1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
|
/*
* SPDX-License-Identifier: ISC
*
* Copyright (c) 2004-2005, 2007, 2009-2015
* Todd C. Miller <Todd.Miller@sudo.ws>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* This is an open source non-commercial project. Dear PVS-Studio, please check it.
* PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com
*/
/*
* Adapted from the following code written by Emin Martinian:
* http://web.mit.edu/~emin/www/source_code/red_black_tree/index.html
*
* Copyright (c) 2001 Emin Martinian
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that neither the name of Emin
* Martinian nor the names of any contributors are be used to endorse or
* promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <sudoers.h>
#include <redblack.h>
static void rbrepair(struct rbtree *, struct rbnode *);
static void rotate_left(struct rbtree *, struct rbnode *);
static void rotate_right(struct rbtree *, struct rbnode *);
static void rbdestroy_int(struct rbtree *, struct rbnode *, void (*)(void *));
/*
* Red-Black tree, see http://en.wikipedia.org/wiki/Red-black_tree
*
* A red-black tree is a binary search tree where each node has a color
* attribute, the value of which is either red or black. Essentially, it
* is just a convenient way to express a 2-3-4 binary search tree where
* the color indicates whether the node is part of a 3-node or a 4-node.
* In addition to the ordinary requirements imposed on binary search
* trees, we make the following additional requirements of any valid
* red-black tree:
* 1) Every node is either red or black.
* 2) The root is black.
* 3) All leaves are black.
* 4) Both children of each red node are black.
* 5) The paths from each leaf up to the root each contain the same
* number of black nodes.
*/
/*
* Create a red black tree struct using the specified compare routine.
* Allocates and returns the initialized (empty) tree or NULL if
* memory cannot be allocated.
*/
struct rbtree *
rbcreate(int (*compar)(const void *, const void*))
{
struct rbtree *tree;
debug_decl(rbcreate, SUDOERS_DEBUG_RBTREE);
if ((tree = malloc(sizeof(*tree))) == NULL) {
sudo_debug_printf(SUDO_DEBUG_ERROR|SUDO_DEBUG_LINENO,
"unable to allocate memory");
debug_return_ptr(NULL);
}
tree->compar = compar;
/*
* We use a self-referencing sentinel node called nil to simplify the
* code by avoiding the need to check for NULL pointers.
*/
tree->nil.left = tree->nil.right = tree->nil.parent = &tree->nil;
tree->nil.color = black;
tree->nil.data = NULL;
/*
* Similarly, the fake root node keeps us from having to worry
* about splitting the root.
*/
tree->root.left = tree->root.right = tree->root.parent = &tree->nil; // -V778
tree->root.color = black;
tree->root.data = NULL;
debug_return_ptr(tree);
}
/*
* Perform a left rotation starting at node.
*/
static void
rotate_left(struct rbtree *tree, struct rbnode *node)
{
struct rbnode *child;
debug_decl(rotate_left, SUDOERS_DEBUG_RBTREE);
child = node->right;
node->right = child->left;
if (child->left != rbnil(tree))
child->left->parent = node;
child->parent = node->parent;
if (node == node->parent->left)
node->parent->left = child;
else
node->parent->right = child;
child->left = node;
node->parent = child;
debug_return;
}
/*
* Perform a right rotation starting at node.
*/
static void
rotate_right(struct rbtree *tree, struct rbnode *node)
{
struct rbnode *child;
debug_decl(rotate_right, SUDOERS_DEBUG_RBTREE);
child = node->left;
node->left = child->right;
if (child->right != rbnil(tree))
child->right->parent = node;
child->parent = node->parent;
if (node == node->parent->left)
node->parent->left = child;
else
node->parent->right = child;
child->right = node;
node->parent = child;
debug_return;
}
/*
* Insert data pointer into a redblack tree.
* Returns a 0 on success, 1 if a node matching "data" already exists
* (filling in "existing" if not NULL), or -1 on malloc() failure.
