File: agent_radix_sort_downsweep.cuh

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 503; asm: 369; python: 125; awk: 10
file content (789 lines) | stat: -rw-r--r-- 28,525 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
/******************************************************************************
 * Copyright (c) 2011, Duane Merrill.  All rights reserved.
 * Copyright (c) 2011-2018, NVIDIA CORPORATION.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the NVIDIA CORPORATION nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************/

/**
 * \file
 * AgentRadixSortDownsweep implements a stateful abstraction of CUDA thread blocks for participating in device-wide radix sort downsweep .
 */


#pragma once

#include <stdint.h>

#include "../thread/thread_load.cuh"
#include "../block/block_load.cuh"
#include "../block/block_store.cuh"
#include "../block/block_radix_rank.cuh"
#include "../block/block_exchange.cuh"
#include "../util_type.cuh"
#include "../iterator/cache_modified_input_iterator.cuh"
#include "../util_namespace.cuh"

/// Optional outer namespace(s)
CUB_NS_PREFIX

/// CUB namespace
namespace cub {


/******************************************************************************
 * Tuning policy types
 ******************************************************************************/

/**
 * Radix ranking algorithm
 */
enum RadixRankAlgorithm
{
    RADIX_RANK_BASIC,
    RADIX_RANK_MEMOIZE,
    RADIX_RANK_MATCH
};

/**
 * Parameterizable tuning policy type for AgentRadixSortDownsweep
 */
template <
    int                         _BLOCK_THREADS,         ///< Threads per thread block
    int                         _ITEMS_PER_THREAD,      ///< Items per thread (per tile of input)
    BlockLoadAlgorithm          _LOAD_ALGORITHM,        ///< The BlockLoad algorithm to use
    CacheLoadModifier           _LOAD_MODIFIER,         ///< Cache load modifier for reading keys (and values)
    RadixRankAlgorithm          _RANK_ALGORITHM,        ///< The radix ranking algorithm to use
    BlockScanAlgorithm          _SCAN_ALGORITHM,        ///< The block scan algorithm to use
    int                         _RADIX_BITS>            ///< The number of radix bits, i.e., log2(bins)
struct AgentRadixSortDownsweepPolicy
{
    enum
    {
        BLOCK_THREADS           = _BLOCK_THREADS,           ///< Threads per thread block
        ITEMS_PER_THREAD        = _ITEMS_PER_THREAD,        ///< Items per thread (per tile of input)
        RADIX_BITS              = _RADIX_BITS,              ///< The number of radix bits, i.e., log2(bins)
    };

    static const BlockLoadAlgorithm  LOAD_ALGORITHM     = _LOAD_ALGORITHM;    ///< The BlockLoad algorithm to use
    static const CacheLoadModifier   LOAD_MODIFIER      = _LOAD_MODIFIER;     ///< Cache load modifier for reading keys (and values)
    static const RadixRankAlgorithm  RANK_ALGORITHM     = _RANK_ALGORITHM;    ///< The radix ranking algorithm to use
    static const BlockScanAlgorithm  SCAN_ALGORITHM     = _SCAN_ALGORITHM;    ///< The BlockScan algorithm to use
};


/******************************************************************************
 * Thread block abstractions
 ******************************************************************************/





/**
 * \brief AgentRadixSortDownsweep implements a stateful abstraction of CUDA thread blocks for participating in device-wide radix sort downsweep .
 */
template <
    typename AgentRadixSortDownsweepPolicy,     ///< Parameterized AgentRadixSortDownsweepPolicy tuning policy type
    bool     IS_DESCENDING,                     ///< Whether or not the sorted-order is high-to-low
    typename KeyT,                              ///< KeyT type
    typename ValueT,                            ///< ValueT type
    typename OffsetT>                           ///< Signed integer type for global offsets
struct AgentRadixSortDownsweep
{
    //---------------------------------------------------------------------
    // Type definitions and constants
    //---------------------------------------------------------------------

