1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
|
/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/**
* \file
* cub::DeviceRadixSort provides device-wide, parallel operations for computing a radix sort across a sequence of data items residing within device-accessible memory.
*/
#pragma once
#include <stdio.h>
#include <iterator>
#include "../../agent/agent_radix_sort_upsweep.cuh"
#include "../../agent/agent_radix_sort_downsweep.cuh"
#include "../../agent/agent_scan.cuh"
#include "../../block/block_radix_sort.cuh"
#include "../../grid/grid_even_share.cuh"
#include "../../util_type.cuh"
#include "../../util_debug.cuh"
#include "../../util_device.cuh"
#include "../../util_namespace.cuh"
/// Optional outer namespace(s)
CUB_NS_PREFIX
/// CUB namespace
namespace cub {
/******************************************************************************
* Kernel entry points
*****************************************************************************/
/**
* Upsweep digit-counting kernel entry point (multi-block). Computes privatized digit histograms, one per block.
*/
template <
typename ChainedPolicyT, ///< Chained tuning policy
bool ALT_DIGIT_BITS, ///< Whether or not to use the alternate (lower-bits) policy
bool IS_DESCENDING, ///< Whether or not the sorted-order is high-to-low
typename KeyT, ///< Key type
typename OffsetT> ///< Signed integer type for global offsets
__launch_bounds__ (int((ALT_DIGIT_BITS) ?
ChainedPolicyT::ActivePolicy::AltUpsweepPolicy::BLOCK_THREADS :
ChainedPolicyT::ActivePolicy::UpsweepPolicy::BLOCK_THREADS))
__global__ void DeviceRadixSortUpsweepKernel(
const KeyT *d_keys, ///< [in] Input keys buffer
OffsetT *d_spine, ///< [out] Privatized (per block) digit histograms (striped, i.e., 0s counts from each block, then 1s counts from each block, etc.)
OffsetT /*num_items*/, ///< [in] Total number of input data items
int current_bit, ///< [in] Bit position of current radix digit
int num_bits, ///< [in] Number of bits of current radix digit
GridEvenShare<OffsetT> even_share) ///< [in] Even-share descriptor for mapan equal number of tiles onto each thread block
{
enum {
TILE_ITEMS = ChainedPolicyT::ActivePolicy::AltUpsweepPolicy::BLOCK_THREADS *
ChainedPolicyT::ActivePolicy::AltUpsweepPolicy::ITEMS_PER_THREAD
};
// Parameterize AgentRadixSortUpsweep type for the current configuration
typedef AgentRadixSortUpsweep<
typename If<(ALT_DIGIT_BITS),
typename ChainedPolicyT::ActivePolicy::AltUpsweepPolicy,
typename ChainedPolicyT::ActivePolicy::UpsweepPolicy>::Type,
KeyT,
OffsetT>
AgentRadixSortUpsweepT;
// Shared memory storage
__shared__ typename AgentRadixSortUpsweepT::TempStorage temp_storage;
// Initialize GRID_MAPPING_RAKE even-share descriptor for this thread block
even_share.template BlockInit<TILE_ITEMS, GRID_MAPPING_RAKE>();
AgentRadixSortUpsweepT upsweep(temp_storage, d_keys, current_bit, num_bits);
upsweep.ProcessRegion(even_share.block_offset, even_share.block_end);
CTA_SYNC();
// Write out digit counts (striped)
upsweep.template ExtractCounts<IS_DESCENDING>(d_spine, gridDim.x, blockIdx.x);
}
/**
* Spine scan kernel entry point (single-block). Computes an exclusive prefix sum over the privatized digit histograms
*/
template <
typename ChainedPolicyT, ///< Chained tuning policy
typename OffsetT> ///< Signed integer type for global offsets
__launch_bounds__ (int(ChainedPolicyT::ActivePolicy::ScanPolicy::BLOCK_THREADS), 1)
__global__ void RadixSortScanBinsKernel(
OffsetT *d_spine, ///< [in,out] Privatized (per block) digit histograms (striped, i.e., 0s counts from each block, then 1s counts from each block, etc.)
int num_counts) ///< [in] Total number of bin-counts
{
// Parameterize the AgentScan type for the current configuration
typedef AgentScan<
typename ChainedPolicyT::ActivePolicy::ScanPolicy,
OffsetT*,
OffsetT*,
cub::Sum,
OffsetT,
OffsetT>
AgentScanT;
// Shared memory storage
__shared__ typename AgentScanT::TempStorage temp_storage;
// Block scan instance
AgentScanT block_scan(temp_storage, d_spine, d_spine, cub::Sum(), OffsetT(0)) ;
// Process full input tiles
int block_offset = 0;
BlockScanRunningPrefixOp<OffsetT, Sum> prefix_op(0, Sum());
while (block_offset + AgentScanT::TILE_ITEMS <= num_counts)
{
block_scan.template ConsumeTile<false, false>(block_offset, prefix_op);
block_offset += AgentScanT::TILE_ITEMS;
}
}
/**
* Downsweep pass kernel entry point (multi-block). Scatters keys (and values) into corresponding bins for the current digit place.
*/
template <
typename ChainedPolicyT, ///< Chained tuning policy
bool ALT_DIGIT_BITS, ///< Whether or not to use the alternate (lower-bits) policy
bool IS_DESCENDING, ///< Whether or not the sorted-order is high-to-low
typename KeyT, ///< Key type
typename ValueT, ///< Value type
typename OffsetT> ///< Signed integer type for global offsets
__launch_bounds__ (int((ALT_DIGIT_BITS) ?
ChainedPolicyT::ActivePolicy::AltDownsweepPolicy::BLOCK_THREADS :
ChainedPolicyT::ActivePolicy::DownsweepPolicy::BLOCK_THREADS))
__global__ void DeviceRadixSortDownsweepKernel(
const KeyT *d_keys_in, ///< [in] Input keys buffer
KeyT *d_keys_out, ///< [in] Output keys buffer
const ValueT *d_values_in, ///< [in] Input values buffer
ValueT *d_values_out, ///< [in] Output values buffer
OffsetT *d_spine, ///< [in] Scan of privatized (per block) digit histograms (striped, i.e., 0s counts from each block, then 1s counts from each block, etc.)
OffsetT num_items, ///< [in] Total number of input data items
int current_bit, ///< [in] Bit position of current radix digit
int num_bits, ///< [in] Number of bits of current radix digit
GridEvenShare<OffsetT> even_share) ///< [in] Even-share descriptor for mapan equal number of tiles onto each thread block
{
enum {
TILE_ITEMS = ChainedPolicyT::ActivePolicy::AltUpsweepPolicy::BLOCK_THREADS *
ChainedPolicyT::ActivePolicy::AltUpsweepPolicy::ITEMS_PER_THREAD
};
// Parameterize AgentRadixSortDownsweep type for the current configuration
typedef AgentRadixSortDownsweep<
typename If<(ALT_DIGIT_BITS),
typename ChainedPolicyT::ActivePolicy::AltDownsweepPolicy,
typename ChainedPolicyT::ActivePolicy::DownsweepPolicy>::Type,
IS_DESCENDING,
KeyT,
ValueT,
OffsetT>
AgentRadixSortDownsweepT;
// Shared memory storage
__shared__ typename AgentRadixSortDownsweepT::TempStorage temp_storage;
// Initialize even-share descriptor for this thread block
even_share.template BlockInit<TILE_ITEMS, GRID_MAPPING_RAKE>();
// Process input tiles
AgentRadixSortDownsweepT(temp_storage, num_items, d_spine, d_keys_in, d_keys_out, d_values_in, d_values_out, current_bit, num_bits).ProcessRegion(
even_share.block_offset,
even_share.block_end);
}
/**
* Single pass kernel entry point (single-block). Fully sorts a tile of input.
