1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
|
/*
* tablemaker.h
*
* Created on: Oct 26, 2014
* Author: gpertea
*/
#ifndef TABLEMAKER_H_
#define TABLEMAKER_H_
#include <vector>
#include <map>
#include <set>
//#include <string>
#include <algorithm>
using namespace std;
#define RC_MIN_EOVL 5
extern bool ballgown;
void Ballgown_setupFiles(FILE* &f_tdata, FILE* &f_edata, FILE* &f_idata,
FILE* &f_e2t, FILE* &f_i2t);
struct RC_Feature { //exon or intron of a reference transcript
uint id; //feature id (>0), +1 to the index either in global guides_RC_exons/introns if ballgown,
// or in bundle_RC_exons/introns if not ballgown
GVec<uint> t_ids; //transcripts owning this feature
//if -B, this is the index in the global refguides_RC_Data array + 1
// otherwise it is the index in the BundleData::keepguides array + 1
int l; int r; //genomic coordinates for the feature
char strand;
mutable uint rcount; //# read alignments overlapping this feature (>5bp overlaps for exons;
// exact coord. match for introns)
mutable uint ucount; //# uniquely mapped reads overlapping/matching this ref feature
mutable double mrcount; //multi-map weighted read counts overlapping/matching this feature
mutable double movlcount; //exons only: multi-map weighted sum of overlap lengths
double avg;
double stdev;
double mavg;
double mstdev;
struct PCompare {
bool operator()(const RC_Feature* p1, const RC_Feature* p2) {
return (*p1 < *p2);
}
};
RC_Feature(int l0=0, int r0=0, char s='.', uint fid=0, uint tid=0): id(fid), t_ids(1), l(l0), r(r0),
strand(s), rcount(0),ucount(0),mrcount(0), movlcount(0), avg(0), stdev(0), mavg(0), mstdev(0) {
if (l>r) { int t=l; l=r; r=t; }
if (tid>0) t_ids.Add(tid);
}
RC_Feature(const RC_Feature& seg): id(seg.id), t_ids(seg.t_ids), l(seg.l), r(seg.r),
strand(seg.strand), rcount(0),ucount(0),mrcount(0), movlcount(0), avg(0), stdev(0), mavg(0), mstdev(0) {
}
RC_Feature(const RC_Feature& seg, uint tid): id(seg.id), t_ids(1), l(seg.l), r(seg.r),
strand(seg.strand), rcount(0),ucount(0),mrcount(0), movlcount(0), avg(0), stdev(0), mavg(0), mstdev(0) {
if (l>r) { int t=l; l=r; r=t; }
if (tid>0) t_ids.Add(tid);
}
bool operator<(const RC_Feature& o) const {
//if (id == o.id) return false;
if (l != o.l) return (l < o.l);
if (r != o.r) return (r < o.r);
if (strand == '.' || o.strand == '.') return false;
if (strand != o.strand) return (strand < o.strand);
return false;
}
bool operator==(const RC_Feature& o) const {
//if (id == o.id) return true;
return (l==o.l && r==o.r &&
(strand == o.strand || strand == '.' || o.strand == '.'));
}
bool strand_compatible(const RC_Feature& o) const {
return (strand == '.' || o.strand == '.' || strand == o.strand);
}
//WARNING: the overlap checks IGNORE strand!