    // Appropriate unsigned-bits representation of KeyT
    typedef typename Traits<KeyT>::UnsignedBits UnsignedBits;

    static const UnsignedBits           LOWEST_KEY  = Traits<KeyT>::LOWEST_KEY;
    static const UnsignedBits           MAX_KEY     = Traits<KeyT>::MAX_KEY;

    static const BlockLoadAlgorithm     LOAD_ALGORITHM  = AgentRadixSortDownsweepPolicy::LOAD_ALGORITHM;
    static const CacheLoadModifier      LOAD_MODIFIER   = AgentRadixSortDownsweepPolicy::LOAD_MODIFIER;
    static const RadixRankAlgorithm     RANK_ALGORITHM  = AgentRadixSortDownsweepPolicy::RANK_ALGORITHM;
    static const BlockScanAlgorithm     SCAN_ALGORITHM  = AgentRadixSortDownsweepPolicy::SCAN_ALGORITHM;

    enum
    {
        BLOCK_THREADS           = AgentRadixSortDownsweepPolicy::BLOCK_THREADS,
        ITEMS_PER_THREAD        = AgentRadixSortDownsweepPolicy::ITEMS_PER_THREAD,
        RADIX_BITS              = AgentRadixSortDownsweepPolicy::RADIX_BITS,
        TILE_ITEMS              = BLOCK_THREADS * ITEMS_PER_THREAD,

        RADIX_DIGITS            = 1 << RADIX_BITS,
        KEYS_ONLY               = Equals<ValueT, NullType>::VALUE,
    };

    // Input iterator wrapper type (for applying cache modifier)s
    typedef CacheModifiedInputIterator<LOAD_MODIFIER, UnsignedBits, OffsetT>    KeysItr;
    typedef CacheModifiedInputIterator<LOAD_MODIFIER, ValueT, OffsetT>          ValuesItr;

    // Radix ranking type to use
    typedef typename If<(RANK_ALGORITHM == RADIX_RANK_BASIC),
            BlockRadixRank<BLOCK_THREADS, RADIX_BITS, IS_DESCENDING, false, SCAN_ALGORITHM>,
            typename If<(RANK_ALGORITHM == RADIX_RANK_MEMOIZE),
                BlockRadixRank<BLOCK_THREADS, RADIX_BITS, IS_DESCENDING, true, SCAN_ALGORITHM>,
                BlockRadixRankMatch<BLOCK_THREADS, RADIX_BITS, IS_DESCENDING, SCAN_ALGORITHM>
            >::Type
        >::Type BlockRadixRankT;

    enum
    {
        /// Number of bin-starting offsets tracked per thread
        BINS_TRACKED_PER_THREAD = BlockRadixRankT::BINS_TRACKED_PER_THREAD
    };

    // BlockLoad type (keys)
    typedef BlockLoad<
        UnsignedBits,
        BLOCK_THREADS,
        ITEMS_PER_THREAD,
        LOAD_ALGORITHM> BlockLoadKeysT;

    // BlockLoad type (values)
    typedef BlockLoad<
        ValueT,
        BLOCK_THREADS,
        ITEMS_PER_THREAD,
        LOAD_ALGORITHM> BlockLoadValuesT;

    // Value exchange array type
    typedef ValueT ValueExchangeT[TILE_ITEMS];

    /**
     * Shared memory storage layout
     */
    union __align__(16) _TempStorage
    {
        typename BlockLoadKeysT::TempStorage    load_keys;
        typename BlockLoadValuesT::TempStorage  load_values;
        typename BlockRadixRankT::TempStorage   radix_rank;

        struct
        {
            UnsignedBits                        exchange_keys[TILE_ITEMS];
            OffsetT                             relative_bin_offsets[RADIX_DIGITS];
        };

        Uninitialized<ValueExchangeT>           exchange_values;

        OffsetT                                 exclusive_digit_prefix[RADIX_DIGITS];
    };


    /// Alias wrapper allowing storage to be unioned
    struct TempStorage : Uninitialized<_TempStorage> {};


    //---------------------------------------------------------------------
    // Thread fields
    //---------------------------------------------------------------------

    // Shared storage for this CTA
    _TempStorage    &temp_storage;

