1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/REC-html40/Transitional.dtd">
<html>
<head>
<title>[rational.h] Type: Rational</title>
<meta name="robots" content="noindex">
</head>
<body bgcolor=white>
<h1><font color="#008B8B">[rational.h] Type: Rational</font></h1>
<h2><font color="#008B8B"><a href="styx.html">contents</a></font></h2><br>
<br><a href="standard.htm">#include "standard.h"</a>
<br><a href="integer.htm">#include "integer.h"</a>
<br>
<br>
<br>
<br><hr width="100%" size=2><h2><b> The Type </b></h2>
<br><pre>
[rational] implements the algebraic operations for rationals.
A rational number is represented by its numerator and denominator.
NF: gcd(Z,N)=1 /\ N>0
</pre>
<br>
<table border=0 cellspacing=10>
<TR valign=top>
<td align=left><b>Rational</b>
<td align=left> Abstract rational type
</table>
<br><hr width="100%" size=2><h2><b> Basics </b></h2>
<br><pre>
In the following functions the integer and rational operands won't be
consumed and the resulting integer or rational have to be released.
</pre>
<table border=0 cellspacing=20>
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>Rational <b>Rat_cons</b>(Integer Z, Integer N)</pre>
<td bgcolor="#FFF0F5" align=left> constructs a rational<br>
from numerator 'Z' and denominator 'N'<br>
<br>
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>Rational <b>Rat_copy</b>(Rational a)</pre>
<td bgcolor="#FFF0F5" align=left>copies rational 'a'
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>void <b>Rat_free</b>(Rational a)</pre>
<td bgcolor="#FFF0F5" align=left>frees rational 'a'
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>Rational <b>Rat_Int_to</b>(Integer a)</pre>
<td bgcolor="#FFF0F5" align=left> constructs a rational from numerator 'a' ( a/1 ) <br>
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>Rational <b>Rat_Int_div</b>(Integer a, Integer b)</pre>
<td bgcolor="#FFF0F5" align=left> divides integer 'a' thru integer 'b'<br>
giving a rational<br>
<br>
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>void <b>Rat_des</b>(Rational r, Integer* z, Integer* n)</pre>
<td bgcolor="#FFF0F5" align=left> destructs rational 'r'<br>
to numerator 'z' and denominator 'n'<br>
<br>
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>Integer <b>Rat_nom</b>(Rational r)</pre>
<td bgcolor="#FFF0F5" align=left>copies numerator of rational 'r'
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>Integer <b>Rat_den</b>(Rational r)</pre>
<td bgcolor="#FFF0F5" align=left>copies denominator of rational 'r'
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>void <b>showRat</b>(Rational r)</pre>
<td bgcolor="#FFF0F5" align=left>prints rational 'r' to stdout; for debugging
</table>
<br><hr width="100%" size=2><h2><b> Comparison </b></h2>
<table border=0 cellspacing=20>
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>c_bool <b>Rat_is0</b>(Rational r)</pre>
<td bgcolor="#FFF0F5" align=left>r == 0 ?
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>int <b>Rat_cmp</b>(Rational a, Rational b)</pre>
<td bgcolor="#FFF0F5" align=left>a < b ? -1 : a == b ? 0 : 1
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>c_bool <b>Rat_eq</b>(Rational a, Rational b)</pre>
<td bgcolor="#FFF0F5" align=left>a == b ?
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>c_bool <b>Rat_ne</b>(Rational a, Rational b)</pre>
<td bgcolor="#FFF0F5" align=left>a != b ?
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>c_bool <b>Rat_lt</b>(Rational a, Rational b)</pre>
<td bgcolor="#FFF0F5" align=left>a < b ?
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>c_bool <b>Rat_le</b>(Rational a, Rational b)</pre>
<td bgcolor="#FFF0F5" align=left>a <= b ?
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>c_bool <b>Rat_gt</b>(Rational a, Rational b)</pre>
<td bgcolor="#FFF0F5" align=left>a > b ?