*/
template <
typename ChainedPolicyT, ///< Chained tuning policy
bool IS_DESCENDING, ///< Whether or not the sorted-order is high-to-low
typename KeyT, ///< Key type
typename ValueT, ///< Value type
typename OffsetT> ///< Signed integer type for global offsets
__launch_bounds__ (int(ChainedPolicyT::ActivePolicy::SingleTilePolicy::BLOCK_THREADS), 1)
__global__ void DeviceRadixSortSingleTileKernel(
const KeyT *d_keys_in, ///< [in] Input keys buffer
KeyT *d_keys_out, ///< [in] Output keys buffer
const ValueT *d_values_in, ///< [in] Input values buffer
ValueT *d_values_out, ///< [in] Output values buffer
OffsetT num_items, ///< [in] Total number of input data items
int current_bit, ///< [in] Bit position of current radix digit
int end_bit) ///< [in] The past-the-end (most-significant) bit index needed for key comparison
{
// Constants
enum
{
BLOCK_THREADS = ChainedPolicyT::ActivePolicy::SingleTilePolicy::BLOCK_THREADS,
ITEMS_PER_THREAD = ChainedPolicyT::ActivePolicy::SingleTilePolicy::ITEMS_PER_THREAD,
KEYS_ONLY = Equals<ValueT, NullType>::VALUE,
};
// BlockRadixSort type
typedef BlockRadixSort<
KeyT,
BLOCK_THREADS,
ITEMS_PER_THREAD,
ValueT,
ChainedPolicyT::ActivePolicy::SingleTilePolicy::RADIX_BITS,
(ChainedPolicyT::ActivePolicy::SingleTilePolicy::RANK_ALGORITHM == RADIX_RANK_MEMOIZE),
ChainedPolicyT::ActivePolicy::SingleTilePolicy::SCAN_ALGORITHM>
BlockRadixSortT;
// BlockLoad type (keys)
typedef BlockLoad<
KeyT,
BLOCK_THREADS,
ITEMS_PER_THREAD,
ChainedPolicyT::ActivePolicy::SingleTilePolicy::LOAD_ALGORITHM> BlockLoadKeys;
// BlockLoad type (values)
typedef BlockLoad<
ValueT,
BLOCK_THREADS,
ITEMS_PER_THREAD,
ChainedPolicyT::ActivePolicy::SingleTilePolicy::LOAD_ALGORITHM> BlockLoadValues;
// Unsigned word for key bits
typedef typename Traits<KeyT>::UnsignedBits UnsignedBitsT;
// Shared memory storage
__shared__ union TempStorage
{
typename BlockRadixSortT::TempStorage sort;
typename BlockLoadKeys::TempStorage load_keys;
typename BlockLoadValues::TempStorage load_values;
} temp_storage;
// Keys and values for the block
KeyT keys[ITEMS_PER_THREAD];
ValueT values[ITEMS_PER_THREAD];
// Get default (min/max) value for out-of-bounds keys
UnsignedBitsT default_key_bits = (IS_DESCENDING) ? Traits<KeyT>::LOWEST_KEY : Traits<KeyT>::MAX_KEY;
KeyT default_key = reinterpret_cast<KeyT&>(default_key_bits);
// Load keys
BlockLoadKeys(temp_storage.load_keys).Load(d_keys_in, keys, num_items, default_key);
CTA_SYNC();
// Load values
if (!KEYS_ONLY)
{
// Register pressure work-around: moving num_items through shfl prevents compiler
// from reusing guards/addressing from prior guarded loads
num_items = ShuffleIndex<CUB_PTX_WARP_THREADS>(num_items, 0, 0xffffffff);
BlockLoadValues(temp_storage.load_values).Load(d_values_in, values, num_items);
CTA_SYNC();
}
// Sort tile
BlockRadixSortT(temp_storage.sort).SortBlockedToStriped(
keys,
values,
current_bit,
end_bit,
Int2Type<IS_DESCENDING>(),
Int2Type<KEYS_ONLY>());
// Store keys and values
#pragma unroll
for (int ITEM = 0; ITEM < ITEMS_PER_THREAD; ++ITEM)
{
int item_offset = ITEM * BLOCK_THREADS + threadIdx.x;
if (item_offset < num_items)
{
d_keys_out[item_offset] = keys[ITEM];
if (!KEYS_ONLY)
d_values_out[item_offset] = values[ITEM];
}
}
}
/**
* Segmented radix sorting pass (one block per segment)
*/
template <
typename ChainedPolicyT, ///< Chained tuning policy
bool ALT_DIGIT_BITS, ///< Whether or not to use the alternate (lower-bits) policy
bool IS_DESCENDING, ///< Whether or not the sorted-order is high-to-low
typename KeyT, ///< Key type
typename ValueT, ///< Value type
typename OffsetIteratorT, ///< Random-access input iterator type for reading segment offsets \iterator
typename OffsetT> ///< Signed integer type for global offsets
__launch_bounds__ (int((ALT_DIGIT_BITS) ?
ChainedPolicyT::ActivePolicy::AltSegmentedPolicy::BLOCK_THREADS :
ChainedPolicyT::ActivePolicy::SegmentedPolicy::BLOCK_THREADS))
__global__ void DeviceSegmentedRadixSortKernel(
const KeyT *d_keys_in, ///< [in] Input keys buffer
KeyT *d_keys_out, ///< [in] Output keys buffer
const ValueT *d_values_in, ///< [in] Input values buffer
ValueT *d_values_out, ///< [in] Output values buffer
OffsetIteratorT d_begin_offsets, ///< [in] Pointer to the sequence of beginning offsets of length \p num_segments, such that <tt>d_begin_offsets[i]</tt> is the first element of the <em>i</em><sup>th</sup> data segment in <tt>d_keys_*</tt> and <tt>d_values_*</tt>
OffsetIteratorT d_end_offsets, ///< [in] Pointer to the sequence of ending offsets of length \p num_segments, such that <tt>d_end_offsets[i]-1</tt> is the last element of the <em>i</em><sup>th</sup> data segment in <tt>d_keys_*</tt> and <tt>d_values_*</tt>. If <tt>d_end_offsets[i]-1</tt> <= <tt>d_begin_offsets[i]</tt>, the <em>i</em><sup>th</sup> is considered empty.
int /*num_segments*/, ///< [in] The number of segments that comprise the sorting data
int current_bit, ///< [in] Bit position of current radix digit
int pass_bits) ///< [in] Number of bits of current radix digit
{
//
// Constants
//
typedef typename If<(ALT_DIGIT_BITS),
typename ChainedPolicyT::ActivePolicy::AltSegmentedPolicy,
typename ChainedPolicyT::ActivePolicy::SegmentedPolicy>::Type SegmentedPolicyT;
enum
{
BLOCK_THREADS = SegmentedPolicyT::BLOCK_THREADS,
ITEMS_PER_THREAD = SegmentedPolicyT::ITEMS_PER_THREAD,
RADIX_BITS = SegmentedPolicyT::RADIX_BITS,
TILE_ITEMS = BLOCK_THREADS * ITEMS_PER_THREAD,
RADIX_DIGITS = 1 << RADIX_BITS,
KEYS_ONLY = Equals<ValueT, NullType>::VALUE,
};
// Upsweep type
typedef AgentRadixSortUpsweep<
AgentRadixSortUpsweepPolicy<BLOCK_THREADS, ITEMS_PER_THREAD, SegmentedPolicyT::LOAD_MODIFIER, RADIX_BITS>,
KeyT,
OffsetT>
BlockUpsweepT;
// Digit-scan type
typedef BlockScan<OffsetT, BLOCK_THREADS> DigitScanT;
// Downsweep type
typedef AgentRadixSortDownsweep<SegmentedPolicyT, IS_DESCENDING, KeyT, ValueT, OffsetT> BlockDownsweepT;
enum
{
/// Number of bin-starting offsets tracked per thread
