
GBitVec &operator^=(const GBitVec &RHS) {
if (size() < RHS.size())
resize(RHS.size());
for (size_t i = 0, e = NumBitWords(RHS.size()); i != e; ++i)
fBits[i] ^= RHS.fBits[i];
return *this;
}
// Assignment operator.
const GBitVec &operator=(const GBitVec &RHS) {
if (this == &RHS) return *this;
Size = RHS.size();
uint RHSWords = NumBitWords(Size);
if (Size <= Capacity * BITWORD_SIZE) {
if (Size)
memcpy(fBits, RHS.fBits, RHSWords * sizeof(BitWord));
clear_unused_bits();
return *this;
}
// Grow the GBitVec to have enough elements.
Capacity = RHSWords;
//BitWord *NewBits = (BitWord *)std::malloc(Capacity * sizeof(BitWord));
BitWord *NewBits = NULL;
GMALLOC(NewBits, Capacity * sizeof(BitWord));
memcpy(NewBits, RHS.fBits, Capacity * sizeof(BitWord));
// Destroy the old bits.
GFREE(fBits);
fBits = NewBits;
return *this;
}
void swap(GBitVec &RHS) {
Gswap(fBits, RHS.fBits);
Gswap(Size, RHS.Size);
Gswap(Capacity, RHS.Capacity);
}
private:
uint NumBitWords(uint S) const {
return (S + BITWORD_SIZE-1) / BITWORD_SIZE;
}
// Set the unused bits in the high words.
void set_unused_bits(bool value = true) {
// Set high words first.
uint UsedWords = NumBitWords(Size);
if (Capacity > UsedWords)
init_words(&fBits[UsedWords], (Capacity-UsedWords), value);
// Then set any stray high bits of the last used word.
uint ExtraBits = Size % BITWORD_SIZE;
if (ExtraBits) {
BitWord ExtraBitMask = ~0UL << ExtraBits;
if (value)
fBits[UsedWords-1] |= ExtraBitMask;
else
fBits[UsedWords-1] &= ~ExtraBitMask;
}
}
// Clear the unused bits in the high words.
void clear_unused_bits() {
set_unused_bits(false);
}
void grow(uint NewSize) {
Capacity = GMAX(NumBitWords(NewSize), Capacity * 2);
//fBits = (BitWord *)std::realloc(fBits, Capacity * sizeof(BitWord));
GREALLOC(fBits, Capacity * sizeof(BitWord));
clear_unused_bits();
}
void init_words(BitWord *B, uint NumWords, bool value) {
memset(B, 0 - (int)value, NumWords*sizeof(BitWord));
}
};
inline GBitVec operator&(const GBitVec &LHS, const GBitVec &RHS) {
GBitVec Result(LHS);
Result &= RHS;
return Result;
}
inline GBitVec operator|(const GBitVec &LHS, const GBitVec &RHS) {
GBitVec Result(LHS);
Result |= RHS;
return Result;
}
inline GBitVec operator^(const GBitVec &LHS, const GBitVec &RHS) {
GBitVec Result(LHS);
Result ^= RHS;
return Result;
}
inline void Gswap(GBitVec &LHS, GBitVec &RHS) {
LHS.swap(RHS);
}
#endif
|