File: Matrix4.h

package info (click to toggle)
structure-synth 1.5.0-2
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 2,268 kB
  • ctags: 1,966
  • sloc: cpp: 10,209; python: 164; makefile: 71; sh: 15
file content (192 lines) | stat: -rw-r--r-- 5,870 bytes parent folder | download | duplicates (9)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#pragma once

#include <QString>
#include <QVector>

#include "Vector3.h"

namespace SyntopiaCore {
	namespace Math {	

		/// A simple class for representing 4x4 Matrices
		/// The internal representation has the rows increasing fastest: index = row + col*4;
		template <class scalar> class Matrix4 {
		public:
			/// Constructor (inits to zero value).
			Matrix4() { for (unsigned int i = 0; i < 16; i++) v[i] = 0; };

			/// Construct from a string (with 3x3 entries) - such as "[1 0 0 0 1 0 0 0 1]"
			Matrix4(QString input, bool& succes2) {
				for (unsigned int i = 0; i < 16; i++) v[i] = 0;
				v[0] = 1; v[5] = 1; v[10] = 1; v[15] = 1; 

				input.remove('[');
				input.remove(']');

				QStringList sl = input.split(" ");
				if (sl.size() != 9) { succes2 = false; return; }

				bool succes = false;
				float f = 0;
				f = sl[0].toFloat(&succes); if (!succes) { succes2 = false; return; }; v[0] = f;
				f = sl[1].toFloat(&succes); if (!succes) { succes2 = false; return; }; v[4] = f;
				f = sl[2].toFloat(&succes); if (!succes) { succes2 = false; return; }; v[8] = f;
				f = sl[3].toFloat(&succes); if (!succes) { succes2 = false; return; }; v[1] = f;
				f = sl[4].toFloat(&succes); if (!succes) { succes2 = false; return; }; v[5] = f;
				f = sl[5].toFloat(&succes); if (!succes) { succes2 = false; return; }; v[9] = f;
				f = sl[6].toFloat(&succes); if (!succes) { succes2 = false; return; }; v[2] = f;
				f = sl[7].toFloat(&succes); if (!succes) { succes2 = false; return; }; v[6] = f;
				f = sl[8].toFloat(&succes); if (!succes) { succes2 = false; return; }; v[10] = f;

				succes2 = true;
			}


			/// Identity matrix
			static Matrix4<scalar> Identity() { 
				Matrix4<scalar> m;
				m.v[0] = 1; m.v[5] = 1; m.v[10] = 1; m.v[15] = 1; 
				return m;
			};

			static Matrix4<scalar> ScaleMatrix(scalar s) { 
				Matrix4<scalar> m;
				m.v[0] = s; m.v[5] = s; m.v[10] = s; m.v[15] = 1; 
				return m;
			};

			/// at(row, col) return a copy of the value.
			scalar at(int row, int col) const { return v[row+col*4]; }
			scalar at(int index) const { return v[index]; }
			scalar operator() (int row, int col) const { return v[row+col*4]; }
			scalar operator() (int index) const { return v[index]; }

			/// getRef(row, col) returns a reference (for writing into matrix)
			scalar& getRef(int row, int col) { return v[row+col*4];  }
			scalar& getRef(int index) { return v[index];  }
			scalar& operator() (int row, int col) { return v[row+col*4]; }
			scalar& operator() (int index) { return v[index]; }

			/// Internal representation (can be used in OpenGL functions)
			scalar* getArray(void) { return v; }

			static Matrix4<scalar> Translation(scalar x,scalar y,scalar z) {
				Matrix4<scalar> m;
				m(0,3) = x;
				m(1,3) = y;
				m(2,3) = z;
				m(0,0) = 1;
				m(1,1) = 1;
				m(2,2) = 1;
				m(3,3) = 1;
				return  m;
			};

			static Matrix4<scalar> PlaneReflection(Vector3<scalar> n) {
				n.normalize();
				Matrix4<scalar> m;
				m(0,0) = 1.0 - 2.0*n.x()*n.x(); m(1,0) = -2.0*n.y()*n.x();       m(2,0) = -2.0*n.z()*n.x();
				m(0,1) = -2.0*n.x()*n.y();      m(1,1) = 1.0 - 2.0*n.y()*n.y();  m(2,1) = -2.0*n.z()*n.y();
				m(0,2) = -2.0*n.x()*n.z();      m(1,2) = -2.0*n.y()*n.z();       m(2,2) = 1.0 - 2.0*n.z()*n.z();
				m(3,3) = 1;
				return m;
			};