BINS_TRACKED_PER_THREAD = BlockDownsweepT::BINS_TRACKED_PER_THREAD
};
//
// Process input tiles
//
// Shared memory storage
__shared__ union
{
typename BlockUpsweepT::TempStorage upsweep;
typename BlockDownsweepT::TempStorage downsweep;
struct
{
volatile OffsetT reverse_counts_in[RADIX_DIGITS];
volatile OffsetT reverse_counts_out[RADIX_DIGITS];
typename DigitScanT::TempStorage scan;
};
} temp_storage;
OffsetT segment_begin = d_begin_offsets[blockIdx.x];
OffsetT segment_end = d_end_offsets[blockIdx.x];
OffsetT num_items = segment_end - segment_begin;
// Check if empty segment
if (num_items <= 0)
return;
// Upsweep
BlockUpsweepT upsweep(temp_storage.upsweep, d_keys_in, current_bit, pass_bits);
upsweep.ProcessRegion(segment_begin, segment_end);
CTA_SYNC();
// The count of each digit value in this pass (valid in the first RADIX_DIGITS threads)
OffsetT bin_count[BINS_TRACKED_PER_THREAD];
upsweep.ExtractCounts(bin_count);
CTA_SYNC();
if (IS_DESCENDING)
{
// Reverse bin counts
#pragma unroll
for (int track = 0; track < BINS_TRACKED_PER_THREAD; ++track)
{
int bin_idx = (threadIdx.x * BINS_TRACKED_PER_THREAD) + track;
if ((BLOCK_THREADS == RADIX_DIGITS) || (bin_idx < RADIX_DIGITS))
temp_storage.reverse_counts_in[bin_idx] = bin_count[track];
}
CTA_SYNC();
#pragma unroll
for (int track = 0; track < BINS_TRACKED_PER_THREAD; ++track)
{
int bin_idx = (threadIdx.x * BINS_TRACKED_PER_THREAD) + track;
if ((BLOCK_THREADS == RADIX_DIGITS) || (bin_idx < RADIX_DIGITS))
bin_count[track] = temp_storage.reverse_counts_in[RADIX_DIGITS - bin_idx - 1];
}
}
// Scan
OffsetT bin_offset[BINS_TRACKED_PER_THREAD]; // The global scatter base offset for each digit value in this pass (valid in the first RADIX_DIGITS threads)
DigitScanT(temp_storage.scan).ExclusiveSum(bin_count, bin_offset);
#pragma unroll
for (int track = 0; track < BINS_TRACKED_PER_THREAD; ++track)
{
bin_offset[track] += segment_begin;
}
if (IS_DESCENDING)
{
// Reverse bin offsets
#pragma unroll
for (int track = 0; track < BINS_TRACKED_PER_THREAD; ++track)
{
int bin_idx = (threadIdx.x * BINS_TRACKED_PER_THREAD) + track;
if ((BLOCK_THREADS == RADIX_DIGITS) || (bin_idx < RADIX_DIGITS))
temp_storage.reverse_counts_out[threadIdx.x] = bin_offset[track];
}
CTA_SYNC();
#pragma unroll
for (int track = 0; track < BINS_TRACKED_PER_THREAD; ++track)
{
int bin_idx = (threadIdx.x * BINS_TRACKED_PER_THREAD) + track;
if ((BLOCK_THREADS == RADIX_DIGITS) || (bin_idx < RADIX_DIGITS))
bin_offset[track] = temp_storage.reverse_counts_out[RADIX_DIGITS - bin_idx - 1];
}
}
CTA_SYNC();
// Downsweep
BlockDownsweepT downsweep(temp_storage.downsweep, bin_offset, num_items, d_keys_in, d_keys_out, d_values_in, d_values_out, current_bit, pass_bits);
downsweep.ProcessRegion(segment_begin, segment_end);
}
/******************************************************************************
* Policy
******************************************************************************/
/**
* Tuning policy for kernel specialization
*/
template <
typename KeyT, ///< Key type
typename ValueT, ///< Value type
typename OffsetT> ///< Signed integer type for global offsets
struct DeviceRadixSortPolicy
{
//------------------------------------------------------------------------------
// Constants
//------------------------------------------------------------------------------
enum
{
// Whether this is a keys-only (or key-value) sort
KEYS_ONLY = (Equals<ValueT, NullType>::VALUE),
};
// Dominant-sized key/value type
typedef typename If<(sizeof(ValueT) > 4) && (sizeof(KeyT) < sizeof(ValueT)), ValueT, KeyT>::Type DominantT;
//------------------------------------------------------------------------------
// Architecture-specific tuning policies
//------------------------------------------------------------------------------
/// SM20
struct Policy200 : ChainedPolicy<200, Policy200, Policy200>
{
enum {
PRIMARY_RADIX_BITS = 5,
ALT_RADIX_BITS = PRIMARY_RADIX_BITS - 1,
// Relative size of KeyT type to a 4-byte word
SCALE_FACTOR_4B = (CUB_MAX(sizeof(KeyT), sizeof(ValueT)) + 3) / 4,
};
// Keys-only upsweep policies
typedef AgentRadixSortUpsweepPolicy <64, CUB_MAX(1, 18 / SCALE_FACTOR_4B), LOAD_DEFAULT, PRIMARY_RADIX_BITS> UpsweepPolicyKeys;
typedef AgentRadixSortUpsweepPolicy <64, CUB_MAX(1, 18 / SCALE_FACTOR_4B), LOAD_DEFAULT, ALT_RADIX_BITS> AltUpsweepPolicyKeys;
// Key-value pairs upsweep policies
typedef AgentRadixSortUpsweepPolicy <128, CUB_MAX(1, 13 / SCALE_FACTOR_4B), LOAD_DEFAULT, PRIMARY_RADIX_BITS> UpsweepPolicyPairs;
typedef AgentRadixSortUpsweepPolicy <128, CUB_MAX(1, 13 / SCALE_FACTOR_4B), LOAD_DEFAULT, ALT_RADIX_BITS> AltUpsweepPolicyPairs;
// Upsweep policies
typedef typename If<KEYS_ONLY, UpsweepPolicyKeys, UpsweepPolicyPairs>::Type UpsweepPolicy;
typedef typename If<KEYS_ONLY, AltUpsweepPolicyKeys, AltUpsweepPolicyPairs>::Type AltUpsweepPolicy;
// Scan policy
typedef AgentScanPolicy <512, 4, BLOCK_LOAD_VECTORIZE, LOAD_DEFAULT, BLOCK_STORE_VECTORIZE, BLOCK_SCAN_RAKING_MEMOIZE> ScanPolicy;
// Keys-only downsweep policies
typedef AgentRadixSortDownsweepPolicy <64, CUB_MAX(1, 18 / SCALE_FACTOR_4B), BLOCK_LOAD_WARP_TRANSPOSE, LOAD_DEFAULT, RADIX_RANK_BASIC, BLOCK_SCAN_WARP_SCANS, PRIMARY_RADIX_BITS> DownsweepPolicyKeys;
typedef AgentRadixSortDownsweepPolicy <64, CUB_MAX(1, 18 / SCALE_FACTOR_4B), BLOCK_LOAD_WARP_TRANSPOSE, LOAD_DEFAULT, RADIX_RANK_BASIC, BLOCK_SCAN_WARP_SCANS, ALT_RADIX_BITS> AltDownsweepPolicyKeys;
// Key-value pairs downsweep policies
typedef AgentRadixSortDownsweepPolicy <128, CUB_MAX(1, 13 / SCALE_FACTOR_4B), BLOCK_LOAD_WARP_TRANSPOSE, LOAD_DEFAULT, RADIX_RANK_BASIC, BLOCK_SCAN_WARP_SCANS, PRIMARY_RADIX_BITS> DownsweepPolicyPairs;
typedef AgentRadixSortDownsweepPolicy <128, CUB_MAX(1, 13 / SCALE_FACTOR_4B), BLOCK_LOAD_WARP_TRANSPOSE, LOAD_DEFAULT, RADIX_RANK_BASIC, BLOCK_SCAN_WARP_SCANS, ALT_RADIX_BITS> AltDownsweepPolicyPairs;
// Downsweep policies
typedef typename If<KEYS_ONLY, DownsweepPolicyKeys, DownsweepPolicyPairs>::Type DownsweepPolicy;