bool overlap(int hl, int hr) const {
if (hl>hr) { int t=hl; hl=hr; hr=t; }
return (l<=hr && r<=hl);
}
bool overlap(int hl, int hr, int minovl) const {
if (hl>hr) { int t=hl; hl=hr; hr=t; }
hl+=minovl;hr-=minovl;
return (l<=hr && r<=hl);
}
uint ovlen(int hl, int hr) const {
if (hl>hr) { int t=hl; hl=hr; hr=t; }
if (l<hl) {
if (hl>r) return 0;
return (hr>r) ? r-hl+1 : hr-hl+1;
}
else { //hl<=l
if (l>hr) return 0;
return (hr<r)? hr-l+1 : r-l+1;
}
}
};
/*
//for locus tracking and coverage, keep merged exons/introns in the locus
struct GSegInfo {
int t_id; //index of RC_TData in the guides_RC_data table + 1
int exonum; //exon number
GSegInfo(int tid=-1, int en=-1):t_id(tid), exonum(en) { }
};
class GMSeg:public GSeg {
public:
GVec<GSegInfo> msegs; //keep track of exons contributing to this merged exon
GMSeg(int l=0, int r=0, int tid=-1, int eno=-1):GSeg(l,r), msegs(tid, eno) {
}
};
//reference locus - formed by exon-overlapping transcripts
class GRefLocus:public GSeg {
GArray<GMSeg> mexons; //merged exons in this locus (from any transcript)
GPVec<GffObj> rnas; //transcripts in this locus
};
*/
struct RC_ExonOvl {
RC_Feature* feature; //pointer to an item of RC_BundleData::g_exons
int mate_ovl; // = 1 if the mate of this read overlaps the same exon
int ovlen;
bool operator<(const RC_ExonOvl& o) const {
if (mate_ovl!=o.mate_ovl)
return (mate_ovl>o.mate_ovl);
if (ovlen!=o.ovlen)
return (ovlen>o.ovlen);
if (feature->r-feature->l != o.feature->r-o.feature->l)
return (feature->r-feature->l > o.feature->r-o.feature->l);
if (feature->strand != o.feature->strand)
return (feature->strand<o.feature->strand);
return (feature->l<o.feature->l);
} //operator <
bool operator==(const RC_ExonOvl& o) const {
return (mate_ovl==o.mate_ovl && ovlen==o.ovlen && feature==o.feature);
}
RC_ExonOvl(RC_Feature* f=NULL, int olen=0, int movl=0):feature(f),
mate_ovl(movl), ovlen(olen) {
}
};
//typedef set<const RC_Feature*, RC_Feature::PCompare> RC_FeatPtrSet;
typedef set<RC_Feature>::iterator RC_FeatIt;
typedef map<uint, set<uint> > RC_Map2Set;
typedef map<uint, set<uint> >::iterator RC_Map2SetIt;
/*struct RC_Seg { //just a genomic interval holder
int l;
int r;
RC_Seg(int l0=0, int r0=0):l(l0), r(r0) { }
};
*/
struct RC_TData { //storing RC data for a transcript
//only used with -B (full Ballgown data)
GffObj* ref_t;
uint t_id;
int l;
int r;
char in_bundle; // 1 if used by read bundles (present in keepguides),
// 2 if all introns are covered by at least one read, 3 if it is stored to be printed
//GRefLocus* locus; //pointer to a locus info
int eff_len;
double cov;
double fpkm;
//char strand;
GPVec<RC_Feature> t_exons;
GPVec<RC_Feature> t_introns;
void rc_addFeatures(uint& c_e_id, GList<RC_Feature>& fexons, GPVec<RC_Feature>& edata,
uint& c_i_id, GList<RC_Feature>& fintrons, GPVec<RC_Feature>& idata);
void addFeature(int fl, int fr, GPVec<RC_Feature>& fvec, uint& f_id,
GList<RC_Feature>& fset, GPVec<RC_Feature>& fdata,
int& cache_idx);
RC_TData(GffObj& s, uint id=0):ref_t(&s), t_id(id), l(s.start), r(s.end),
in_bundle(0), eff_len(s.covlen), cov(0), fpkm(0), //strand(s.strand),
t_exons(false), t_introns(false) { //, e_idx_cache(-1), i_idx_cache(-1) {
}
bool operator<(const RC_TData& o) const {
if (l != o.l) return (l < o.l);
if (r != o.r) return (r < o.r);
if (char c=(ref_t->strand - o.ref_t->strand)) return (c<0);
return (strcmp(ref_t->getID(), o.ref_t->getID())<0);
}
bool operator==(const RC_TData& o) const {
if (t_id!=0 && o.t_id!=0) return (t_id==o.t_id);
return (l==o.l && r==o.r && ref_t->strand == o.ref_t->strand &&
strcmp(ref_t->getID(),o.ref_t->getID())==0);
}
};
FILE* rc_fwopen(const char* fname);
FILE* rc_frenopen(const char* fname);
void rc_frendel(const char* fname);
struct BundleData;
void rc_writeRC(GPVec<RC_TData>& RC_data,
GPVec<RC_Feature>& RC_exons,
GPVec<RC_Feature>& RC_introns,
FILE* &f_tdata, FILE* &f_edata, FILE* &f_idata,
FILE* &f_e2t, FILE* &f_i2t);