*/
int
rbinsert(struct rbtree *tree, void *data, struct rbnode **existing)
{
struct rbnode *node = rbfirst(tree);
struct rbnode *parent = rbroot(tree);
int res;
debug_decl(rbinsert, SUDOERS_DEBUG_RBTREE);
/* Find correct insertion point. */
while (node != rbnil(tree)) {
parent = node;
if ((res = tree->compar(data, node->data)) == 0) {
if (existing != NULL)
*existing = node;
debug_return_int(1);
}
node = res < 0 ? node->left : node->right;
}
node = malloc(sizeof(*node));
if (node == NULL) {
sudo_debug_printf(SUDO_DEBUG_ERROR|SUDO_DEBUG_LINENO,
"unable to allocate memory");
debug_return_int(-1);
}
node->data = data;
node->left = node->right = rbnil(tree);
node->parent = parent;
if (parent == rbroot(tree) || tree->compar(data, parent->data) < 0)
parent->left = node;
else
parent->right = node;
node->color = red;
/*
* If the parent node is black we are all set, if it is red we have
* the following possible cases to deal with. We iterate through
* the rest of the tree to make sure none of the required properties
* is violated.
*
* 1) The uncle is red. We repaint both the parent and uncle black
* and repaint the grandparent node red.
*
* 2) The uncle is black and the new node is the right child of its
* parent, and the parent in turn is the left child of its parent.
* We do a left rotation to switch the roles of the parent and
* child, relying on further iterations to fixup the old parent.
*
* 3) The uncle is black and the new node is the left child of its
* parent, and the parent in turn is the left child of its parent.
* We switch the colors of the parent and grandparent and perform
* a right rotation around the grandparent. This makes the former
* parent the parent of the new node and the former grandparent.
*
* Note that because we use a sentinel for the root node we never
* need to worry about replacing the root.
*/
while (node->parent->color == red) {
struct rbnode *uncle;
if (node->parent == node->parent->parent->left) {
uncle = node->parent->parent->right;
if (uncle->color == red) {
node->parent->color = black;
uncle->color = black;
node->parent->parent->color = red;
node = node->parent->parent;
} else /* if (uncle->color == black) */ {
if (node == node->parent->right) {
node = node->parent;
rotate_left(tree, node);
}
node->parent->color = black;
node->parent->parent->color = red;
rotate_right(tree, node->parent->parent);
}
} else { /* if (node->parent == node->parent->parent->right) */
uncle = node->parent->parent->left;
if (uncle->color == red) {
node->parent->color = black;
uncle->color = black;
node->parent->parent->color = red;
node = node->parent->parent;
} else /* if (uncle->color == black) */ {
if (node == node->parent->left) {
node = node->parent;
rotate_right(tree, node);
}
node->parent->color = black;
node->parent->parent->color = red;
rotate_left(tree, node->parent->parent);
}
}
}
rbfirst(tree)->color = black; /* first node is always black */
debug_return_int(0);
}
/*
* Look for a node matching key in tree.
* Returns a pointer to the node if found, else NULL.
*/
struct rbnode *
rbfind(struct rbtree *tree, void *key)
{
struct rbnode *node = rbfirst(tree);
int res;
debug_decl(rbfind, SUDOERS_DEBUG_RBTREE);
while (node != rbnil(tree)) {
if ((res = tree->compar(key, node->data)) == 0)
debug_return_ptr(node);
node = res < 0 ? node->left : node->right;
}
debug_return_ptr(NULL);
}
/*
* Call func() for each node, passing it the node data and a cookie;
* If func() returns non-zero for a node, the traversal stops and the
* error value is returned. Returns 0 on successful traversal.
*/
int
rbapply_node(struct rbtree *tree, struct rbnode *node,
int (*func)(void *, void *), void *cookie, enum rbtraversal order)
{
int error;
debug_decl(rbapply_node, SUDOERS_DEBUG_RBTREE);
if (node != rbnil(tree)) {
if (order == preorder)
if ((error = func(node->data, cookie)) != 0)
debug_return_int(error);
if ((error = rbapply_node(tree, node->left, func, cookie, order)) != 0)
debug_return_int(error);
if (order == inorder)
if ((error = func(node->data, cookie)) != 0)
debug_return_int(error);
if ((error = rbapply_node(tree, node->right, func, cookie, order)) != 0)
debug_return_int(error);
if (order == postorder)
if ((error = func(node->data, cookie)) != 0)
debug_return_int(error);
}
debug_return_int(0);
}
/*
* Returns the successor of node, or nil if there is none.