typedef typename If<KEYS_ONLY, AltDownsweepPolicyKeys, AltDownsweepPolicyPairs>::Type AltDownsweepPolicy;
// Single-tile policy
typedef DownsweepPolicy SingleTilePolicy;
// Segmented policies
typedef DownsweepPolicy SegmentedPolicy;
typedef AltDownsweepPolicy AltSegmentedPolicy;
};
/// SM30
struct Policy300 : ChainedPolicy<300, Policy300, Policy200>
{
enum {
PRIMARY_RADIX_BITS = 5,
ALT_RADIX_BITS = PRIMARY_RADIX_BITS - 1,
// Relative size of KeyT type to a 4-byte word
SCALE_FACTOR_4B = (CUB_MAX(sizeof(KeyT), sizeof(ValueT)) + 3) / 4,
};
// Keys-only upsweep policies
typedef AgentRadixSortUpsweepPolicy <256, CUB_MAX(1, 7 / SCALE_FACTOR_4B), LOAD_DEFAULT, PRIMARY_RADIX_BITS> UpsweepPolicyKeys;
typedef AgentRadixSortUpsweepPolicy <256, CUB_MAX(1, 7 / SCALE_FACTOR_4B), LOAD_DEFAULT, ALT_RADIX_BITS> AltUpsweepPolicyKeys;
// Key-value pairs upsweep policies
typedef AgentRadixSortUpsweepPolicy <256, CUB_MAX(1, 5 / SCALE_FACTOR_4B), LOAD_DEFAULT, PRIMARY_RADIX_BITS> UpsweepPolicyPairs;
typedef AgentRadixSortUpsweepPolicy <256, CUB_MAX(1, 5 / SCALE_FACTOR_4B), LOAD_DEFAULT, ALT_RADIX_BITS> AltUpsweepPolicyPairs;
// Upsweep policies
typedef typename If<KEYS_ONLY, UpsweepPolicyKeys, UpsweepPolicyPairs>::Type UpsweepPolicy;
typedef typename If<KEYS_ONLY, AltUpsweepPolicyKeys, AltUpsweepPolicyPairs>::Type AltUpsweepPolicy;
// Scan policy
typedef AgentScanPolicy <1024, 4, BLOCK_LOAD_VECTORIZE, LOAD_DEFAULT, BLOCK_STORE_VECTORIZE, BLOCK_SCAN_WARP_SCANS> ScanPolicy;
// Keys-only downsweep policies
typedef AgentRadixSortDownsweepPolicy <128, CUB_MAX(1, 14 / SCALE_FACTOR_4B), BLOCK_LOAD_WARP_TRANSPOSE, LOAD_DEFAULT, RADIX_RANK_BASIC, BLOCK_SCAN_WARP_SCANS, PRIMARY_RADIX_BITS> DownsweepPolicyKeys;
typedef AgentRadixSortDownsweepPolicy <128, CUB_MAX(1, 14 / SCALE_FACTOR_4B), BLOCK_LOAD_WARP_TRANSPOSE, LOAD_DEFAULT, RADIX_RANK_BASIC, BLOCK_SCAN_WARP_SCANS, ALT_RADIX_BITS> AltDownsweepPolicyKeys;
// Key-value pairs downsweep policies
typedef AgentRadixSortDownsweepPolicy <128, CUB_MAX(1, 10 / SCALE_FACTOR_4B), BLOCK_LOAD_TRANSPOSE, LOAD_DEFAULT, RADIX_RANK_BASIC, BLOCK_SCAN_WARP_SCANS, PRIMARY_RADIX_BITS> DownsweepPolicyPairs;
typedef AgentRadixSortDownsweepPolicy <128, CUB_MAX(1, 10 / SCALE_FACTOR_4B), BLOCK_LOAD_TRANSPOSE, LOAD_DEFAULT, RADIX_RANK_BASIC, BLOCK_SCAN_WARP_SCANS, ALT_RADIX_BITS> AltDownsweepPolicyPairs;
// Downsweep policies
typedef typename If<KEYS_ONLY, DownsweepPolicyKeys, DownsweepPolicyPairs>::Type DownsweepPolicy;
typedef typename If<KEYS_ONLY, AltDownsweepPolicyKeys, AltDownsweepPolicyPairs>::Type AltDownsweepPolicy;
// Single-tile policy
typedef DownsweepPolicy SingleTilePolicy;
// Segmented policies
typedef DownsweepPolicy SegmentedPolicy;
typedef AltDownsweepPolicy AltSegmentedPolicy;
};
/// SM35
struct Policy350 : ChainedPolicy<350, Policy350, Policy300>
{
enum {
PRIMARY_RADIX_BITS = (sizeof(KeyT) > 1) ? 6 : 5, // 1.72B 32b keys/s, 1.17B 32b pairs/s, 1.55B 32b segmented keys/s (K40m)
};
// Scan policy
typedef AgentScanPolicy <1024, 4, BLOCK_LOAD_VECTORIZE, LOAD_DEFAULT, BLOCK_STORE_VECTORIZE, BLOCK_SCAN_WARP_SCANS> ScanPolicy;
// Keys-only downsweep policies
typedef AgentRadixSortDownsweepPolicy <CUB_SCALED_GRANULARITIES(128, 9, DominantT), BLOCK_LOAD_WARP_TRANSPOSE, LOAD_LDG, RADIX_RANK_MATCH, BLOCK_SCAN_WARP_SCANS, PRIMARY_RADIX_BITS> DownsweepPolicyKeys;
typedef AgentRadixSortDownsweepPolicy <CUB_SCALED_GRANULARITIES(64, 18, DominantT), BLOCK_LOAD_DIRECT, LOAD_LDG, RADIX_RANK_MEMOIZE, BLOCK_SCAN_WARP_SCANS, PRIMARY_RADIX_BITS - 1> AltDownsweepPolicyKeys;
// Key-value pairs downsweep policies
typedef DownsweepPolicyKeys DownsweepPolicyPairs;
typedef AgentRadixSortDownsweepPolicy <CUB_SCALED_GRANULARITIES(128, 15, DominantT), BLOCK_LOAD_DIRECT, LOAD_LDG, RADIX_RANK_MEMOIZE, BLOCK_SCAN_WARP_SCANS, PRIMARY_RADIX_BITS - 1> AltDownsweepPolicyPairs;
// Downsweep policies
typedef typename If<KEYS_ONLY, DownsweepPolicyKeys, DownsweepPolicyPairs>::Type DownsweepPolicy;
typedef typename If<KEYS_ONLY, AltDownsweepPolicyKeys, AltDownsweepPolicyPairs>::Type AltDownsweepPolicy;
// Upsweep policies
typedef DownsweepPolicy UpsweepPolicy;
typedef AltDownsweepPolicy AltUpsweepPolicy;
// Single-tile policy
typedef DownsweepPolicy SingleTilePolicy;
// Segmented policies
typedef DownsweepPolicy SegmentedPolicy;
typedef AltDownsweepPolicy AltSegmentedPolicy;
};
/// SM50
struct Policy500 : ChainedPolicy<500, Policy500, Policy350>
{
enum {
PRIMARY_RADIX_BITS = (sizeof(KeyT) > 1) ? 7 : 5, // 3.5B 32b keys/s, 1.92B 32b pairs/s (TitanX)
SINGLE_TILE_RADIX_BITS = (sizeof(KeyT) > 1) ? 6 : 5,
SEGMENTED_RADIX_BITS = (sizeof(KeyT) > 1) ? 6 : 5, // 3.1B 32b segmented keys/s (TitanX)
};
// ScanPolicy
typedef AgentScanPolicy <512, 23, BLOCK_LOAD_WARP_TRANSPOSE, LOAD_DEFAULT, BLOCK_STORE_WARP_TRANSPOSE, BLOCK_SCAN_RAKING_MEMOIZE> ScanPolicy;
// Downsweep policies
typedef AgentRadixSortDownsweepPolicy <CUB_SCALED_GRANULARITIES(160, 39, DominantT), BLOCK_LOAD_WARP_TRANSPOSE, LOAD_DEFAULT, RADIX_RANK_BASIC, BLOCK_SCAN_WARP_SCANS, PRIMARY_RADIX_BITS> DownsweepPolicy;
typedef AgentRadixSortDownsweepPolicy <CUB_SCALED_GRANULARITIES(256, 16, DominantT), BLOCK_LOAD_DIRECT, LOAD_LDG, RADIX_RANK_MEMOIZE, BLOCK_SCAN_RAKING_MEMOIZE, PRIMARY_RADIX_BITS - 1> AltDownsweepPolicy;
// Upsweep policies
typedef DownsweepPolicy UpsweepPolicy;
typedef AltDownsweepPolicy AltUpsweepPolicy;
// Single-tile policy
typedef AgentRadixSortDownsweepPolicy <CUB_SCALED_GRANULARITIES(256, 19, DominantT), BLOCK_LOAD_DIRECT, LOAD_LDG, RADIX_RANK_MEMOIZE, BLOCK_SCAN_WARP_SCANS, SINGLE_TILE_RADIX_BITS> SingleTilePolicy;
// Segmented policies
typedef AgentRadixSortDownsweepPolicy <CUB_SCALED_GRANULARITIES(192, 31, DominantT), BLOCK_LOAD_WARP_TRANSPOSE, LOAD_DEFAULT, RADIX_RANK_MEMOIZE, BLOCK_SCAN_WARP_SCANS, SEGMENTED_RADIX_BITS> SegmentedPolicy;