    // Input and output device pointers
    KeysItr         d_keys_in;
    ValuesItr       d_values_in;
    UnsignedBits    *d_keys_out;
    ValueT          *d_values_out;

    // The global scatter base offset for each digit (valid in the first RADIX_DIGITS threads)
    OffsetT         bin_offset[BINS_TRACKED_PER_THREAD];

    // The least-significant bit position of the current digit to extract
    int             current_bit;

    // Number of bits in current digit
    int             num_bits;

    // Whether to short-cirucit
    int             short_circuit;

    //---------------------------------------------------------------------
    // Utility methods
    //---------------------------------------------------------------------


    /**
     * Scatter ranked keys through shared memory, then to device-accessible memory
     */
    template <bool FULL_TILE>
    __device__ __forceinline__ void ScatterKeys(
        UnsignedBits    (&twiddled_keys)[ITEMS_PER_THREAD],
        OffsetT         (&relative_bin_offsets)[ITEMS_PER_THREAD],
        int             (&ranks)[ITEMS_PER_THREAD],
        OffsetT         valid_items)
    {
        #pragma unroll
        for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM)
        {
            temp_storage.exchange_keys[ranks[ITEM]] = twiddled_keys[ITEM];
        }

        CTA_SYNC();

        #pragma unroll
        for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM)
        {
            UnsignedBits key            = temp_storage.exchange_keys[threadIdx.x + (ITEM * BLOCK_THREADS)];
            UnsignedBits digit          = BFE(key, current_bit, num_bits);
            relative_bin_offsets[ITEM]  = temp_storage.relative_bin_offsets[digit];

            // Un-twiddle
            key = Traits<KeyT>::TwiddleOut(key);

            if (FULL_TILE || 
                (static_cast<OffsetT>(threadIdx.x + (ITEM * BLOCK_THREADS)) < valid_items))
            {
                d_keys_out[relative_bin_offsets[ITEM] + threadIdx.x + (ITEM * BLOCK_THREADS)] = key;
            }
        }
    }


    /**
     * Scatter ranked values through shared memory, then to device-accessible memory
     */
    template <bool FULL_TILE>
    __device__ __forceinline__ void ScatterValues(
        ValueT      (&values)[ITEMS_PER_THREAD],
        OffsetT     (&relative_bin_offsets)[ITEMS_PER_THREAD],
        int         (&ranks)[ITEMS_PER_THREAD],
        OffsetT     valid_items)
    {
        CTA_SYNC();

        ValueExchangeT &exchange_values = temp_storage.exchange_values.Alias();

        #pragma unroll
        for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM)
        {
            exchange_values[ranks[ITEM]] = values[ITEM];
        }

        CTA_SYNC();

        #pragma unroll
        for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM)
        {
            ValueT value = exchange_values[threadIdx.x + (ITEM * BLOCK_THREADS)];

            if (FULL_TILE ||
                (static_cast<OffsetT>(threadIdx.x + (ITEM * BLOCK_THREADS)) < valid_items))
            {
                d_values_out[relative_bin_offsets[ITEM] + threadIdx.x + (ITEM * BLOCK_THREADS)] = value;
            }
        }
    }

    /**
     * Load a tile of keys (specialized for full tile, any ranking algorithm)
     */
    template <int _RANK_ALGORITHM>
    __device__ __forceinline__ void LoadKeys(
        UnsignedBits                (&keys)[ITEMS_PER_THREAD],
        OffsetT                     block_offset,
        OffsetT                     valid_items,
        UnsignedBits                oob_item,
        Int2Type<true>              is_full_tile,
        Int2Type<_RANK_ALGORITHM>   rank_algorithm)
    {
        BlockLoadKeysT(temp_storage.load_keys).Load(
            d_keys_in + block_offset, keys);

