1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
/* SPDX-License-Identifier: LGPL-2.1-or-later */
#include "devicetree.h"
#include "proto/dt-fixup.h"
#include "util.h"
#define FDT_V1_SIZE (7*4)
static EFI_STATUS devicetree_allocate(struct devicetree_state *state, size_t size) {
size_t pages = DIV_ROUND_UP(size, EFI_PAGE_SIZE);
EFI_STATUS err;
assert(state);
err = BS->AllocatePages(AllocateAnyPages, EfiACPIReclaimMemory, pages, &state->addr);
if (err != EFI_SUCCESS)
return err;
state->pages = pages;
return err;
}
static size_t devicetree_allocated(const struct devicetree_state *state) {
assert(state);
return state->pages * EFI_PAGE_SIZE;
}
static EFI_STATUS devicetree_fixup(struct devicetree_state *state, size_t len) {
EFI_DT_FIXUP_PROTOCOL *fixup;
size_t size;
EFI_STATUS err;
assert(state);
err = BS->LocateProtocol(MAKE_GUID_PTR(EFI_DT_FIXUP_PROTOCOL), NULL, (void **) &fixup);
/* Skip fixup if we cannot locate device tree fixup protocol */
if (err != EFI_SUCCESS)
return EFI_SUCCESS;
size = devicetree_allocated(state);
err = fixup->Fixup(fixup, PHYSICAL_ADDRESS_TO_POINTER(state->addr), &size,
EFI_DT_APPLY_FIXUPS | EFI_DT_RESERVE_MEMORY);
if (err == EFI_BUFFER_TOO_SMALL) {
EFI_PHYSICAL_ADDRESS oldaddr = state->addr;
size_t oldpages = state->pages;
void *oldptr = PHYSICAL_ADDRESS_TO_POINTER(state->addr);
err = devicetree_allocate(state, size);
if (err != EFI_SUCCESS)
return err;
memcpy(PHYSICAL_ADDRESS_TO_POINTER(state->addr), oldptr, len);
err = BS->FreePages(oldaddr, oldpages);
if (err != EFI_SUCCESS)
return err;
size = devicetree_allocated(state);
err = fixup->Fixup(fixup, PHYSICAL_ADDRESS_TO_POINTER(state->addr), &size,
EFI_DT_APPLY_FIXUPS | EFI_DT_RESERVE_MEMORY);
}
return err;
}
const char* devicetree_get_compatible(const void *dtb) {
if ((uintptr_t) dtb % alignof(FdtHeader) != 0)
return NULL;
const FdtHeader *dt_header = ASSERT_PTR(dtb);
if (be32toh(dt_header->magic) != UINT32_C(0xd00dfeed))
return NULL;
uint32_t dt_size = be32toh(dt_header->total_size);
uint32_t struct_off = be32toh(dt_header->off_dt_struct);
uint32_t struct_size = be32toh(dt_header->size_dt_struct);
uint32_t strings_off = be32toh(dt_header->off_dt_strings);
uint32_t strings_size = be32toh(dt_header->size_dt_strings);
uint32_t end;
if (PTR_TO_SIZE(dtb) > SIZE_MAX - dt_size)
return NULL;
if (!ADD_SAFE(&end, strings_off, strings_size) || end > dt_size)
return NULL;
const char *strings_block = (const char *) ((const uint8_t *) dt_header + strings_off);
if (struct_off % sizeof(uint32_t) != 0)
return NULL;
if (struct_size % sizeof(uint32_t) != 0 ||
!ADD_SAFE(&end, struct_off, struct_size) ||
end > strings_off)
return NULL;
const uint32_t *cursor = (const uint32_t *) ((const uint8_t *) dt_header + struct_off);
size_t size_words = struct_size / sizeof(uint32_t);
size_t len, name_off, len_words, s;
for (size_t i = 0; i < end; i++) {
switch (be32toh(cursor[i])) {
case FDT_BEGIN_NODE:
if (i >= size_words || cursor[++i] != 0)
return NULL;
break;
case FDT_NOP:
break;
case FDT_PROP:
/* At least 3 words should present: len, name_off, c (nul-terminated string always has non-zero length) */
if (i + 3 >= size_words)
return NULL;
len = be32toh(cursor[++i]);
name_off = be32toh(cursor[++i]);
len_words = DIV_ROUND_UP(len, sizeof(uint32_t));
if (ADD_SAFE(&s, name_off, STRLEN("compatible")) &&
s < strings_size && streq8(strings_block + name_off, "compatible")) {
const char *c = (const char *) &cursor[++i];
if (len == 0 || i + len_words > size_words || c[len - 1] != '\0')
c = NULL;
return c;
}
i += len_words;
break;
default:
return NULL;
}
}
return NULL;
}
bool firmware_devicetree_exists(void) {
return !!find_configuration_table(MAKE_GUID_PTR(EFI_DTB_TABLE));
}
/* This function checks if the firmware provided DeviceTree
* and a UKI provided DeviceTree contain the same first entry
* on their respective "compatible" fields (which usually defines
* the actual device model). More specifically, given the FW/UKI
* "compatible" property pair:
*
* compatible = "string1", "string2";
* compatible = "string1", "string3";
*
* the function reports a match, while for
*
* compatible = "string1", "string3";
* compatible = "string2", "string1";
*
* it reports a mismatch.