typedef AgentRadixSortDownsweepPolicy <CUB_SCALED_GRANULARITIES(256, 11, DominantT), BLOCK_LOAD_WARP_TRANSPOSE, LOAD_DEFAULT, RADIX_RANK_MEMOIZE, BLOCK_SCAN_WARP_SCANS, SEGMENTED_RADIX_BITS - 1> AltSegmentedPolicy;
};
/// SM60 (GP100)
struct Policy600 : ChainedPolicy<600, Policy600, Policy500>
{
enum {
PRIMARY_RADIX_BITS = (sizeof(KeyT) > 1) ? 7 : 5, // 6.9B 32b keys/s (Quadro P100)
SINGLE_TILE_RADIX_BITS = (sizeof(KeyT) > 1) ? 6 : 5,
SEGMENTED_RADIX_BITS = (sizeof(KeyT) > 1) ? 6 : 5, // 5.9B 32b segmented keys/s (Quadro P100)
};
// ScanPolicy
typedef AgentScanPolicy <512, 23, BLOCK_LOAD_WARP_TRANSPOSE, LOAD_DEFAULT, BLOCK_STORE_WARP_TRANSPOSE, BLOCK_SCAN_RAKING_MEMOIZE> ScanPolicy;
// Downsweep policies
typedef AgentRadixSortDownsweepPolicy <CUB_SCALED_GRANULARITIES(256, 25, DominantT), BLOCK_LOAD_TRANSPOSE, LOAD_DEFAULT, RADIX_RANK_MATCH, BLOCK_SCAN_WARP_SCANS, PRIMARY_RADIX_BITS> DownsweepPolicy;
typedef AgentRadixSortDownsweepPolicy <CUB_SCALED_GRANULARITIES(192, 39, DominantT), BLOCK_LOAD_TRANSPOSE, LOAD_DEFAULT, RADIX_RANK_MEMOIZE, BLOCK_SCAN_WARP_SCANS, PRIMARY_RADIX_BITS - 1> AltDownsweepPolicy;
// Upsweep policies
typedef DownsweepPolicy UpsweepPolicy;
typedef AltDownsweepPolicy AltUpsweepPolicy;
// Single-tile policy
typedef AgentRadixSortDownsweepPolicy <CUB_SCALED_GRANULARITIES(256, 19, DominantT), BLOCK_LOAD_DIRECT, LOAD_LDG, RADIX_RANK_MEMOIZE, BLOCK_SCAN_WARP_SCANS, SINGLE_TILE_RADIX_BITS> SingleTilePolicy;
// Segmented policies
typedef AgentRadixSortDownsweepPolicy <CUB_SCALED_GRANULARITIES(192, 39, DominantT), BLOCK_LOAD_TRANSPOSE, LOAD_DEFAULT, RADIX_RANK_MEMOIZE, BLOCK_SCAN_WARP_SCANS, SEGMENTED_RADIX_BITS> SegmentedPolicy;
typedef AgentRadixSortDownsweepPolicy <CUB_SCALED_GRANULARITIES(384, 11, DominantT), BLOCK_LOAD_TRANSPOSE, LOAD_DEFAULT, RADIX_RANK_MEMOIZE, BLOCK_SCAN_WARP_SCANS, SEGMENTED_RADIX_BITS - 1> AltSegmentedPolicy;
};
/// SM61 (GP104)
struct Policy610 : ChainedPolicy<610, Policy610, Policy600>
{
enum {
PRIMARY_RADIX_BITS = (sizeof(KeyT) > 1) ? 7 : 5, // 3.4B 32b keys/s, 1.83B 32b pairs/s (1080)
SINGLE_TILE_RADIX_BITS = (sizeof(KeyT) > 1) ? 6 : 5,
SEGMENTED_RADIX_BITS = (sizeof(KeyT) > 1) ? 6 : 5, // 3.3B 32b segmented keys/s (1080)
};
// ScanPolicy
typedef AgentScanPolicy <512, 23, BLOCK_LOAD_WARP_TRANSPOSE, LOAD_DEFAULT, BLOCK_STORE_WARP_TRANSPOSE, BLOCK_SCAN_RAKING_MEMOIZE> ScanPolicy;
// Downsweep policies
typedef AgentRadixSortDownsweepPolicy <CUB_SCALED_GRANULARITIES(384, 31, DominantT), BLOCK_LOAD_TRANSPOSE, LOAD_DEFAULT, RADIX_RANK_MATCH, BLOCK_SCAN_RAKING_MEMOIZE, PRIMARY_RADIX_BITS> DownsweepPolicy;
typedef AgentRadixSortDownsweepPolicy <CUB_SCALED_GRANULARITIES(256, 35, DominantT), BLOCK_LOAD_TRANSPOSE, LOAD_DEFAULT, RADIX_RANK_MEMOIZE, BLOCK_SCAN_RAKING_MEMOIZE, PRIMARY_RADIX_BITS - 1> AltDownsweepPolicy;
// Upsweep policies
typedef AgentRadixSortUpsweepPolicy <CUB_SCALED_GRANULARITIES(128, 16, DominantT), LOAD_LDG, PRIMARY_RADIX_BITS> UpsweepPolicy;
typedef AgentRadixSortUpsweepPolicy <CUB_SCALED_GRANULARITIES(128, 16, DominantT), LOAD_LDG, PRIMARY_RADIX_BITS - 1> AltUpsweepPolicy;
// Single-tile policy
typedef AgentRadixSortDownsweepPolicy <CUB_SCALED_GRANULARITIES(256, 19, DominantT), BLOCK_LOAD_DIRECT, LOAD_LDG, RADIX_RANK_MEMOIZE, BLOCK_SCAN_WARP_SCANS, SINGLE_TILE_RADIX_BITS> SingleTilePolicy;
// Segmented policies
typedef AgentRadixSortDownsweepPolicy <CUB_SCALED_GRANULARITIES(192, 39, DominantT), BLOCK_LOAD_TRANSPOSE, LOAD_DEFAULT, RADIX_RANK_MEMOIZE, BLOCK_SCAN_WARP_SCANS, SEGMENTED_RADIX_BITS> SegmentedPolicy;
typedef AgentRadixSortDownsweepPolicy <CUB_SCALED_GRANULARITIES(384, 11, DominantT), BLOCK_LOAD_TRANSPOSE, LOAD_DEFAULT, RADIX_RANK_MEMOIZE, BLOCK_SCAN_WARP_SCANS, SEGMENTED_RADIX_BITS - 1> AltSegmentedPolicy;
};
/// SM62 (Tegra, less RF)
struct Policy620 : ChainedPolicy<620, Policy620, Policy610>
{
enum {
PRIMARY_RADIX_BITS = 5,
ALT_RADIX_BITS = PRIMARY_RADIX_BITS - 1,
};
// ScanPolicy
typedef AgentScanPolicy <512, 23, BLOCK_LOAD_WARP_TRANSPOSE, LOAD_DEFAULT, BLOCK_STORE_WARP_TRANSPOSE, BLOCK_SCAN_RAKING_MEMOIZE> ScanPolicy;
// Downsweep policies
typedef AgentRadixSortDownsweepPolicy <CUB_SCALED_GRANULARITIES(256, 16, DominantT), BLOCK_LOAD_TRANSPOSE, LOAD_DEFAULT, RADIX_RANK_MEMOIZE, BLOCK_SCAN_RAKING_MEMOIZE, PRIMARY_RADIX_BITS> DownsweepPolicy;
typedef AgentRadixSortDownsweepPolicy <CUB_SCALED_GRANULARITIES(256, 16, DominantT), BLOCK_LOAD_TRANSPOSE, LOAD_DEFAULT, RADIX_RANK_MEMOIZE, BLOCK_SCAN_RAKING_MEMOIZE, ALT_RADIX_BITS> AltDownsweepPolicy;
// Upsweep policies
typedef DownsweepPolicy UpsweepPolicy;
typedef AltDownsweepPolicy AltUpsweepPolicy;
// Single-tile policy
typedef AgentRadixSortDownsweepPolicy <CUB_SCALED_GRANULARITIES(256, 19, DominantT), BLOCK_LOAD_DIRECT, LOAD_LDG, RADIX_RANK_MEMOIZE, BLOCK_SCAN_WARP_SCANS, PRIMARY_RADIX_BITS> SingleTilePolicy;
// Segmented policies
typedef DownsweepPolicy SegmentedPolicy;
typedef AltDownsweepPolicy AltSegmentedPolicy;
};
/// SM70 (GV100)
struct Policy700 : ChainedPolicy<700, Policy700, Policy620>
{
enum {
PRIMARY_RADIX_BITS = (sizeof(KeyT) > 1) ? 7 : 5, // 7.62B 32b keys/s (GV100)
SINGLE_TILE_RADIX_BITS = (sizeof(KeyT) > 1) ? 6 : 5,
SEGMENTED_RADIX_BITS = (sizeof(KeyT) > 1) ? 6 : 5, // 8.7B 32b segmented keys/s (GV100)
};
// ScanPolicy
typedef AgentScanPolicy <512, 23, BLOCK_LOAD_WARP_TRANSPOSE, LOAD_DEFAULT, BLOCK_STORE_WARP_TRANSPOSE, BLOCK_SCAN_RAKING_MEMOIZE> ScanPolicy;
// Downsweep policies
typedef AgentRadixSortDownsweepPolicy <CUB_SCALED_GRANULARITIES(256, 25, DominantT), BLOCK_LOAD_TRANSPOSE, LOAD_DEFAULT, RADIX_RANK_MATCH, BLOCK_SCAN_WARP_SCANS, PRIMARY_RADIX_BITS> DownsweepPolicy;
typedef AgentRadixSortDownsweepPolicy <CUB_SCALED_GRANULARITIES(256, 25, DominantT), BLOCK_LOAD_TRANSPOSE, LOAD_DEFAULT, RADIX_RANK_MEMOIZE, BLOCK_SCAN_WARP_SCANS, PRIMARY_RADIX_BITS - 1> AltDownsweepPolicy;
// Upsweep policies
typedef DownsweepPolicy UpsweepPolicy;
typedef AltDownsweepPolicy AltUpsweepPolicy;
// Single-tile policy
