File: agent_radix_sort_upsweep.cuh

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 503; asm: 369; python: 125; awk: 10
file content (526 lines) | stat: -rw-r--r-- 17,917 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
/******************************************************************************
 * Copyright (c) 2011, Duane Merrill.  All rights reserved.
 * Copyright (c) 2011-2018, NVIDIA CORPORATION.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the NVIDIA CORPORATION nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************/

/**
 * \file
 * AgentRadixSortUpsweep implements a stateful abstraction of CUDA thread blocks for participating in device-wide radix sort upsweep .
 */

#pragma once

#include "../thread/thread_reduce.cuh"
#include "../thread/thread_load.cuh"
#include "../warp/warp_reduce.cuh"
#include "../block/block_load.cuh"
#include "../util_type.cuh"
#include "../iterator/cache_modified_input_iterator.cuh"
#include "../util_namespace.cuh"

/// Optional outer namespace(s)
CUB_NS_PREFIX

/// CUB namespace
namespace cub {

/******************************************************************************
 * Tuning policy types
 ******************************************************************************/

/**
 * Parameterizable tuning policy type for AgentRadixSortUpsweep
 */
template <
    int                 _BLOCK_THREADS,     ///< Threads per thread block
    int                 _ITEMS_PER_THREAD,  ///< Items per thread (per tile of input)
    CacheLoadModifier   _LOAD_MODIFIER,     ///< Cache load modifier for reading keys
    int                 _RADIX_BITS>        ///< The number of radix bits, i.e., log2(bins)
struct AgentRadixSortUpsweepPolicy
{
    enum
    {
        BLOCK_THREADS       = _BLOCK_THREADS,       ///< Threads per thread block
        ITEMS_PER_THREAD    = _ITEMS_PER_THREAD,    ///< Items per thread (per tile of input)
        RADIX_BITS          = _RADIX_BITS,          ///< The number of radix bits, i.e., log2(bins)
    };

    static const CacheLoadModifier LOAD_MODIFIER = _LOAD_MODIFIER;      ///< Cache load modifier for reading keys
};


/******************************************************************************
 * Thread block abstractions
 ******************************************************************************/

/**
 * \brief AgentRadixSortUpsweep implements a stateful abstraction of CUDA thread blocks for participating in device-wide radix sort upsweep .
 */
template <
    typename AgentRadixSortUpsweepPolicy,   ///< Parameterized AgentRadixSortUpsweepPolicy tuning policy type
    typename KeyT,                          ///< KeyT type
    typename OffsetT>                       ///< Signed integer type for global offsets
struct AgentRadixSortUpsweep
{

    //---------------------------------------------------------------------
    // Type definitions and constants
    //---------------------------------------------------------------------

    typedef typename Traits<KeyT>::UnsignedBits UnsignedBits;

    // Integer type for digit counters (to be packed into words of PackedCounters)
    typedef unsigned char DigitCounter;

    // Integer type for packing DigitCounters into columns of shared memory banks
    typedef unsigned int PackedCounter;

    static const CacheLoadModifier LOAD_MODIFIER = AgentRadixSortUpsweepPolicy::LOAD_MODIFIER;

    enum
    {
        RADIX_BITS              = AgentRadixSortUpsweepPolicy::RADIX_BITS,
        BLOCK_THREADS           = AgentRadixSortUpsweepPolicy::BLOCK_THREADS,
        KEYS_PER_THREAD         = AgentRadixSortUpsweepPolicy::ITEMS_PER_THREAD,

        RADIX_DIGITS            = 1 << RADIX_BITS,

        LOG_WARP_THREADS        = CUB_PTX_LOG_WARP_THREADS,
        WARP_THREADS            = 1 << LOG_WARP_THREADS,
        WARPS                   = (BLOCK_THREADS + WARP_THREADS - 1) / WARP_THREADS,

        TILE_ITEMS              = BLOCK_THREADS * KEYS_PER_THREAD,

        BYTES_PER_COUNTER       = sizeof(DigitCounter),
        LOG_BYTES_PER_COUNTER   = Log2<BYTES_PER_COUNTER>::VALUE,

        PACKING_RATIO           = sizeof(PackedCounter) / sizeof(DigitCounter),
        LOG_PACKING_RATIO       = Log2<PACKING_RATIO>::VALUE,

        LOG_COUNTER_LANES       = CUB_MAX(0, RADIX_BITS - LOG_PACKING_RATIO),
        COUNTER_LANES           = 1 << LOG_COUNTER_LANES,

        // To prevent counter overflow, we must periodically unpack and aggregate the
        // digit counters back into registers.  Each counter lane is assigned to a
        // warp for aggregation.