*
* Other entries might refer to SoC and therefore can't be used for matching
*/
EFI_STATUS devicetree_match(const void *uki_dtb, size_t uki_dtb_length) {
const void *fw_dtb = find_configuration_table(MAKE_GUID_PTR(EFI_DTB_TABLE));
if (!fw_dtb)
return EFI_UNSUPPORTED;
const char *fw_compat = devicetree_get_compatible(fw_dtb);
if (!fw_compat)
return EFI_UNSUPPORTED;
return devicetree_match_by_compatible(uki_dtb, uki_dtb_length, fw_compat);
}
EFI_STATUS devicetree_match_by_compatible(const void *uki_dtb, size_t uki_dtb_length, const char *compat) {
if ((uintptr_t) uki_dtb % alignof(FdtHeader) != 0)
return EFI_INVALID_PARAMETER;
const FdtHeader *dt_header = ASSERT_PTR(uki_dtb);
if (uki_dtb_length < sizeof(FdtHeader) ||
uki_dtb_length < be32toh(dt_header->total_size))
return EFI_INVALID_PARAMETER;
if (!compat)
return EFI_INVALID_PARAMETER;
const char *dt_compat = devicetree_get_compatible(uki_dtb);
if (!dt_compat)
return EFI_INVALID_PARAMETER;
/* Only matches the first compatible string from each DT */
return streq8(dt_compat, compat) ? EFI_SUCCESS : EFI_NOT_FOUND;
}
EFI_STATUS devicetree_install_from_memory(
struct devicetree_state *state, const void *dtb_buffer, size_t dtb_length) {
EFI_STATUS err;
assert(state);
assert(dtb_buffer && dtb_length > 0);
/* Capture the original value for the devicetree table. NULL is not an error in this case so we don't
* need to check the return value. NULL simply means the system fw had no devicetree initially (and
* is the correct value to use to return to the initial state if needed). */
state->orig = find_configuration_table(MAKE_GUID_PTR(EFI_DTB_TABLE));
err = devicetree_allocate(state, dtb_length);
if (err != EFI_SUCCESS)
return err;
memcpy(PHYSICAL_ADDRESS_TO_POINTER(state->addr), dtb_buffer, dtb_length);
err = devicetree_fixup(state, dtb_length);
if (err != EFI_SUCCESS)
return err;
return BS->InstallConfigurationTable(
MAKE_GUID_PTR(EFI_DTB_TABLE), PHYSICAL_ADDRESS_TO_POINTER(state->addr));
}
void devicetree_cleanup(struct devicetree_state *state) {
EFI_STATUS err;
if (!state->pages)
return;
err = BS->InstallConfigurationTable(MAKE_GUID_PTR(EFI_DTB_TABLE), state->orig);
/* don't free the current device tree if we can't reinstate the old one */
if (err != EFI_SUCCESS)
return;
BS->FreePages(state->addr, state->pages);
state->pages = 0;
}
|