typedef AgentRadixSortDownsweepPolicy <CUB_SCALED_GRANULARITIES(256, 19, DominantT), BLOCK_LOAD_DIRECT, LOAD_LDG, RADIX_RANK_MEMOIZE, BLOCK_SCAN_WARP_SCANS, SINGLE_TILE_RADIX_BITS> SingleTilePolicy;
// Segmented policies
typedef AgentRadixSortDownsweepPolicy <CUB_SCALED_GRANULARITIES(192, 39, DominantT), BLOCK_LOAD_TRANSPOSE, LOAD_DEFAULT, RADIX_RANK_MEMOIZE, BLOCK_SCAN_WARP_SCANS, SEGMENTED_RADIX_BITS> SegmentedPolicy;
typedef AgentRadixSortDownsweepPolicy <CUB_SCALED_GRANULARITIES(384, 11, DominantT), BLOCK_LOAD_TRANSPOSE, LOAD_DEFAULT, RADIX_RANK_MEMOIZE, BLOCK_SCAN_WARP_SCANS, SEGMENTED_RADIX_BITS - 1> AltSegmentedPolicy;
};
/// MaxPolicy
typedef Policy700 MaxPolicy;
};
/******************************************************************************
* Single-problem dispatch
******************************************************************************/
/**
* Utility class for dispatching the appropriately-tuned kernels for device-wide radix sort
*/
template <
bool IS_DESCENDING, ///< Whether or not the sorted-order is high-to-low
typename KeyT, ///< Key type
typename ValueT, ///< Value type
typename OffsetT> ///< Signed integer type for global offsets
struct DispatchRadixSort :
DeviceRadixSortPolicy<KeyT, ValueT, OffsetT>
{
//------------------------------------------------------------------------------
// Constants
//------------------------------------------------------------------------------
enum
{
// Whether this is a keys-only (or key-value) sort
KEYS_ONLY = (Equals<ValueT, NullType>::VALUE),
};
//------------------------------------------------------------------------------
// Problem state
//------------------------------------------------------------------------------
void *d_temp_storage; ///< [in] %Device-accessible allocation of temporary storage. When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
size_t &temp_storage_bytes; ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
DoubleBuffer<KeyT> &d_keys; ///< [in,out] Double-buffer whose current buffer contains the unsorted input keys and, upon return, is updated to point to the sorted output keys
DoubleBuffer<ValueT> &d_values; ///< [in,out] Double-buffer whose current buffer contains the unsorted input values and, upon return, is updated to point to the sorted output values
OffsetT num_items; ///< [in] Number of items to sort
int begin_bit; ///< [in] The beginning (least-significant) bit index needed for key comparison
int end_bit; ///< [in] The past-the-end (most-significant) bit index needed for key comparison
cudaStream_t stream; ///< [in] CUDA stream to launch kernels within. Default is stream<sub>0</sub>.
bool debug_synchronous; ///< [in] Whether or not to synchronize the stream after every kernel launch to check for errors. Also causes launch configurations to be printed to the console. Default is \p false.
int ptx_version; ///< [in] PTX version
bool is_overwrite_okay; ///< [in] Whether is okay to overwrite source buffers
//------------------------------------------------------------------------------
// Constructor
//------------------------------------------------------------------------------
/// Constructor
CUB_RUNTIME_FUNCTION __forceinline__
DispatchRadixSort(
void* d_temp_storage,
size_t &temp_storage_bytes,
DoubleBuffer<KeyT> &d_keys,
DoubleBuffer<ValueT> &d_values,
OffsetT num_items,
int begin_bit,
int end_bit,
bool is_overwrite_okay,
cudaStream_t stream,
bool debug_synchronous,
int ptx_version)
:
d_temp_storage(d_temp_storage),
temp_storage_bytes(temp_storage_bytes),
d_keys(d_keys),
d_values(d_values),
num_items(num_items),
begin_bit(begin_bit),
end_bit(end_bit),
stream(stream),
debug_synchronous(debug_synchronous),
ptx_version(ptx_version),
is_overwrite_okay(is_overwrite_okay)
{}
//------------------------------------------------------------------------------
// Small-problem (single tile) invocation
//------------------------------------------------------------------------------
/// Invoke a single block to sort in-core
template <
typename ActivePolicyT, ///< Umbrella policy active for the target device
typename SingleTileKernelT> ///< Function type of cub::DeviceRadixSortSingleTileKernel
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t InvokeSingleTile(
SingleTileKernelT single_tile_kernel) ///< [in] Kernel function pointer to parameterization of cub::DeviceRadixSortSingleTileKernel
{
#ifndef CUB_RUNTIME_ENABLED
(void)single_tile_kernel;
// Kernel launch not supported from this device
return CubDebug(cudaErrorNotSupported );
#else
cudaError error = cudaSuccess;
do
{
// Return if the caller is simply requesting the size of the storage allocation
if (d_temp_storage == NULL)
{
temp_storage_bytes = 1;
break;
}
// Return if empty problem
if (num_items == 0)
break;
// Log single_tile_kernel configuration
if (debug_synchronous)
_CubLog("Invoking single_tile_kernel<<<%d, %d, 0, %lld>>>(), %d items per thread, %d SM occupancy, current bit %d, bit_grain %d\n",
1, ActivePolicyT::SingleTilePolicy::BLOCK_THREADS, (long long) stream,
ActivePolicyT::SingleTilePolicy::ITEMS_PER_THREAD, 1, begin_bit, ActivePolicyT::SingleTilePolicy::RADIX_BITS);
// Invoke upsweep_kernel with same grid size as downsweep_kernel
single_tile_kernel<<<1, ActivePolicyT::SingleTilePolicy::BLOCK_THREADS, 0, stream>>>(
d_keys.Current(),
d_keys.Alternate(),
d_values.Current(),
d_values.Alternate(),
num_items,
begin_bit,
end_bit);
// Check for failure to launch
if (CubDebug(error = cudaPeekAtLastError())) break;
// Sync the stream if specified to flush runtime errors
if (debug_synchronous && (CubDebug(error = SyncStream(stream)))) break;
// Update selector
d_keys.selector ^= 1;
d_values.selector ^= 1;
}
while (0);
return error;
#endif // CUB_RUNTIME_ENABLED
}
//------------------------------------------------------------------------------
// Normal problem size invocation
//------------------------------------------------------------------------------
/**
* Invoke a three-kernel sorting pass at the current bit.