int rc_cov_inc(int i);
class RC_MultiCovInc {
float fcov;
public:
RC_MultiCovInc(int numhits):fcov(1.0) {
if (numhits>1) fcov=1/(float)numhits;
}
float operator()(const float& v) {
return (v+fcov);
}
};
struct RC_BundleData {
int init_lmin;
int lmin;
int rmax;
GPVec<RC_TData> g_tdata; //raw counting data for all transcripts in this bundle
// RC_TData::t_id-1 = the element index in this array
GList<RC_Feature> g_exons; //set of guide exons in this bundle, sorted by start coordinate
GList<RC_Feature> g_introns; //set of guide introns in this bundle, sorted by start coordinate
//RC_FeatIt xcache; //cache the first exon overlapping xcache_pos to speed up exon-overlap queries (findOvlExons())
int xcache; //exons index of the first exon overlapping xcache_pos
int xcache_pos; // left coordinate of last cached exon overlap query (findOvlExons())
// the following coverage arrays will only used with Ballgown data (-B)
vector<float> f_mcov; //coverage data, multi-map aware, per strand
vector<int> f_cov;
vector<float> r_mcov; //coverage data on the reverse strand
vector<int> r_cov;
//-- when no global Ballgown data is to be generated, these are
// local (bundle) stable order tables of guide features
GPVec<RC_TData>* bundle_RC_tdata; //pointer to the global RC tdata table
// RC_Feature::id-1 = the index in these arrays:
GPVec<RC_Feature>* bundle_RC_exons; //pointers to global (if ballgown)
GPVec<RC_Feature>* bundle_RC_introns;// OR local exon/intron RC data
//local exon/intron ids within the bundle
uint c_exon_id;
uint c_intron_id;
//--
RC_BundleData(int t_l=0, int t_r=0, GPVec<RC_TData>* rc_tdata=NULL,
GPVec<RC_Feature>* rc_exons=NULL,GPVec<RC_Feature>* rc_introns=NULL):
init_lmin(0), lmin(t_l), rmax(t_r), g_tdata(false),
// features:(sorted, free, unique)
g_exons(true, false, true), g_introns(true, false, true),
xcache(0), xcache_pos(0),
bundle_RC_tdata(rc_tdata), bundle_RC_exons(rc_exons), bundle_RC_introns(rc_introns),
c_exon_id(0), c_intron_id(0)
{
if (ballgown) {
if (rmax>lmin) updateCovSpan();
}else {
//g_tdata.setFreeItem(true);
//guides_RC_tdata = &g_tdata;
//-- override the passed rc_exons/rc_introns if not ballgown
//-- because these are now locally maintained so they'll be deallocated with the bundle
bundle_RC_exons = new GPVec<RC_Feature>(true);
bundle_RC_introns= new GPVec<RC_Feature>(true);
}
}
~RC_BundleData() {
f_cov.clear();
f_mcov.clear();
r_cov.clear();
r_mcov.clear();
if (!ballgown) {
delete bundle_RC_exons;
delete bundle_RC_introns;
}
}
uint addTranscript(GffObj& t) { //should return the guide index in *guides_RC_tdata
bool boundary_changed=false;
if (lmin==0 || lmin>(int)t.start) { lmin=t.start; boundary_changed=true; }
if (rmax==0 || rmax<(int)t.end) { rmax=t.end; boundary_changed=true; }
GASSERT(t.uptr); //we should always have a RC_TData for each guide
RC_TData* tdata=(RC_TData*)(t.uptr);
//tdata->in_bundle=1; //don't tag here, it might be in a read-no-overlap bundle
/*RC_TData* tdata=NULL;
if (ballgown) {
tdata=(RC_TData*)(t.uptr);
}
else {
//add RC transcript data locally for the bundle
tdata=new RC_TData(t, g_tdata.Count()+1);
t.uptr=tdata;
//guides_RC_Data.Add(tdata);
tdata->rc_addFeatures(c_exon_id, g_exons, *guides_RC_exons,
c_intron_id, g_introns, *guides_RC_introns);
}*/
g_tdata.Add(tdata);
if (ballgown) {
if (boundary_changed) updateCovSpan();
//rc_addFeatures() called before, but we still need to add exons
// and introns to the local sets: g_exons, g_introns
for (int i=0;i<tdata->t_exons.Count();i++) {
g_exons.Add(tdata->t_exons[i]);
}
for (int i=0;i<tdata->t_introns.Count();i++) {
g_introns.Add(tdata->t_introns[i]);
}
}
else {
tdata->rc_addFeatures(c_exon_id, g_exons, *bundle_RC_exons,
c_intron_id, g_introns, *bundle_RC_introns);
}
return tdata->t_id;
}
void updateCovSpan() {
//ideally this should be called after all reference transcripts were added
// should NEVER be called repeatedly, for the same bundle, with a different lmin !
