1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
|
#include "gff.h"
#include "GSam.h"
#include "GStr.h"
#include "GHashMap.hh"
extern bool mergeMode;
#include "tablemaker.h"
extern bool genNascent; // generate nascent synthetic transcripts for each bundle
void setNascent(GffObj* t, byte v=1); // set/clear the synthetic nascent RNA flag
//0 = not nascent, 1 = synthetic nascent, 2 = nascent replacing a guide
byte isNascent(GffObj* t); // check if a transcript is a synthetic nascent RNA
// set/getBundleFlag - should set/get (RC_TData*)(keepguides[i]->uptr)->in_bundle
// 1 = default, 2 = every intron covered by a read, 3 = stored to be printed
//GffObj* nascentFrom(GffObj* ntx); // get the guide transcript that a nascent transcript was generated from
inline GffObj* nascentFrom(GffObj* ntx) {
if (ntx && ntx->uptr) {
return ((RC_TData*)(ntx->uptr))->gen_from;
}
return NULL;
}
enum GuideBundleStatus {
GBST_UNSET = 0,
GBST_IN_BUNDLE, // 1: added to bundle
GBST_ALL_INTR_COV, // 2: all introns covered by at least one read
GBST_STORED, // 3: stored to be printed
};
GuideBundleStatus getGuideStatus(GffObj* t);
void setGuideStatus(GffObj* t, GuideBundleStatus status);
//collect all refguide transcripts for a single genomic sequence
struct GRefData {
GList<GffObj> rnas; //all guides on this genomic seq; they are added in order as sorted in GffReader
GList<GffObj> synrnas; //just keep track/store of synthetic nascent transcripts generated on this chr
int gseq_id; //chromosome index in GffObj::names->gseqs
const char* gseq_name; //chromosome name
// rnas list: unsorted, dealloc on free, duplicates allowed
GRefData(int gid=-1):rnas(false, true, false), synrnas(false, true, false),
gseq_id(gid),gseq_name(NULL) {
gseq_id=gid;
if (gseq_id>=0)
gseq_name=GffObj::names->gseqs.getName(gseq_id);
}
void add(GffReader* gffr, GffObj* t) {
if (gseq_id>=0) {
if (gseq_id!=t->gseq_id)
GError("Error: invalid call to GRefData::add() - different genomic sequence!\n");
}
else { //adding first transcript, initialize storage
gseq_id=t->gseq_id;
gseq_name=t->getGSeqName();
if (gffr->gseqtable[gseq_id]==NULL)
GError("Error: invalid genomic sequence data (%s)!\n",gseq_name);
rnas.setCapacity(gffr->gseqtable[gseq_id]->fcount);
if (genNascent) synrnas.setCapacity(gffr->gseqtable[gseq_id]->fcount);
}
rnas.Add(t);
t->isUsed(true); //mark as used, to prevent deletion in GffReader destructor by gflst::freeUnused()
}
bool operator==(GRefData& d){
return gseq_id==d.gseq_id;
}
bool operator<(GRefData& d){
return (gseq_id<d.gseq_id);
}
};
struct Ref_RC_Data {
GRefData* refdata=nullptr;
GPVec<RC_TData>* rc_tdata=nullptr;
GPVec<RC_Feature>* rc_edata =nullptr;
GPVec<RC_Feature>* rc_idata = nullptr;
};
enum GPFType {
GPFT_NONE=0,
GPFT_TSS,
GPFT_CPAS,
GPFT_JSTART,
GPFT_JEND
}; //on 4 bits: maximum 15 types
struct GPtFeature { //point feature (single coordinate)
GPFType ftype : 4;
int ref_id: 26; //index in a reftable[] with reference names, max 67,108,863
int strand: 2; //-1=-, 0=unstranded, +1=+
uint coord; //genomic coordinate for this feature
GPtFeature(GPFType ft=GPFT_NONE, int rid=-1, int _strand=0, uint loc=0):ftype(ft),
ref_id(rid), strand(_strand), coord(loc) {}
bool operator<(const GPtFeature &o) { return coord<o.coord; }
bool operator==(const GPtFeature &o) { return coord==o.coord; }
//-- should really match ftype and strand too,
// but we don't care, for bundle inclusion
