1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
#include "Box.h"
#include "SyntopiaCore/Math/Vector3.h"
using namespace SyntopiaCore::Math;
namespace SyntopiaCore {
namespace GLEngine {
Box::Box(SyntopiaCore::Math::Vector3f base,
SyntopiaCore::Math::Vector3f dir1 ,
SyntopiaCore::Math::Vector3f dir2,
SyntopiaCore::Math::Vector3f dir3) : base(base), v1(dir1), v2(dir2), v3(dir3)
{
/// Bounding box
from = base;
to = base;
Expand(from,to, base+v1);
Expand(from,to, base+v2);
Expand(from,to, base+v3);
Expand(from,to, base+v1+v2);
Expand(from,to, base+v2+v3);
Expand(from,to, base+v1+v3);
Expand(from,to, base+v1+v2+v3);
n21 = Vector3f::cross(v2,v1).normalized();
n32 = Vector3f::cross(v3,v2).normalized();
n13 = Vector3f::cross(v1,v3).normalized();
ac = base + v1*0.5 + v2*0.5 + v3*0.5;
a[0] = v1.normalized();
a[1] = v2.normalized();
a[2] = v3.normalized();
h[0] = v1.length()/2;
h[1] = v2.length()/2;
h[2] = v3.length()/2;
};
Box::~Box() { };
void Box::draw() const {
glPushMatrix();
glTranslatef( base.x(), base.y(), base.z() );
glMaterialfv( GL_FRONT, GL_AMBIENT_AND_DIFFUSE, primaryColor );
glBegin( GL_QUADS );
Vector3f O(0,0,0);
vertex4n(O, v2,v2+v1,v1);
vertex4rn(O+v3, v2+v3, v2+v1+v3, v1+v3);
vertex4n(O, v3, v3+v2,v2);
vertex4rn(O+v1, v3+v1, v3+v2+v1, v2+v1);
vertex4n(O, v1, v3+v1, v3);
vertex4rn(O+v2, v1+v2, v3+v2+v1, v3+v2);
glEnd();
glPopMatrix();
};
void Box::prepareForRaytracing() {
// Determine whether the box is skewed.
// if this is the case, we triangulate it.
// Using triangles for ray checks is much slower (x ~2.4 slower),
// and we could probably avoid it by transforming both box and rayinfo
// into a non-skewed coordinate system.
const double treshold = 1E-4;
useTriangles = false;
if (fabs(Vector3f::dot(v1,v2)) > treshold) useTriangles = true;
if (fabs(Vector3f::dot(v2,v3)) > treshold) useTriangles = true;
if (fabs(Vector3f::dot(v1,v3)) > treshold) useTriangles = true;
if (useTriangles) {
triangles.clear();
RaytraceTriangle::Vertex4(base, base+v1,base+v3+v1,base+v3, true,triangles,primaryColor[0],primaryColor[1],primaryColor[2],primaryColor[3]);
RaytraceTriangle::Vertex4(base, base+v3,base+v3+v2,base+v2, true,triangles,primaryColor[0],primaryColor[1],primaryColor[2],primaryColor[3]);
RaytraceTriangle::Vertex4(base+v1, base+v1+v2, base+v3+v1+v2, base+v3+v1, true,triangles,primaryColor[0],primaryColor[1],primaryColor[2],primaryColor[3]);
RaytraceTriangle::Vertex4(base+v2, base+v3+v2, base+v3+v1+v2, base+v1+v2, true,triangles,primaryColor[0],primaryColor[1],primaryColor[2],primaryColor[3]);
RaytraceTriangle::Vertex4(base, base+v2,base+v1+v2,base+v1, true,triangles,primaryColor[0],primaryColor[1],primaryColor[2],primaryColor[3]);
RaytraceTriangle::Vertex4(base+v3, base+v3+v1,base+v3+v1+v2, base+v3+v2, true,triangles,primaryColor[0],primaryColor[1],primaryColor[2],primaryColor[3]);
}
}
bool Box::intersectsRay(RayInfo* ri) {
if (useTriangles) {
for (int i = 0; i < triangles.count(); i++) {
if (triangles[i].intersectsRay(ri)) return true;
}
return false;
} else {
// Following the Real-Time Rendering book p. 574
float tmin = -1.0E37f;
float tmax = 1.0E37f;
float temp = 0;
Vector3f p = ac - ri->startPoint;
int minhit = 0;
int maxhit = 0;
for (int i = 0; i < 3; i++) {
bool reverse = false;
float e = Vector3f::dot(a[i], p);
float f = Vector3f::dot(a[i], ri->lineDirection);
if (fabs(f)>1E-17) {
float t1 = (e+h[i])/f;
float t2 = (e-h[i])/f;
if (t1 > t2) { temp = t1; t1 = t2; t2 = temp; reverse = true; }
if (t1 > tmin) {
tmin = t1;
minhit = reverse ? (i+1) : -i;
}
if (t2 < tmax) {
tmax = t2;
maxhit = reverse ? (i+1) : -i;
}
if (tmin > tmax) return false;
if (tmax < 0) return false;
} else {
if ( (-e-h[i] > 0) || (-e+h[i]<0)) return false;
}
}
if (tmin>0) {
ri->intersection = tmin;
for (int i = 0; i < 4; i++) ri->color[i] = primaryColor[i];
// TODO: Find a better solution or at least make a switch...
if (minhit == 1) { ri->normal = n32; }
else if (minhit == 2) { ri->normal = n13; }
else if (minhit == 3) { ri->normal = n21; }
else if (minhit == 0) { ri->normal = -n32; }
else if (minhit == -1) { ri->normal = -n13; }
else if (minhit == -2) { ri->normal = -n21; }
return true;
} else {
ri->intersection = tmax;
for (int i = 0; i < 4; i++) ri->color[i] = primaryColor[i];
if (maxhit == 0) {ri->normal = n32; ri->color[2] = 1; }
else if (maxhit == 1){ ri->normal = n13; ri->color[2] = 1; }
else { ri->normal = n21; ri->color[2] = 1; }
ri->color[0] = 0; ri->color[1] = 1; ri->color[2] = 1;
return true;
}
}
}
bool Box::intersectsAABB(SyntopiaCore::Math::Vector3f from2, SyntopiaCore::Math::Vector3f to2) {
return
(from.x() < to2.x()) && (to.x() > from2.x()) &&
(from.y() < to2.y()) && (to.y() > from2.y()) &&
(from.z() < to2.z()) && (to.z() > from2.z());
}
}
}
|