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>c_bool <b>Rat_ge</b>(Rational a, Rational b)</pre>
<td bgcolor="#FFF0F5" align=left>a >= b ?
</table>
<br><hr width="100%" size=2><h2><b> Arithmetic </b></h2>
<table border=0 cellspacing=20>
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>int <b>Rat_sgn</b>(Rational r)</pre>
<td bgcolor="#FFF0F5" align=left>signum of rational 'r' (0,-1,1)
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>Rational <b>Rat_abs</b>(Rational r)</pre>
<td bgcolor="#FFF0F5" align=left>absolute value |r|
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>Rational <b>Rat_neg</b>(Rational r)</pre>
<td bgcolor="#FFF0F5" align=left>negation -r
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>Rational <b>Rat_inv</b>(Rational r)</pre>
<td bgcolor="#FFF0F5" align=left>inverse 1 / r ( r != 0 )
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>Rational <b>Rat_add</b>(Rational a, Rational b)</pre>
<td bgcolor="#FFF0F5" align=left>addition a + b
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>Rational <b>Rat_sub</b>(Rational a, Rational b)</pre>
<td bgcolor="#FFF0F5" align=left>substraction a - b
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>Rational <b>Rat_mlt</b>(Rational a, Rational b)</pre>
<td bgcolor="#FFF0F5" align=left>multiplication a * b
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>Rational <b>Rat_quo</b>(Rational a, Rational b)</pre>
<td bgcolor="#FFF0F5" align=left>division a / b
</table>
<br><hr width="100%" size=2><h2><b> Conversion </b></h2>
<br>
<p><b>Q --> Z</b>
<table border=0 cellspacing=20>
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>Integer <b>Rat_floor</b>(Rational r)</pre>
<td bgcolor="#FFF0F5" align=left>greatest Integer z with z <= r
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>Integer <b>Rat_ceiling</b>(Rational r)</pre>
<td bgcolor="#FFF0F5" align=left>smallest Integer z with z >= r
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>Integer <b>Rat_round</b>(Rational r)</pre>
<td bgcolor="#FFF0F5" align=left>rounding
</table>
<br>
<p><b>Q --> Q</b>
<table border=0 cellspacing=20>
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>Rational <b>Rat_fix_floor</b>(Rational r, int b, long n)</pre>
<td bgcolor="#FFF0F5" align=left> Rational(floor(r * b ^ n), b ^n) <br>
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>Rational <b>Rat_fix_ceiling</b>(Rational r, int b, long n)</pre>
<td bgcolor="#FFF0F5" align=left> Rational(ceiling(r * b ^ n), b ^n) <br>
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>Rational <b>Rat_fix_round</b>(Rational r, int b, long n)</pre>
<td bgcolor="#FFF0F5" align=left> Rational(round(r * b ^ n), b ^n) <br>
</table>
<br>
<p><b>Q <--> String</b>
<table border=0 cellspacing=20>
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>c_string <b>Rat_to_Str</b>(Rational r, int Base, int Digits)</pre>
<td bgcolor="#FFF0F5" align=left> converts rational 'r' into a string; allocs memory <br>
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>Rational <b>Rat_Str_to</b>(c_string s, int Base)</pre>
<td bgcolor="#FFF0F5" align=left> converts string 's' into a rational; not consuming 's' <br>
assuming 'Rat_Str_ok(s,Base)' <br>
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>c_bool <b>Rat_s_ok</b>(c_string s, int Base)</pre>
<td bgcolor="#FFF0F5" align=left> whether string 's' represents a fix point numeral <br>
</table>
<br><hr width="100%" size=2><h2><b> Xaron Support </b></h2>
<table border=0 cellspacing=20>
<tr valign=top>
<td bgcolor="#FFF8DC" align=left><pre>void <b>Rat_references</b>(Rational x, StdCPtr (*act)(StdCPtr r))</pre>
<td bgcolor="#FFF0F5" align=left> performs 'act' on all pointer references in rational 'x'<br>
( garbage collection service for xaron )<br>
<br>
</table>
</body>
</html>
|