        CTA_SYNC();
    }


    /**
     * Load a tile of keys (specialized for partial tile, any ranking algorithm)
     */
    template <int _RANK_ALGORITHM>
    __device__ __forceinline__ void LoadKeys(
        UnsignedBits                (&keys)[ITEMS_PER_THREAD],
        OffsetT                     block_offset,
        OffsetT                     valid_items,
        UnsignedBits                oob_item,
        Int2Type<false>             is_full_tile,
        Int2Type<_RANK_ALGORITHM>   rank_algorithm)
    {
        // Register pressure work-around: moving valid_items through shfl prevents compiler
        // from reusing guards/addressing from prior guarded loads
        valid_items = ShuffleIndex<CUB_PTX_WARP_THREADS>(valid_items, 0, 0xffffffff);

        BlockLoadKeysT(temp_storage.load_keys).Load(
            d_keys_in + block_offset, keys, valid_items, oob_item);

        CTA_SYNC();
    }


    /**
     * Load a tile of keys (specialized for full tile, match ranking algorithm)
     */
    __device__ __forceinline__ void LoadKeys(
        UnsignedBits                (&keys)[ITEMS_PER_THREAD],
        OffsetT                     block_offset,
        OffsetT                     valid_items,
        UnsignedBits                oob_item,
        Int2Type<true>              is_full_tile,
        Int2Type<RADIX_RANK_MATCH>  rank_algorithm)
    {
        LoadDirectWarpStriped(threadIdx.x, d_keys_in + block_offset, keys);
    }


    /**
     * Load a tile of keys (specialized for partial tile, match ranking algorithm)
     */
    __device__ __forceinline__ void LoadKeys(
        UnsignedBits                (&keys)[ITEMS_PER_THREAD],
        OffsetT                     block_offset,
        OffsetT                     valid_items,
        UnsignedBits                oob_item,
        Int2Type<false>             is_full_tile,
        Int2Type<RADIX_RANK_MATCH>  rank_algorithm)
    {
        // Register pressure work-around: moving valid_items through shfl prevents compiler
        // from reusing guards/addressing from prior guarded loads
        valid_items = ShuffleIndex<CUB_PTX_WARP_THREADS>(valid_items, 0, 0xffffffff);

        LoadDirectWarpStriped(threadIdx.x, d_keys_in + block_offset, keys, valid_items, oob_item);
    }


    /**
     * Load a tile of values (specialized for full tile, any ranking algorithm)
     */
    template <int _RANK_ALGORITHM>
    __device__ __forceinline__ void LoadValues(
        ValueT                      (&values)[ITEMS_PER_THREAD],
        OffsetT                     block_offset,
        OffsetT                     valid_items,
        Int2Type<true>              is_full_tile,
        Int2Type<_RANK_ALGORITHM>   rank_algorithm)
    {
        BlockLoadValuesT(temp_storage.load_values).Load(
            d_values_in + block_offset, values);

        CTA_SYNC();
    }


    /**
     * Load a tile of values (specialized for partial tile, any ranking algorithm)
     */
    template <int _RANK_ALGORITHM>
    __device__ __forceinline__ void LoadValues(
        ValueT                      (&values)[ITEMS_PER_THREAD],
        OffsetT                     block_offset,
        OffsetT                     valid_items,
        Int2Type<false>             is_full_tile,
        Int2Type<_RANK_ALGORITHM>   rank_algorithm)
    {
        // Register pressure work-around: moving valid_items through shfl prevents compiler
        // from reusing guards/addressing from prior guarded loads
        valid_items = ShuffleIndex<CUB_PTX_WARP_THREADS>(valid_items, 0, 0xffffffff);

        BlockLoadValuesT(temp_storage.load_values).Load(
            d_values_in + block_offset, values, valid_items);

        CTA_SYNC();
    }


    /**
     * Load a tile of items (specialized for full tile, match ranking algorithm)
     */
    __device__ __forceinline__ void LoadValues(
        ValueT                      (&values)[ITEMS_PER_THREAD],
        OffsetT                     block_offset,
        OffsetT                     valid_items,
        Int2Type<true>              is_full_tile,
        Int2Type<RADIX_RANK_MATCH>  rank_algorithm)
    {
        LoadDirectWarpStriped(threadIdx.x, d_values_in + block_offset, values);
    }