        LANES_PER_WARP          = CUB_MAX(1, (COUNTER_LANES + WARPS - 1) / WARPS),

        // Unroll tiles in batches without risk of counter overflow
        UNROLL_COUNT            = CUB_MIN(64, 255 / KEYS_PER_THREAD),
        UNROLLED_ELEMENTS       = UNROLL_COUNT * TILE_ITEMS,
    };


    // Input iterator wrapper type (for applying cache modifier)s
    typedef CacheModifiedInputIterator<LOAD_MODIFIER, UnsignedBits, OffsetT> KeysItr;

    /**
     * Shared memory storage layout
     */
    union __align__(16) _TempStorage
    {
        DigitCounter    thread_counters[COUNTER_LANES][BLOCK_THREADS][PACKING_RATIO];
        PackedCounter   packed_thread_counters[COUNTER_LANES][BLOCK_THREADS];
        OffsetT         block_counters[WARP_THREADS][RADIX_DIGITS];
    };


    /// Alias wrapper allowing storage to be unioned
    struct TempStorage : Uninitialized<_TempStorage> {};


    //---------------------------------------------------------------------
    // Thread fields (aggregate state bundle)
    //---------------------------------------------------------------------

    // Shared storage for this CTA
    _TempStorage    &temp_storage;

    // Thread-local counters for periodically aggregating composite-counter lanes
    OffsetT         local_counts[LANES_PER_WARP][PACKING_RATIO];

    // Input and output device pointers
    KeysItr         d_keys_in;

    // The least-significant bit position of the current digit to extract
    int             current_bit;

    // Number of bits in current digit
    int             num_bits;



    //---------------------------------------------------------------------
    // Helper structure for templated iteration
    //---------------------------------------------------------------------

    // Iterate
    template <int COUNT, int MAX>
    struct Iterate
    {
        // BucketKeys
        static __device__ __forceinline__ void BucketKeys(
            AgentRadixSortUpsweep       &cta,
            UnsignedBits                keys[KEYS_PER_THREAD])
        {
            cta.Bucket(keys[COUNT]);

            // Next
            Iterate<COUNT + 1, MAX>::BucketKeys(cta, keys);
        }
    };

    // Terminate
    template <int MAX>
    struct Iterate<MAX, MAX>
    {
        // BucketKeys
        static __device__ __forceinline__ void BucketKeys(AgentRadixSortUpsweep &/*cta*/, UnsignedBits /*keys*/[KEYS_PER_THREAD]) {}
    };


    //---------------------------------------------------------------------
    // Utility methods
    //---------------------------------------------------------------------

    /**
     * Decode a key and increment corresponding smem digit counter
     */
    __device__ __forceinline__ void Bucket(UnsignedBits key)
    {
        // Perform transform op
        UnsignedBits converted_key = Traits<KeyT>::TwiddleIn(key);

        // Extract current digit bits
        UnsignedBits digit = BFE(converted_key, current_bit, num_bits);

        // Get sub-counter offset
        UnsignedBits sub_counter = digit & (PACKING_RATIO - 1);

        // Get row offset
        UnsignedBits row_offset = digit >> LOG_PACKING_RATIO;

        // Increment counter
        temp_storage.thread_counters[row_offset][threadIdx.x][sub_counter]++;
    }


    /**
     * Reset composite counters
     */
    __device__ __forceinline__ void ResetDigitCounters()
    {
        #pragma unroll
        for (int LANE = 0; LANE < COUNTER_LANES; LANE++)
        {
            temp_storage.packed_thread_counters[LANE][threadIdx.x] = 0;
        }
    }


    /**
     * Reset the unpacked counters in each thread
     */
    __device__ __forceinline__ void ResetUnpackedCounters()
    {
        #pragma unroll
        for (int LANE = 0; LANE < LANES_PER_WARP; LANE++)
        {
            #pragma unroll
            for (int UNPACKED_COUNTER = 0; UNPACKED_COUNTER < PACKING_RATIO; UNPACKED_COUNTER++)
            {
                local_counts[LANE][UNPACKED_COUNTER] = 0;
            }
        }
    }