};
struct GRefPtData {
int ref_id; //same with GPtFeature::ref_id, also in GffObj::names->gseqs
GList<GPtFeature> pfs; //all point feature on this genomic seq, sorted
GRefPtData(int gid=-1):ref_id(gid), pfs(true,false,false) { }
void add(GPtFeature* t) { //adds a fully formed GPtFeature record
if (ref_id!=t->ref_id || ref_id<0 || t->ref_id<0)
GError("Error: invalid call to GRefPtData::add() - cannot add feature with ref id %d to ref data id %d!\n",
t->ref_id, ref_id);
pfs.Add(t);
}
//sorting by unique ref_id
bool operator==(GRefPtData& d){
return ref_id==d.ref_id;
}
bool operator<(GRefPtData& d){
return (ref_id<d.ref_id);
}
};
//holding transcript info for --merge mode
struct TAlnInfo {
GStr name; //transcript name
int fileidx; //index of transcript file in the TInputFiles.files array
double cov;
double fpkm;
double tpm;
int g;
TAlnInfo(const char* rname=NULL, int fidx=0):name(rname), fileidx(fidx),
cov(-1),fpkm(-1),tpm(-1),g(-1) { }
};
// # 0: strand; 1: start; 2: end; 3: nreads; 4: nreads_good;
struct CJunction:public GSeg {
char strand; //-1,0,1
char guide_match; //exact match of a ref intron?
char consleft; // -1,0,1 -1 is not set up, 0 is non consensus, 1 is consensus
char consright; // -1,0,1 -1 is not set up, 0 is non consensus, 1 is consensus
double nreads;
double nreads_good;
double leftsupport;
double rightsupport;
double nm; // number of reads with a high nm (high mismatch)
double mm; // number of reads that support a junction with both anchors bigger than longintronanchor
CJunction(int s=0,int e=0, char _strand=0):GSeg(s,e),
strand(_strand), guide_match(0), consleft(-1), consright(-1),nreads(0),nreads_good(0),
leftsupport(0),rightsupport(0),nm(0),mm(0) {}
bool operator<(CJunction& b) {
if (start<b.start) return true;
if (start>b.start) return false;
if (end<b.end) return true;
if (end>b.end) return false;
if (strand>b.strand) return true;
return false;
}
bool operator==(CJunction& b) {
return (start==b.start && end==b.end && strand==b.strand);
}
};
struct CJunction;
struct CReadAln:public GSeg {
//DEBUG ONLY:
// GStr name;
char strand; // 1, 0 (unkown), -1 (reverse)
short int nh;
uint len;
float read_count; // keeps count for all reads (including paired and unpaired)
bool unitig:1; // set if read come from an unitig
bool longread:1; // set if read comes from long read data
GVec<float> pair_count; // keeps count for all paired reads
GVec<int> pair_idx; // keeps indeces for all pairs in assembly mode, or all reads that were collapsed in merge mode
GVec<GSeg> segs; //"exons"
GPVec<CJunction> juncs;
union {
TAlnInfo* tinfo;
bool in_guide;
};
uint16_t aligned_polyT;
uint16_t aligned_polyA;
uint16_t unaligned_polyT;
uint16_t unaligned_polyA;
int sort_tiebreaker = 0; // original position within the bundle before resort
CReadAln(char _strand=0, short int _nh=0,
int rstart=0, int rend=0, TAlnInfo* tif=NULL): GSeg(rstart, rend), //name(rname),
strand(_strand),nh(_nh), len(0), read_count(0), unitig(false),longread(false),pair_count(),pair_idx(),
segs(), juncs(false), tinfo(tif), aligned_polyT(0), aligned_polyA(0), unaligned_polyT(0), unaligned_polyA(0) { }
CReadAln(CReadAln &rd):GSeg(rd.start,rd.end) { // copy contructor
strand=rd.strand;
nh=rd.nh;
len=rd.len;
read_count=rd.read_count;
unitig=rd.unitig;
longread=rd.longread;
pair_count=rd.pair_count;
pair_idx=rd.pair_idx;
juncs=rd.juncs;