    /**
     * Load a tile of items (specialized for partial tile, match ranking algorithm)
     */
    __device__ __forceinline__ void LoadValues(
        ValueT                      (&values)[ITEMS_PER_THREAD],
        OffsetT                     block_offset,
        OffsetT                     valid_items,
        Int2Type<false>             is_full_tile,
        Int2Type<RADIX_RANK_MATCH>  rank_algorithm)
    {
        // Register pressure work-around: moving valid_items through shfl prevents compiler
        // from reusing guards/addressing from prior guarded loads
        valid_items = ShuffleIndex<CUB_PTX_WARP_THREADS>(valid_items, 0, 0xffffffff);

        LoadDirectWarpStriped(threadIdx.x, d_values_in + block_offset, values, valid_items);
    }


    /**
     * Truck along associated values
     */
    template <bool FULL_TILE>
    __device__ __forceinline__ void GatherScatterValues(
        OffsetT         (&relative_bin_offsets)[ITEMS_PER_THREAD],
        int             (&ranks)[ITEMS_PER_THREAD],
        OffsetT         block_offset,
        OffsetT         valid_items,
        Int2Type<false> /*is_keys_only*/)
    {
        ValueT values[ITEMS_PER_THREAD];

        CTA_SYNC();

        LoadValues(
            values,
            block_offset,
            valid_items,
            Int2Type<FULL_TILE>(),
            Int2Type<RANK_ALGORITHM>());

        ScatterValues<FULL_TILE>(
            values,
            relative_bin_offsets,
            ranks,
            valid_items);
    }


    /**
     * Truck along associated values (specialized for key-only sorting)
     */
    template <bool FULL_TILE>
    __device__ __forceinline__ void GatherScatterValues(
        OffsetT         (&/*relative_bin_offsets*/)[ITEMS_PER_THREAD],
        int             (&/*ranks*/)[ITEMS_PER_THREAD],
        OffsetT         /*block_offset*/,
        OffsetT         /*valid_items*/,
        Int2Type<true>  /*is_keys_only*/)
    {}


    /**
     * Process tile
     */
    template <bool FULL_TILE>
    __device__ __forceinline__ void ProcessTile(
        OffsetT block_offset,
        const OffsetT &valid_items = TILE_ITEMS)
    {
        UnsignedBits    keys[ITEMS_PER_THREAD];
        int             ranks[ITEMS_PER_THREAD];
        OffsetT         relative_bin_offsets[ITEMS_PER_THREAD];

        // Assign default (min/max) value to all keys
        UnsignedBits default_key = (IS_DESCENDING) ? LOWEST_KEY : MAX_KEY;

        // Load tile of keys
        LoadKeys(
            keys,
            block_offset,
            valid_items, 
            default_key,
            Int2Type<FULL_TILE>(),
            Int2Type<RANK_ALGORITHM>());

        // Twiddle key bits if necessary
        #pragma unroll
        for (int KEY = 0; KEY < ITEMS_PER_THREAD; KEY++)
        {
            keys[KEY] = Traits<KeyT>::TwiddleIn(keys[KEY]);
        }

        // Rank the twiddled keys
        int exclusive_digit_prefix[BINS_TRACKED_PER_THREAD];
        BlockRadixRankT(temp_storage.radix_rank).RankKeys(
            keys,
            ranks,
            current_bit,
            num_bits,
            exclusive_digit_prefix);

        CTA_SYNC();

        // Share exclusive digit prefix
        #pragma unroll
        for (int track = 0; track < BINS_TRACKED_PER_THREAD; ++track)
        {
            int bin_idx = (threadIdx.x * BINS_TRACKED_PER_THREAD) + track;
            if ((BLOCK_THREADS == RADIX_DIGITS) || (bin_idx < RADIX_DIGITS))
            {
                // Store exclusive prefix
                temp_storage.exclusive_digit_prefix[bin_idx] =
                    exclusive_digit_prefix[track];
            }
        }

        CTA_SYNC();

        // Get inclusive digit prefix
        int inclusive_digit_prefix[BINS_TRACKED_PER_THREAD];