    /**
     * Extracts and aggregates the digit counters for each counter lane
     * owned by this warp
     */
    __device__ __forceinline__ void UnpackDigitCounts()
    {
        unsigned int warp_id = threadIdx.x >> LOG_WARP_THREADS;
        unsigned int warp_tid = LaneId();

        #pragma unroll
        for (int LANE = 0; LANE < LANES_PER_WARP; LANE++)
        {
            const int counter_lane = (LANE * WARPS) + warp_id;
            if (counter_lane < COUNTER_LANES)
            {
                #pragma unroll
                for (int PACKED_COUNTER = 0; PACKED_COUNTER < BLOCK_THREADS; PACKED_COUNTER += WARP_THREADS)
                {
                    #pragma unroll
                    for (int UNPACKED_COUNTER = 0; UNPACKED_COUNTER < PACKING_RATIO; UNPACKED_COUNTER++)
                    {
                        OffsetT counter = temp_storage.thread_counters[counter_lane][warp_tid + PACKED_COUNTER][UNPACKED_COUNTER];
                        local_counts[LANE][UNPACKED_COUNTER] += counter;
                    }
                }
            }
        }
    }


    /**
     * Processes a single, full tile
     */
    __device__ __forceinline__ void ProcessFullTile(OffsetT block_offset)
    {
        // Tile of keys
        UnsignedBits keys[KEYS_PER_THREAD];

        LoadDirectStriped<BLOCK_THREADS>(threadIdx.x, d_keys_in + block_offset, keys);

        // Prevent hoisting
        CTA_SYNC();

        // Bucket tile of keys
        Iterate<0, KEYS_PER_THREAD>::BucketKeys(*this, keys);
    }


    /**
     * Processes a single load (may have some threads masked off)
     */
    __device__ __forceinline__ void ProcessPartialTile(
        OffsetT block_offset,
        const OffsetT &block_end)
    {
        // Process partial tile if necessary using single loads
        block_offset += threadIdx.x;
        while (block_offset < block_end)
        {
            // Load and bucket key
            UnsignedBits key = d_keys_in[block_offset];
            Bucket(key);
            block_offset += BLOCK_THREADS;
        }
    }


    //---------------------------------------------------------------------
    // Interface
    //---------------------------------------------------------------------

    /**
     * Constructor
     */
    __device__ __forceinline__ AgentRadixSortUpsweep(
        TempStorage &temp_storage,
        const KeyT  *d_keys_in,
        int         current_bit,
        int         num_bits)
    :
        temp_storage(temp_storage.Alias()),
        d_keys_in(reinterpret_cast<const UnsignedBits*>(d_keys_in)),
        current_bit(current_bit),
        num_bits(num_bits)
    {}


    /**
     * Compute radix digit histograms from a segment of input tiles.
     */
    __device__ __forceinline__ void ProcessRegion(
        OffsetT          block_offset,
        const OffsetT    &block_end)
    {
        // Reset digit counters in smem and unpacked counters in registers
        ResetDigitCounters();
        ResetUnpackedCounters();

        // Unroll batches of full tiles
        while (block_offset + UNROLLED_ELEMENTS <= block_end)
        {
            for (int i = 0; i < UNROLL_COUNT; ++i)
            {
                ProcessFullTile(block_offset);
                block_offset += TILE_ITEMS;
            }

            CTA_SYNC();

            // Aggregate back into local_count registers to prevent overflow
            UnpackDigitCounts();

            CTA_SYNC();

            // Reset composite counters in lanes
            ResetDigitCounters();
        }

        // Unroll single full tiles
        while (block_offset + TILE_ITEMS <= block_end)
        {
            ProcessFullTile(block_offset);
            block_offset += TILE_ITEMS;
        }

        // Process partial tile if necessary
        ProcessPartialTile(
            block_offset,
            block_end);

        CTA_SYNC();

        // Aggregate back into local_count registers
        UnpackDigitCounts();
    }


    /**
     * Extract counts (saving them to the external array)
     */
    template <bool IS_DESCENDING>
    __device__ __forceinline__ void ExtractCounts(
        OffsetT     *counters,
        int         bin_stride = 1,
        int         bin_offset = 0)
    {
        unsigned int warp_id    = threadIdx.x >> LOG_WARP_THREADS;
        unsigned int warp_tid   = LaneId();