tinfo=rd.tinfo;
}
int overlapSegLen(CReadAln* r) {
if (r->start>end || start>r->end) return 0;
int i=0;
int j=0;
int len=0;
while(i<segs.Count()) {
if(segs[i].end<r->segs[j].start) i++;
else if(r->segs[j].end<segs[i].start) j++;
else { // there is overlap
len+=segs[i].overlapLen(r->segs[j].start,r->segs[j].end);
if(segs[i].end<r->segs[j].end) i++;
else j++;
}
if(j==r->segs.Count()) break;
}
return len;
}
~CReadAln() { if(mergeMode) {delete tinfo;} }
};
struct GReadAlnData {
GSamRecord* brec;
char strand; //-1, 0, 1
int nh;
int hi;
GPVec<CJunction> juncs;
union {
TAlnInfo* tinfo;
bool in_guide;
};
//GPVec< GVec<RC_ExonOvl> > g_exonovls; //>5bp overlaps with guide exons, for each read "exon"
GReadAlnData(GSamRecord* bamrec=NULL, char nstrand=0, int num_hits=0,
int hit_idx=0, TAlnInfo* tif=NULL):brec(bamrec), strand(nstrand),
nh(num_hits), hi(hit_idx), juncs(true), tinfo(tif) { } //, g_exonovls(true)
~GReadAlnData() { if(mergeMode) delete tinfo; }
};
// bundle data structure, holds all data needed for
// infering transcripts from a bundle
enum BundleStatus {
BUNDLE_STATUS_CLEAR=0, //available for loading/prepping
BUNDLE_STATUS_LOADING, //being prepared by the main thread (there can be only one)
BUNDLE_STATUS_READY //ready to be processed, or being processed
};
struct CBundle {
int len;
float cov;
float multi;
int startnode; // id of start node in bundle of same strand
int lastnodeid; // id of last node added to bundle
CBundle(int _len=0, float _cov=0, float _multi=0, int _start=-1, int _last=-1):
len(_len),cov(_cov),multi(_multi), startnode(_start),lastnodeid(_last) {}
};
struct CPrediction:public GSeg {
int geneno;
GffObj* t_eq; //equivalent reference transcript (guide)
//char *id;
double cov;
double longcov;
char strand;
//float frag; // counted number of fragments associated with prediction
int tlen;
bool flag;
CPrediction* linkpred; // for nascent RNAs prediction of transcript that it is linked to and viceversa
GVec<GSeg> exons;
GVec<float> exoncov;
GStr mergename;
CPrediction(int _geneno=0, GffObj* guide=NULL, int gstart=0, int gend=0, double _cov=0, char _strand='.',
int _len=0,bool f=true, CPrediction* lp=NULL):GSeg(gstart,gend), geneno(_geneno),t_eq(guide),cov(_cov),longcov(0),strand(_strand),
//CPrediction(int _geneno=0, char* _id=NULL,int gstart=0, int gend=0, float _cov=0, char _strand='.', float _frag=0,
// int _len=0,bool f=true):GSeg(gstart,gend), geneno(_geneno),id(_id),cov(_cov),strand(_strand),frag(_frag),
tlen(_len),flag(f),linkpred(lp),exons(),exoncov(),mergename() {}
void init(int _geneno=0, GffObj* guide=NULL, int gstart=0, int gend=0, double _cov=0, char _strand='.',
int _len=0,bool f=true, CPrediction* lp=NULL) {
geneno=_geneno;
t_eq=guide;
start=gstart;
end=gend;
cov=_cov;
strand=_strand;
tlen=_len;
flag=f;
linkpred=lp;
exons.Clear();
exoncov.Clear();
mergename.clear();
}
CPrediction(CPrediction& c):GSeg(c.start, c.end), geneno(c.geneno),
// id(Gstrdup(c.id)), cov(c.cov), strand(c.strand), frag(c.frag), tlen(c.tlen), flag(c.flag),
t_eq(c.t_eq), cov(c.cov), longcov(c.longcov),strand(c.strand), tlen(c.tlen), flag(c.flag),linkpred(c.linkpred),
exons(c.exons), exoncov(c.exoncov), mergename(c.mergename) {}
~CPrediction() { //GFREE(id);
}
};
// bundle data structure, holds all input data parsed from BAM file
struct BundleData {
BundleStatus status;
//int64_t bamStart; //start of bundle in BAM file