*/
static struct rbnode *
rbsuccessor(struct rbtree *tree, struct rbnode *node)
{
struct rbnode *succ;
debug_decl(rbsuccessor, SUDOERS_DEBUG_RBTREE);
if ((succ = node->right) != rbnil(tree)) {
while (succ->left != rbnil(tree))
succ = succ->left;
} else {
/* No right child, move up until we find it or hit the root */
for (succ = node->parent; node == succ->right; succ = succ->parent)
node = succ;
if (succ == rbroot(tree))
succ = rbnil(tree);
}
debug_return_ptr(succ);
}
/*
* Recursive portion of rbdestroy().
*/
static void
rbdestroy_int(struct rbtree *tree, struct rbnode *node, void (*destroy)(void *))
{
debug_decl(rbdestroy_int, SUDOERS_DEBUG_RBTREE);
if (node != rbnil(tree)) {
rbdestroy_int(tree, node->left, destroy);
rbdestroy_int(tree, node->right, destroy);
if (destroy != NULL)
destroy(node->data);
free(node);
}
debug_return;
}
/*
* Destroy the specified tree, calling the destructor "destroy"
* for each node and then freeing the tree itself.
*/
void
rbdestroy(struct rbtree *tree, void (*destroy)(void *))
{
debug_decl(rbdestroy, SUDOERS_DEBUG_RBTREE);
rbdestroy_int(tree, rbfirst(tree), destroy);
free(tree);
debug_return;
}
/*
* Delete node 'z' from the tree and return its data pointer.
*/
void *rbdelete(struct rbtree *tree, struct rbnode *z)
{
struct rbnode *x, *y;
void *data = z->data;
debug_decl(rbdelete, SUDOERS_DEBUG_RBTREE);
if (z->left == rbnil(tree) || z->right == rbnil(tree))
y = z;
else
y = rbsuccessor(tree, z);
x = (y->left == rbnil(tree)) ? y->right : y->left;
if ((x->parent = y->parent) == rbroot(tree)) {
rbfirst(tree) = x;
} else {
if (y == y->parent->left)
y->parent->left = x;
else
y->parent->right = x;
}
if (y->color == black)
rbrepair(tree, x);
if (y != z) {
y->left = z->left;
y->right = z->right;
y->parent = z->parent;
y->color = z->color;
z->left->parent = z->right->parent = y;
if (z == z->parent->left)
z->parent->left = y;
else
z->parent->right = y;
}
free(z);
debug_return_ptr(data);
}
/*
* Repair the tree after a node has been deleted by rotating and repainting
* colors to restore the 4 properties inherent in red-black trees.
*/
static void
rbrepair(struct rbtree *tree, struct rbnode *node)
{
struct rbnode *sibling;
debug_decl(rbrepair, SUDOERS_DEBUG_RBTREE);
while (node->color == black && node != rbfirst(tree)) {
if (node == node->parent->left) {
sibling = node->parent->right;
if (sibling->color == red) {
sibling->color = black;
node->parent->color = red;
rotate_left(tree, node->parent);
sibling = node->parent->right;
}
if (sibling->right->color == black && sibling->left->color == black) {
sibling->color = red;
node = node->parent;
} else {
if (sibling->right->color == black) {
sibling->left->color = black;
sibling->color = red;
rotate_right(tree, sibling);
sibling = node->parent->right;
}
sibling->color = node->parent->color;
node->parent->color = black;
sibling->right->color = black;
rotate_left(tree, node->parent);
node = rbfirst(tree); /* exit loop */
}
} else { /* if (node == node->parent->right) */
sibling = node->parent->left;
if (sibling->color == red) {
sibling->color = black;
node->parent->color = red;
rotate_right(tree, node->parent);
sibling = node->parent->left;
}
if (sibling->right->color == black && sibling->left->color == black) {
sibling->color = red;
node = node->parent;
} else {
if (sibling->left->color == black) {
sibling->right->color = black;
sibling->color = red;
rotate_left(tree, sibling);
sibling = node->parent->left;
}
sibling->color = node->parent->color;
node->parent->color = black;
sibling->left->color = black;
rotate_right(tree, node->parent);
node = rbfirst(tree); /* exit loop */
}
}
}
node->color = black;
debug_return;
}
|