File: gefp.Rd

package info (click to toggle)
strucchange 1.5-1-2
  • links: PTS
  • area: main
  • in suites: stretch
  • size: 1,164 kB
  • sloc: makefile: 1
file content (92 lines) | stat: -rw-r--r-- 3,868 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
\name{gefp}
\alias{gefp}
\alias{print.gefp}
\alias{sctest.gefp}
\alias{plot.gefp}
\alias{time.gefp}
\alias{print.gefp}

\title{Generalized Empirical M-Fluctuation Processes}
\description{Computes an empirical M-fluctuation process 
from the scores of a fitted model.}
\usage{
gefp(\dots, fit = glm, scores = estfun, vcov = NULL,
  decorrelate = TRUE, sandwich = TRUE, order.by = NULL,
  fitArgs = NULL, parm = NULL, data = list())
}
\arguments{
  \item{\dots}{specification of some model which is passed together
     with \code{data} to the \code{fit} function: \code{fm <- fit(\dots, data = data)}.
     If \code{fit} is set to \code{NULL} the first argument \code{\dots}
     is assumed to be already the fitted model \code{fm}
     (all other arguments in \code{\dots} are ignored and a warning
     is issued in this case).}
  \item{fit}{a model fitting function, typically \code{\link{lm}},
     \code{\link{glm}} or \code{\link[MASS]{rlm}}.}
  \item{scores}{a function which extracts the scores or estimating
     function from the fitted object: \code{scores(fm)}.}
  \item{vcov}{a function to extract the covariance matrix
     for the coefficients of the fitted model:
     \code{vcov(fm, order.by = order.by, data = data)}.}
  \item{decorrelate}{logical. Should the process be decorrelated?}
  \item{sandwich}{logical. Is the function \code{vcov} the full sandwich
     estimator or only the meat?}
  \item{order.by}{Either a vector \code{z} or a formula with a single explanatory
    variable like \code{~ z}. The observations in the model
    are ordered by the size of \code{z}. If set to \code{NULL} (the
    default) the observations are assumed to be ordered (e.g., a
    time series).}
  \item{fitArgs}{List of additional arguments which could be passed to
    the \code{fit} function. Usually, this is not needed and \code{\dots}
    will be sufficient to pass arguments to \code{fit}.}
  \item{parm}{integer or character specifying the component of the estimating
    functions which should be used (by default all components are used).}
 \item{data}{an optional data frame containing the variables in the \code{\dots}
    specification and the \code{order.by} model. By default the variables are
    taken from the environment which \code{gefp} is called from.}
}

\value{
  \code{gefp} returns a list of class \code{"gefp"} with components including:
  \item{process}{the fitted empirical fluctuation process of class
    \code{"zoo"},}
  \item{nreg}{the number of regressors,}
  \item{nobs}{the number of observations,}
  \item{fit}{the fit function used,}
  \item{scores}{the scores function used,}
  \item{fitted.model}{the fitted model.}
}

\references{
Zeileis A. (2005), A Unified Approach to Structural Change Tests Based on
ML Scores, F Statistics, and OLS Residuals. \emph{Econometric Reviews}, \bold{24},
445--466. doi:10.1080/07474930500406053.

Zeileis A. (2006), Implementing a Class of Structural Change Tests: An
Econometric Computing Approach. \emph{Computational Statistics & Data Analysis}, 
\bold{50}, 2987--3008. doi:10.1016/j.csda.2005.07.001.

Zeileis A., Hornik K. (2007), Generalized M-Fluctuation Tests for Parameter
Instability, \emph{Statistica Neerlandica}, \bold{61}, 488--508.
doi:10.1111/j.1467-9574.2007.00371.x.

Zeileis A., Shah A., Patnaik I. (2010), Testing, Monitoring, and Dating Structural
Changes in Exchange Rate Regimes, \emph{Computational Statistics and Data Analysis},
\bold{54}(6), 1696--1706. doi:10.1016/j.csda.2009.12.005.
}

\seealso{\code{\link{efp}}, \code{\link{efpFunctional}}}

\examples{
data("BostonHomicide")
gcus <- gefp(homicides ~ 1, family = poisson, vcov = kernHAC,
	     data = BostonHomicide)
plot(gcus, aggregate = FALSE)	 
gcus
sctest(gcus)
}
\concept{M-fluctuation}
\concept{fluctuation test}
\concept{maximum likelihood scores}
\concept{structural change}
\keyword{regression}