			/// Rotation about axis with angle
			/// Taken from http://www.gamedev.net/reference/articles/605/math3d.h
			static Matrix4<scalar> Rotation(Vector3<scalar> axis, scalar angle) {

				Matrix4<scalar> m;

				scalar c = cos(angle);
				scalar s = sin(angle);
				// One minus c (short name for legibility of formulai)
				scalar omc = (1 - c);

				if (axis.length() != 1) axis.normalize();

				scalar x = axis[0];
				scalar y = axis[1];
				scalar z = axis[2];	
				scalar xs = x * s;
				scalar ys = y * s;
				scalar zs = z * s;
				scalar xyomc = x * y * omc;
				scalar xzomc = x * z * omc;
				scalar yzomc = y * z * omc;

				m.v[0] = x*x*omc + c;
				m.v[1] = xyomc + zs;
				m.v[2] = xzomc - ys;
				m.v[3] = 0;

				m.v[4] = xyomc - zs;
				m.v[5] = y*y*omc + c;
				m.v[6] = yzomc + xs;
				m.v[7] = 0;

				m.v[8] = xzomc + ys;
				m.v[9] = yzomc - xs;
				m.v[10] = z*z*omc + c;
				m.v[11] = 0;

				m.v[12] = 0;
				m.v[13] = 0;
				m.v[14] = 0;
				m.v[15] = 1;

				return m;	
			};

			Matrix4<scalar> operator* (const Matrix4<scalar>& rhs) const {
				Matrix4<scalar> m;
				for (int x=0; x<4; x++) {
					for (int y=0;y <4; y++) {
						for (int i=0; i<4; i++) m.getRef(x,y) += (this->at(x,i) * rhs.at(i,y));
					}
				}
				return m;
			};

			Vector3<scalar> operator* (const Vector3<scalar>& rhs) const {
				Vector3<scalar> v; // Is initialized to zeros.
				for (int i=0; i<3; i++) {
					for (int j = 0; j < 3; j++) {
						v[i] += this->at(i,j)*rhs[j];
					}
					v[i] += this->at(i,3);
				}

				return v;
			};

			QString toString() {
				QString s = QString(" Row1 = [%1 %2 %3 %4], Row2 = [%5 %6 %7 %8]").
					arg(at(0,0)).arg(at(0,1)).arg(at(0,2)).arg(at(0,3)).
					arg(at(1,0)).arg(at(1,1)).arg(at(1,2)).arg(at(1,3));
				QString s2 = QString(" Row3 = [%1 %2 %3 %4], Row4 = [%5 %6 %7 %8]").
					arg(at(2,0)).arg(at(2,1)).arg(at(2,2)).arg(at(2,3)).
					arg(at(3,0)).arg(at(3,1)).arg(at(3,2)).arg(at(3,3));
				return s+s2;
			}

			// Only return the 3x3 part of the matrix.
			QString toStringAs3x3() {
				QString s = QString("[%1 %2 %3 %4 %5 %6 %7 %8 %9]").
					arg(at(0,0)).arg(at(0,1)).arg(at(0,2)).
					arg(at(1,0)).arg(at(1,1)).arg(at(1,2)).
					arg(at(2,0)).arg(at(2,1)).arg(at(2,2))
					;
				return s;
			}

		private:

			scalar v[16];
		};

		typedef Matrix4<float> Matrix4f ;
		typedef Matrix4<double> Matrix4d ;
	}
}