        #pragma unroll
        for (int track = 0; track < BINS_TRACKED_PER_THREAD; ++track)
        {
            int bin_idx = (threadIdx.x * BINS_TRACKED_PER_THREAD) + track;
            if ((BLOCK_THREADS == RADIX_DIGITS) || (bin_idx < RADIX_DIGITS))
            {
                if (IS_DESCENDING)
                {
                    // Get inclusive digit prefix from exclusive prefix (higher bins come first)
                    inclusive_digit_prefix[track] = (bin_idx == 0) ?
                        (BLOCK_THREADS * ITEMS_PER_THREAD) :
                        temp_storage.exclusive_digit_prefix[bin_idx - 1];
                }
                else
                {
                    // Get inclusive digit prefix from exclusive prefix (lower bins come first)
                    inclusive_digit_prefix[track] = (bin_idx == RADIX_DIGITS - 1) ?
                        (BLOCK_THREADS * ITEMS_PER_THREAD) :
                        temp_storage.exclusive_digit_prefix[bin_idx + 1];
                }
            }
        }

        CTA_SYNC();

        // Update global scatter base offsets for each digit
        #pragma unroll
        for (int track = 0; track < BINS_TRACKED_PER_THREAD; ++track)
        {
            int bin_idx = (threadIdx.x * BINS_TRACKED_PER_THREAD) + track;
            if ((BLOCK_THREADS == RADIX_DIGITS) || (bin_idx < RADIX_DIGITS))
            {
                bin_offset[track] -= exclusive_digit_prefix[track];
                temp_storage.relative_bin_offsets[bin_idx] = bin_offset[track];
                bin_offset[track] += inclusive_digit_prefix[track];
            }
        }

        CTA_SYNC();

        // Scatter keys
        ScatterKeys<FULL_TILE>(keys, relative_bin_offsets, ranks, valid_items);

        // Gather/scatter values
        GatherScatterValues<FULL_TILE>(relative_bin_offsets , ranks, block_offset, valid_items, Int2Type<KEYS_ONLY>());
    }

    //---------------------------------------------------------------------
    // Copy shortcut
    //---------------------------------------------------------------------

    /**
     * Copy tiles within the range of input
     */
    template <
        typename InputIteratorT,
        typename T>
    __device__ __forceinline__ void Copy(
        InputIteratorT  d_in,
        T               *d_out,
        OffsetT         block_offset,
        OffsetT         block_end)
    {
        // Simply copy the input
        while (block_offset + TILE_ITEMS <= block_end)
        {
            T items[ITEMS_PER_THREAD];

            LoadDirectStriped<BLOCK_THREADS>(threadIdx.x, d_in + block_offset, items);
            CTA_SYNC();
            StoreDirectStriped<BLOCK_THREADS>(threadIdx.x, d_out + block_offset, items);

            block_offset += TILE_ITEMS;
        }

        // Clean up last partial tile with guarded-I/O
        if (block_offset < block_end)
        {
            OffsetT valid_items = block_end - block_offset;

            T items[ITEMS_PER_THREAD];

            LoadDirectStriped<BLOCK_THREADS>(threadIdx.x, d_in + block_offset, items, valid_items);
            CTA_SYNC();
            StoreDirectStriped<BLOCK_THREADS>(threadIdx.x, d_out + block_offset, items, valid_items);
        }
    }


    /**
     * Copy tiles within the range of input (specialized for NullType)
     */
    template <typename InputIteratorT>
    __device__ __forceinline__ void Copy(
        InputIteratorT  /*d_in*/,
        NullType        * /*d_out*/,
        OffsetT         /*block_offset*/,
        OffsetT         /*block_end*/)
    {}


    //---------------------------------------------------------------------
    // Interface
    //---------------------------------------------------------------------