int idx; //index in the main bundles array
int start;
int end;
unsigned long numreads; // number of reads in this bundle
double num_fragments; //aligned read/pairs
double frag_len;
double sum_cov; // sum of all transcripts coverages --> needed to compute TPMs
char covflags;
GStr refseq; //reference sequence name
char* gseq; //actual genomic sequence for the bundle
GList<CReadAln> readlist;
GVec<float> bpcov[3]; // this needs to be changed to a more inteligent way of storing the data
GList<CJunction> junction;
GPVec<GffObj> keepguides; //list of guides in this bundle (+ synthetic nascents if genNascent)
GPVec<GPtFeature> ptfs; //point features for this bundle
GList<CPrediction> pred;
int numNascents=0; //number of nascent transcripts generated for this bundle
RC_BundleData* rc_data; // read count data for this bundle
// Long-read witness for adjacent junction pairs (packed key -> count)
// Key recommended: (uint64_t)jL_ptr << 32 ^ (uint64_t)jR_ptr, using canonical CJunction* pointers
GHashMap<uint64_t, uint32_t> lr_pair;
// CPAS breakpoints (bundle-relative indices, to be merged into bp in build_graphs)
GVec<int> cpasCuts[2]; // 0 = minus strand, 1 = plus strand
BundleData():status(BUNDLE_STATUS_CLEAR), idx(0), start(0), end(0),
numreads(0),
num_fragments(0), frag_len(0),sum_cov(0),covflags(0),
refseq(), gseq(NULL), readlist(false,true), //bpcov(1024),
junction(true, true, true),
keepguides(false), ptfs(false), pred(false), rc_data(NULL) {
for(int i=0;i<3;i++) bpcov[i].setCapacity(4096);
}
void getReady(int currentstart, int currentend) {
//this is only called when the bundle is valid and ready to be processed
start=currentstart;
end=currentend;
//refseq=ref;
//tag all these guides
for (int i=0;i<this->keepguides.Count();++i) {
//RC_TData* tdata=(RC_TData*)(keepguides[i]->uptr);
//tdata->in_bundle=1;
setGuideStatus(keepguides[i], GBST_IN_BUNDLE);
}
status=BUNDLE_STATUS_READY;
}
void rc_init(GffObj* t, GPVec<RC_TData>* rc_tdata,
GPVec<RC_Feature>* rc_edata, GPVec<RC_Feature>* rc_idata) {
if (rc_data==NULL) {
rc_data = new RC_BundleData(t->start, t->end,
rc_tdata, rc_edata, rc_idata);
}
}
void keepGuide(GffObj* scaff, Ref_RC_Data& ref_rc_data);
void generateAllNascents(int from_guide_idx, Ref_RC_Data& ref_rc); //defined in tablemaker.cpp
// use this for debug only
void printBundleGuides() {
GStr fname("bundle");
fname.appendfmt("_%d_guides.bed",idx);
GStr fnasc("bundle");
fnasc.appendfmt("_%d_nascents.bed",idx);
FILE* f=fopen(fname.chars(),"w");
FILE* fn=fopen(fnasc.chars(),"w");
for(int i=0;i<keepguides.Count();i++) {
GffObj* g=keepguides[i];
if (isNascent(g)) {
g->addAttr("gen_from", nascentFrom(g)->getID());
g->printBED(fn);
} else g->printBED(f);
}
fclose(f);
fclose(fn);
}
bool evalReadAln(GReadAlnData& alndata, char& strand);
void Clear() {
keepguides.Clear();
ptfs.Clear();
pred.Clear();
pred.setSorted(false);
readlist.Clear();
readlist.setSorted(false);
for(int i=0;i<3;i++) {
bpcov[i].Clear();
bpcov[i].setCapacity(1024);
}
junction.Clear();
start=0;
end=0;
status=BUNDLE_STATUS_CLEAR;
numreads=0;
numNascents=0;
num_fragments=0;
frag_len=0;
sum_cov=0;
covflags=0;
delete rc_data;
GFREE(gseq);
rc_data=NULL;
}
~BundleData() {
Clear();
}
};
void processRead(int currentstart, int currentend, BundleData& bdata,
GHash<int>& hashread, GReadAlnData& alndata,bool ovlpguide);
//GSamRecord& brec, char strand, int nh, int hi);
|