GASSERT(rmax>lmin);
int blen=rmax-lmin+1;
if (init_lmin==0) init_lmin=lmin;
else {
if (lmin!=init_lmin) //this should never happen
GError("Error setting up Ballgown coverage data (lmin should never change!) !\n");
}
f_cov.resize(blen, 0);
r_cov.resize(blen, 0);
f_mcov.resize(blen, 0.0);
r_mcov.resize(blen, 0.0);
}
void updateCov(char strand, int numhits, int gpos, int glen) {
if (gpos>rmax || gpos+glen<lmin) return; //no overlap with bundle
if (gpos<lmin) { //this read maps before the bundle start (left overhang)
int gadj=lmin-gpos;
gpos+=gadj;
glen-=gadj;
}
if (gpos+glen>rmax) {
glen=rmax-gpos;
}
if (glen<=0) return; //no overlap (should not happen here)
int goffs=gpos-lmin;
if (goffs<0) return; //should not happen
if (strand=='.' || strand=='+') {
transform(f_cov.begin()+goffs, f_cov.begin()+goffs+glen,
f_cov.begin()+goffs, rc_cov_inc);
transform(f_mcov.begin()+goffs, f_mcov.begin()+goffs+glen,
f_mcov.begin()+goffs, RC_MultiCovInc(numhits));
}
if (strand=='.' || strand=='-') {
transform(r_cov.begin()+goffs, r_cov.begin()+goffs+glen,
r_cov.begin()+goffs, rc_cov_inc);
transform(r_mcov.begin()+goffs, r_mcov.begin()+goffs+glen,
r_mcov.begin()+goffs, RC_MultiCovInc(numhits));
}
}
bool findOvlExons(GArray<RC_ExonOvl>& exovls, int hl, int hr, char strand='.',
int mate_pos=0, bool update_cache=true) {
//exovls should be clear, unless the caller knows what s/he's doing
bool hasOverlaps=false;
if (g_exons.Count()==0) return false;
RC_Feature q(hl, hr);
int xstart=0;
bool no_cache=(xcache_pos==0 || xcache_pos>hl);
if (no_cache) {
if (update_cache) {
//xcache=exons.end();
xcache=g_exons.Count()-1;
xcache_pos=0;
}
}
else xstart=xcache; //must have a valid value
bool upd_cache(update_cache);
int last_checked_exon=g_exons.Count()-1;
for (int p=xstart;p < g_exons.Count();++p) {
last_checked_exon=p;
int l=g_exons[p]->l;
int r=g_exons[p]->r;
if (l > hr) break;
if (hl > r) continue;
//exon overlap here
int ovlen=0;
if (hl<l) {
ovlen = ( hr<r ? hr-l+1 : r-l+1 );
}
else { // l<=hl
ovlen= ( hr<r ? hr-hl+1 : r-hl+1 );
}
if (upd_cache) {
//cache first overlap
xcache=p;
upd_cache=false;
}
if (strand!='.' && strand!=g_exons[p]->strand) continue; //non-matching strand
int mate_ovl=0;
if (mate_pos && mate_pos+10>l && mate_pos+5<r)
mate_ovl=1; //mate read likely overlaps this exon
if (mate_ovl || ovlen>=5) {
//TODO: check this, arbitrary ovl minimum of 5bp
hasOverlaps=true;
RC_ExonOvl fovl(g_exons[p], ovlen, mate_ovl);
exovls.Add(fovl);
}
}
if (update_cache) {
if (upd_cache) xcache=last_checked_exon; //there was no overlap found
xcache_pos=hl;
}
return hasOverlaps;
}
/*
RC_FeatPtrSet findExons(int hl, int hr, char strand='.', bool update_cache=true) {
//returns exons overlapping given interval hl-hr
RC_FeatPtrSet ovlex; //return set
if (exons.Count()==0) return ovlex;
RC_Feature q(hl, hr);
//RC_FeatIt xstart=exons.begin();
int xstart=0;
bool no_cache=(xcache_pos==0 || xcache_pos>hl);
if (no_cache) {
if (update_cache) {
//xcache=exons.end();
xcache=exons.Count()-1;
xcache_pos=0;
}
}
else xstart=xcache; //must have a valid value
bool upd_cache(update_cache);
//RC_FeatIt last_checked_exon(exons.end());
int last_checked_exon=exons.Count()-1;
//for (RC_FeatIt p=xstart;p != exons.end();++p) {
for (int p=xstart;p < exons.Count();++p) {
last_checked_exon=p;
if (exons[p]->l > hr) break;
if (hl > exons[p]->r) continue;
//exon overlap
if (upd_cache) {
//cache first overlap
xcache=p;
upd_cache=false;
}
if (strand!='.' && strand!=exons[p]->strand) continue;
ovlex.insert(exons[p]);
}
if (update_cache) {
if (upd_cache) xcache=last_checked_exon; //there was no overlap found
xcache_pos=hl;
}
return ovlex;
}
*/
RC_Feature* findIntron(int hl, int hr, char strand) {
int fidx=0;
RC_Feature* r=NULL;
RC_Feature t(hl, hr, strand);
if (g_introns.Found(&t, fidx))
r=g_introns[fidx];
return r;
}
}; //struct RC_BundleData
void rc_update_exons(RC_BundleData& rc);
#endif /* TABLEMAKER_H_ */
|