        // Place unpacked digit counters in shared memory
        #pragma unroll
        for (int LANE = 0; LANE < LANES_PER_WARP; LANE++)
        {
            int counter_lane = (LANE * WARPS) + warp_id;
            if (counter_lane < COUNTER_LANES)
            {
                int digit_row = counter_lane << LOG_PACKING_RATIO;

                #pragma unroll
                for (int UNPACKED_COUNTER = 0; UNPACKED_COUNTER < PACKING_RATIO; UNPACKED_COUNTER++)
                {
                    int bin_idx = digit_row + UNPACKED_COUNTER;

                    temp_storage.block_counters[warp_tid][bin_idx] =
                        local_counts[LANE][UNPACKED_COUNTER];
                }
            }
        }

        CTA_SYNC();

        // Rake-reduce bin_count reductions

        // Whole blocks
        #pragma unroll
        for (int BIN_BASE   = RADIX_DIGITS % BLOCK_THREADS;
            (BIN_BASE + BLOCK_THREADS) <= RADIX_DIGITS;
            BIN_BASE += BLOCK_THREADS)
        {
            int bin_idx = BIN_BASE + threadIdx.x;

            OffsetT bin_count = 0;
            #pragma unroll
            for (int i = 0; i < WARP_THREADS; ++i)
                bin_count += temp_storage.block_counters[i][bin_idx];

            if (IS_DESCENDING)
                bin_idx = RADIX_DIGITS - bin_idx - 1;

            counters[(bin_stride * bin_idx) + bin_offset] = bin_count;
        }

        // Remainder
        if ((RADIX_DIGITS % BLOCK_THREADS != 0) && (threadIdx.x < RADIX_DIGITS))
        {
            int bin_idx = threadIdx.x;

            OffsetT bin_count = 0;
            #pragma unroll
            for (int i = 0; i < WARP_THREADS; ++i)
                bin_count += temp_storage.block_counters[i][bin_idx];

            if (IS_DESCENDING)
                bin_idx = RADIX_DIGITS - bin_idx - 1;

            counters[(bin_stride * bin_idx) + bin_offset] = bin_count;
        }
    }


    /**
     * Extract counts
     */
    template <int BINS_TRACKED_PER_THREAD>
    __device__ __forceinline__ void ExtractCounts(
        OffsetT (&bin_count)[BINS_TRACKED_PER_THREAD])  ///< [out] The exclusive prefix sum for the digits [(threadIdx.x * BINS_TRACKED_PER_THREAD) ... (threadIdx.x * BINS_TRACKED_PER_THREAD) + BINS_TRACKED_PER_THREAD - 1]
    {
        unsigned int warp_id    = threadIdx.x >> LOG_WARP_THREADS;
        unsigned int warp_tid   = LaneId();

        // Place unpacked digit counters in shared memory
        #pragma unroll
        for (int LANE = 0; LANE < LANES_PER_WARP; LANE++)
        {
            int counter_lane = (LANE * WARPS) + warp_id;
            if (counter_lane < COUNTER_LANES)
            {
                int digit_row = counter_lane << LOG_PACKING_RATIO;

                #pragma unroll
                for (int UNPACKED_COUNTER = 0; UNPACKED_COUNTER < PACKING_RATIO; UNPACKED_COUNTER++)
                {
                    int bin_idx = digit_row + UNPACKED_COUNTER;

                    temp_storage.block_counters[warp_tid][bin_idx] =
                        local_counts[LANE][UNPACKED_COUNTER];
                }
            }
        }

        CTA_SYNC();

        // Rake-reduce bin_count reductions
        #pragma unroll
        for (int track = 0; track < BINS_TRACKED_PER_THREAD; ++track)
        {
            int bin_idx = (threadIdx.x * BINS_TRACKED_PER_THREAD) + track;

            if ((BLOCK_THREADS == RADIX_DIGITS) || (bin_idx < RADIX_DIGITS))
            {
                bin_count[track] = 0;

                #pragma unroll
                for (int i = 0; i < WARP_THREADS; ++i)
                    bin_count[track] += temp_storage.block_counters[i][bin_idx];
            }
        }
    }

};


}               // CUB namespace
CUB_NS_POSTFIX  // Optional outer namespace(s)