    /**
     * Constructor
     */
    __device__ __forceinline__ AgentRadixSortDownsweep(
        TempStorage     &temp_storage,
        OffsetT         (&bin_offset)[BINS_TRACKED_PER_THREAD],
        OffsetT         num_items,
        const KeyT      *d_keys_in,
        KeyT            *d_keys_out,
        const ValueT    *d_values_in,
        ValueT          *d_values_out,
        int             current_bit,
        int             num_bits)
    :
        temp_storage(temp_storage.Alias()),
        d_keys_in(reinterpret_cast<const UnsignedBits*>(d_keys_in)),
        d_values_in(d_values_in),
        d_keys_out(reinterpret_cast<UnsignedBits*>(d_keys_out)),
        d_values_out(d_values_out),
        current_bit(current_bit),
        num_bits(num_bits),
        short_circuit(1)
    {
        #pragma unroll
        for (int track = 0; track < BINS_TRACKED_PER_THREAD; ++track)
        {
            this->bin_offset[track] = bin_offset[track];

            int bin_idx = (threadIdx.x * BINS_TRACKED_PER_THREAD) + track;
            if ((BLOCK_THREADS == RADIX_DIGITS) || (bin_idx < RADIX_DIGITS))
            {
                // Short circuit if the histogram has only bin counts of only zeros or problem-size
                short_circuit = short_circuit && ((bin_offset[track] == 0) || (bin_offset[track] == num_items));
            }
        }

        short_circuit = CTA_SYNC_AND(short_circuit);
    }


    /**
     * Constructor
     */
    __device__ __forceinline__ AgentRadixSortDownsweep(
        TempStorage     &temp_storage,
        OffsetT         num_items,
        OffsetT         *d_spine,
        const KeyT      *d_keys_in,
        KeyT            *d_keys_out,
        const ValueT    *d_values_in,
        ValueT          *d_values_out,
        int             current_bit,
        int             num_bits)
    :
        temp_storage(temp_storage.Alias()),
        d_keys_in(reinterpret_cast<const UnsignedBits*>(d_keys_in)),
        d_values_in(d_values_in),
        d_keys_out(reinterpret_cast<UnsignedBits*>(d_keys_out)),
        d_values_out(d_values_out),
        current_bit(current_bit),
        num_bits(num_bits),
        short_circuit(1)
    {
        #pragma unroll
        for (int track = 0; track < BINS_TRACKED_PER_THREAD; ++track)
        {
            int bin_idx = (threadIdx.x * BINS_TRACKED_PER_THREAD) + track;

            // Load digit bin offsets (each of the first RADIX_DIGITS threads will load an offset for that digit)
            if ((BLOCK_THREADS == RADIX_DIGITS) || (bin_idx < RADIX_DIGITS))
            {
                if (IS_DESCENDING)
                    bin_idx = RADIX_DIGITS - bin_idx - 1;

                // Short circuit if the first block's histogram has only bin counts of only zeros or problem-size
                OffsetT first_block_bin_offset = d_spine[gridDim.x * bin_idx];
                short_circuit = short_circuit && ((first_block_bin_offset == 0) || (first_block_bin_offset == num_items));

                // Load my block's bin offset for my bin
                bin_offset[track] = d_spine[(gridDim.x * bin_idx) + blockIdx.x];
            }
        }

        short_circuit = CTA_SYNC_AND(short_circuit);
    }


    /**
     * Distribute keys from a segment of input tiles.
     */
    __device__ __forceinline__ void ProcessRegion(
        OffsetT   block_offset,
        OffsetT   block_end)
    {
        if (short_circuit)
        {
            // Copy keys
            Copy(d_keys_in, d_keys_out, block_offset, block_end);

            // Copy values
            Copy(d_values_in, d_values_out, block_offset, block_end);
        }
        else
        {
            // Process full tiles of tile_items
            #pragma unroll 1
            while (block_offset + TILE_ITEMS <= block_end)
            {
                ProcessTile<true>(block_offset);
                block_offset += TILE_ITEMS;

                CTA_SYNC();
            }

            // Clean up last partial tile with guarded-I/O
            if (block_offset < block_end)
            {
                ProcessTile<false>(block_offset, block_end - block_offset);
            }

        }
    }

};



}               // CUB namespace
CUB_NS_POSTFIX  // Optional outer namespace(s)