*/
template <typename PassConfigT>
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t InvokePass(
const KeyT *d_keys_in,
KeyT *d_keys_out,
const ValueT *d_values_in,
ValueT *d_values_out,
OffsetT *d_spine,
int spine_length,
int ¤t_bit,
PassConfigT &pass_config)
{
cudaError error = cudaSuccess;
do
{
int pass_bits = CUB_MIN(pass_config.radix_bits, (end_bit - current_bit));
// Log upsweep_kernel configuration
if (debug_synchronous)
_CubLog("Invoking upsweep_kernel<<<%d, %d, 0, %lld>>>(), %d items per thread, %d SM occupancy, current bit %d, bit_grain %d\n",
pass_config.even_share.grid_size, pass_config.upsweep_config.block_threads, (long long) stream,
pass_config.upsweep_config.items_per_thread, pass_config.upsweep_config.sm_occupancy, current_bit, pass_bits);
// Invoke upsweep_kernel with same grid size as downsweep_kernel
pass_config.upsweep_kernel<<<pass_config.even_share.grid_size, pass_config.upsweep_config.block_threads, 0, stream>>>(
d_keys_in,
d_spine,
num_items,
current_bit,
pass_bits,
pass_config.even_share);
// Check for failure to launch
if (CubDebug(error = cudaPeekAtLastError())) break;
// Sync the stream if specified to flush runtime errors
if (debug_synchronous && (CubDebug(error = SyncStream(stream)))) break;
// Log scan_kernel configuration
if (debug_synchronous) _CubLog("Invoking scan_kernel<<<%d, %d, 0, %lld>>>(), %d items per thread\n",
1, pass_config.scan_config.block_threads, (long long) stream, pass_config.scan_config.items_per_thread);
// Invoke scan_kernel
pass_config.scan_kernel<<<1, pass_config.scan_config.block_threads, 0, stream>>>(
d_spine,
spine_length);
// Check for failure to launch
if (CubDebug(error = cudaPeekAtLastError())) break;
// Sync the stream if specified to flush runtime errors
if (debug_synchronous && (CubDebug(error = SyncStream(stream)))) break;
// Log downsweep_kernel configuration
if (debug_synchronous) _CubLog("Invoking downsweep_kernel<<<%d, %d, 0, %lld>>>(), %d items per thread, %d SM occupancy\n",
pass_config.even_share.grid_size, pass_config.downsweep_config.block_threads, (long long) stream,
pass_config.downsweep_config.items_per_thread, pass_config.downsweep_config.sm_occupancy);
// Invoke downsweep_kernel
pass_config.downsweep_kernel<<<pass_config.even_share.grid_size, pass_config.downsweep_config.block_threads, 0, stream>>>(
d_keys_in,
d_keys_out,
d_values_in,
d_values_out,
d_spine,
num_items,
current_bit,
pass_bits,
pass_config.even_share);
// Check for failure to launch
if (CubDebug(error = cudaPeekAtLastError())) break;
// Sync the stream if specified to flush runtime errors
if (debug_synchronous && (CubDebug(error = SyncStream(stream)))) break;
// Update current bit
current_bit += pass_bits;
}
while (0);
return error;
}
/// Pass configuration structure
template <
typename UpsweepKernelT,
typename ScanKernelT,
typename DownsweepKernelT>
struct PassConfig
{
UpsweepKernelT upsweep_kernel;
KernelConfig upsweep_config;
ScanKernelT scan_kernel;
KernelConfig scan_config;
DownsweepKernelT downsweep_kernel;
KernelConfig downsweep_config;
int radix_bits;
int radix_digits;
int max_downsweep_grid_size;
GridEvenShare<OffsetT> even_share;
/// Initialize pass configuration
template <
typename UpsweepPolicyT,
typename ScanPolicyT,
typename DownsweepPolicyT>
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t InitPassConfig(
UpsweepKernelT upsweep_kernel,
ScanKernelT scan_kernel,
DownsweepKernelT downsweep_kernel,
int ptx_version,
int sm_count,
int num_items)
{
cudaError error = cudaSuccess;
do
{
this->upsweep_kernel = upsweep_kernel;
this->scan_kernel = scan_kernel;
this->downsweep_kernel = downsweep_kernel;
radix_bits = DownsweepPolicyT::RADIX_BITS;
radix_digits = 1 << radix_bits;
if (CubDebug(error = upsweep_config.Init<UpsweepPolicyT>(upsweep_kernel))) break;
if (CubDebug(error = scan_config.Init<ScanPolicyT>(scan_kernel))) break;
if (CubDebug(error = downsweep_config.Init<DownsweepPolicyT>(downsweep_kernel))) break;
max_downsweep_grid_size = (downsweep_config.sm_occupancy * sm_count) * CUB_SUBSCRIPTION_FACTOR(ptx_version);
even_share.DispatchInit(
num_items,
max_downsweep_grid_size,
CUB_MAX(downsweep_config.tile_size, upsweep_config.tile_size));
}
while (0);
return error;
}
};
/// Invocation (run multiple digit passes)
template <
typename ActivePolicyT, ///< Umbrella policy active for the target device
typename UpsweepKernelT, ///< Function type of cub::DeviceRadixSortUpsweepKernel
typename ScanKernelT, ///< Function type of cub::SpineScanKernel
typename DownsweepKernelT> ///< Function type of cub::DeviceRadixSortDownsweepKernel
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t InvokePasses(
UpsweepKernelT upsweep_kernel, ///< [in] Kernel function pointer to parameterization of cub::DeviceRadixSortUpsweepKernel
UpsweepKernelT alt_upsweep_kernel, ///< [in] Alternate kernel function pointer to parameterization of cub::DeviceRadixSortUpsweepKernel
ScanKernelT scan_kernel, ///< [in] Kernel function pointer to parameterization of cub::SpineScanKernel
DownsweepKernelT downsweep_kernel, ///< [in] Kernel function pointer to parameterization of cub::DeviceRadixSortDownsweepKernel
DownsweepKernelT alt_downsweep_kernel) ///< [in] Alternate kernel function pointer to parameterization of cub::DeviceRadixSortDownsweepKernel
{
#ifndef CUB_RUNTIME_ENABLED
(void)upsweep_kernel;
(void)alt_upsweep_kernel;
(void)scan_kernel;
(void)downsweep_kernel;
(void)alt_downsweep_kernel;
// Kernel launch not supported from this device
return CubDebug(cudaErrorNotSupported );
#else
cudaError error = cudaSuccess;
do
{
// Get device ordinal
int device_ordinal;
if (CubDebug(error = cudaGetDevice(&device_ordinal))) break;
// Get SM count
int sm_count;
if (CubDebug(error = cudaDeviceGetAttribute (&sm_count, cudaDevAttrMultiProcessorCount, device_ordinal))) break;
// Init regular and alternate-digit kernel configurations
PassConfig<UpsweepKernelT, ScanKernelT, DownsweepKernelT> pass_config, alt_pass_config;
if ((error = pass_config.template InitPassConfig<
typename ActivePolicyT::UpsweepPolicy,
typename ActivePolicyT::ScanPolicy,
typename ActivePolicyT::DownsweepPolicy>(
upsweep_kernel, scan_kernel, downsweep_kernel, ptx_version, sm_count, num_items))) break;
if ((error = alt_pass_config.template InitPassConfig<
typename ActivePolicyT::AltUpsweepPolicy,
typename ActivePolicyT::ScanPolicy,
typename ActivePolicyT::AltDownsweepPolicy>(
alt_upsweep_kernel, scan_kernel, alt_downsweep_kernel, ptx_version, sm_count, num_items))) break;
// Get maximum spine length
int max_grid_size = CUB_MAX(pass_config.max_downsweep_grid_size, alt_pass_config.max_downsweep_grid_size);
int spine_length = (max_grid_size * pass_config.radix_digits) + pass_config.scan_config.tile_size;
// Temporary storage allocation requirements
void* allocations[3];
size_t allocation_sizes[3] =
{
spine_length * sizeof(OffsetT), // bytes needed for privatized block digit histograms
(is_overwrite_okay) ? 0 : num_items * sizeof(KeyT), // bytes needed for 3rd keys buffer
(is_overwrite_okay || (KEYS_ONLY)) ? 0 : num_items * sizeof(ValueT), // bytes needed for 3rd values buffer
};
// Alias the temporary allocations from the single storage blob (or compute the necessary size of the blob)
if (CubDebug(error = AliasTemporaries(d_temp_storage, temp_storage_bytes, allocations, allocation_sizes))) break;
// Return if the caller is simply requesting the size of the storage allocation
if (d_temp_storage == NULL)
return cudaSuccess;
// Pass planning. Run passes of the alternate digit-size configuration until we have an even multiple of our preferred digit size
int num_bits = end_bit - begin_bit;
int num_passes = (num_bits + pass_config.radix_bits - 1) / pass_config.radix_bits;
bool is_num_passes_odd = num_passes & 1;
int max_alt_passes = (num_passes * pass_config.radix_bits) - num_bits;
int alt_end_bit = CUB_MIN(end_bit, begin_bit + (max_alt_passes * alt_pass_config.radix_bits));
// Alias the temporary storage allocations
OffsetT *d_spine = static_cast<OffsetT*>(allocations[0]);
DoubleBuffer<KeyT> d_keys_remaining_passes(
(is_overwrite_okay || is_num_passes_odd) ? d_keys.Alternate() : static_cast<KeyT*>(allocations[1]),
(is_overwrite_okay) ? d_keys.Current() : (is_num_passes_odd) ? static_cast<KeyT*>(allocations[1]) : d_keys.Alternate());
DoubleBuffer<ValueT> d_values_remaining_passes(
(is_overwrite_okay || is_num_passes_odd) ? d_values.Alternate() : static_cast<ValueT*>(allocations[2]),
(is_overwrite_okay) ? d_values.Current() : (is_num_passes_odd) ? static_cast<ValueT*>(allocations[2]) : d_values.Alternate());
// Run first pass, consuming from the input's current buffers
int current_bit = begin_bit;
if (CubDebug(error = InvokePass(
d_keys.Current(), d_keys_remaining_passes.Current(),
d_values.Current(), d_values_remaining_passes.Current(),
d_spine, spine_length, current_bit,
(current_bit < alt_end_bit) ? alt_pass_config : pass_config))) break;
// Run remaining passes
while (current_bit < end_bit)
{
if (CubDebug(error = InvokePass(
d_keys_remaining_passes.d_buffers[d_keys_remaining_passes.selector], d_keys_remaining_passes.d_buffers[d_keys_remaining_passes.selector ^ 1],
d_values_remaining_passes.d_buffers[d_keys_remaining_passes.selector], d_values_remaining_passes.d_buffers[d_keys_remaining_passes.selector ^ 1],
d_spine, spine_length, current_bit,
(current_bit < alt_end_bit) ? alt_pass_config : pass_config))) break;;
// Invert selectors
d_keys_remaining_passes.selector ^= 1;
d_values_remaining_passes.selector ^= 1;
}
// Update selector
if (!is_overwrite_okay) {
num_passes = 1; // Sorted data always ends up in the other vector
}
d_keys.selector = (d_keys.selector + num_passes) & 1;
d_values.selector = (d_values.selector + num_passes) & 1;
}
while (0);
return error;
#endif // CUB_RUNTIME_ENABLED
}
//------------------------------------------------------------------------------
// Chained policy invocation
//------------------------------------------------------------------------------
/// Invocation
template <typename ActivePolicyT>
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t Invoke()
{
typedef typename DispatchRadixSort::MaxPolicy MaxPolicyT;
typedef typename ActivePolicyT::SingleTilePolicy SingleTilePolicyT;
// Force kernel code-generation in all compiler passes
if (num_items <= (SingleTilePolicyT::BLOCK_THREADS * SingleTilePolicyT::ITEMS_PER_THREAD))
{
// Small, single tile size
return InvokeSingleTile<ActivePolicyT>(
DeviceRadixSortSingleTileKernel<MaxPolicyT, IS_DESCENDING, KeyT, ValueT, OffsetT>);
}
else
{
// Regular size
return InvokePasses<ActivePolicyT>(
DeviceRadixSortUpsweepKernel< MaxPolicyT, false, IS_DESCENDING, KeyT, OffsetT>,
DeviceRadixSortUpsweepKernel< MaxPolicyT, true, IS_DESCENDING, KeyT, OffsetT>,
RadixSortScanBinsKernel< MaxPolicyT, OffsetT>,
DeviceRadixSortDownsweepKernel< MaxPolicyT, false, IS_DESCENDING, KeyT, ValueT, OffsetT>,
DeviceRadixSortDownsweepKernel< MaxPolicyT, true, IS_DESCENDING, KeyT, ValueT, OffsetT>);
}
}
//------------------------------------------------------------------------------
// Dispatch entrypoints
//------------------------------------------------------------------------------
/**
* Internal dispatch routine
*/
CUB_RUNTIME_FUNCTION __forceinline__
static cudaError_t Dispatch(
void* d_temp_storage, ///< [in] %Device-accessible allocation of temporary storage. When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
size_t &temp_storage_bytes, ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
DoubleBuffer<KeyT> &d_keys, ///< [in,out] Double-buffer whose current buffer contains the unsorted input keys and, upon return, is updated to point to the sorted output keys
DoubleBuffer<ValueT> &d_values, ///< [in,out] Double-buffer whose current buffer contains the unsorted input values and, upon return, is updated to point to the sorted output values
OffsetT num_items, ///< [in] Number of items to sort
int begin_bit, ///< [in] The beginning (least-significant) bit index needed for key comparison
int end_bit, ///< [in] The past-the-end (most-significant) bit index needed for key comparison
bool is_overwrite_okay, ///< [in] Whether is okay to overwrite source buffers
cudaStream_t stream, ///< [in] CUDA stream to launch kernels within. Default is stream<sub>0</sub>.
bool debug_synchronous) ///< [in] Whether or not to synchronize the stream after every kernel launch to check for errors. Also causes launch configurations to be printed to the console. Default is \p false.
{
typedef typename DispatchRadixSort::MaxPolicy MaxPolicyT;
cudaError_t error;
do {
// Get PTX version
int ptx_version;
if (CubDebug(error = PtxVersion(ptx_version))) break;
// Create dispatch functor
DispatchRadixSort dispatch(
d_temp_storage, temp_storage_bytes,
d_keys, d_values,
num_items, begin_bit, end_bit, is_overwrite_okay,
stream, debug_synchronous, ptx_version);
// Dispatch to chained policy
if (CubDebug(error = MaxPolicyT::Invoke(ptx_version, dispatch))) break;
} while (0);
return error;
}
};
/******************************************************************************
* Segmented dispatch
******************************************************************************/
/**
* Utility class for dispatching the appropriately-tuned kernels for segmented device-wide radix sort
*/
template <
bool IS_DESCENDING, ///< Whether or not the sorted-order is high-to-low
typename KeyT, ///< Key type
typename ValueT, ///< Value type
typename OffsetIteratorT, ///< Random-access input iterator type for reading segment offsets \iterator
typename OffsetT> ///< Signed integer type for global offsets
struct DispatchSegmentedRadixSort :
DeviceRadixSortPolicy<KeyT, ValueT, OffsetT>
{
//------------------------------------------------------------------------------
// Constants
//------------------------------------------------------------------------------
enum
{
// Whether this is a keys-only (or key-value) sort
KEYS_ONLY = (Equals<ValueT, NullType>::VALUE),
};
//------------------------------------------------------------------------------
// Parameter members
//------------------------------------------------------------------------------
void *d_temp_storage; ///< [in] %Device-accessible allocation of temporary storage. When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
size_t &temp_storage_bytes; ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
DoubleBuffer<KeyT> &d_keys; ///< [in,out] Double-buffer whose current buffer contains the unsorted input keys and, upon return, is updated to point to the sorted output keys
DoubleBuffer<ValueT> &d_values; ///< [in,out] Double-buffer whose current buffer contains the unsorted input values and, upon return, is updated to point to the sorted output values
OffsetT num_items; ///< [in] Number of items to sort
OffsetT num_segments; ///< [in] The number of segments that comprise the sorting data
OffsetIteratorT d_begin_offsets; ///< [in] Pointer to the sequence of beginning offsets of length \p num_segments, such that <tt>d_begin_offsets[i]</tt> is the first element of the <em>i</em><sup>th</sup> data segment in <tt>d_keys_*</tt> and <tt>d_values_*</tt>
OffsetIteratorT d_end_offsets; ///< [in] Pointer to the sequence of ending offsets of length \p num_segments, such that <tt>d_end_offsets[i]-1</tt> is the last element of the <em>i</em><sup>th</sup> data segment in <tt>d_keys_*</tt> and <tt>d_values_*</tt>. If <tt>d_end_offsets[i]-1</tt> <= <tt>d_begin_offsets[i]</tt>, the <em>i</em><sup>th</sup> is considered empty.
int begin_bit; ///< [in] The beginning (least-significant) bit index needed for key comparison
int end_bit; ///< [in] The past-the-end (most-significant) bit index needed for key comparison
cudaStream_t stream; ///< [in] CUDA stream to launch kernels within. Default is stream<sub>0</sub>.
bool debug_synchronous; ///< [in] Whether or not to synchronize the stream after every kernel launch to check for errors. Also causes launch configurations to be printed to the console. Default is \p false.
int ptx_version; ///< [in] PTX version
bool is_overwrite_okay; ///< [in] Whether is okay to overwrite source buffers
//------------------------------------------------------------------------------
// Constructors
//------------------------------------------------------------------------------
/// Constructor
CUB_RUNTIME_FUNCTION __forceinline__
DispatchSegmentedRadixSort(
void* d_temp_storage,
size_t &temp_storage_bytes,
DoubleBuffer<KeyT> &d_keys,
DoubleBuffer<ValueT> &d_values,
OffsetT num_items,
OffsetT num_segments,
OffsetIteratorT d_begin_offsets,
OffsetIteratorT d_end_offsets,
int begin_bit,
int end_bit,
bool is_overwrite_okay,
cudaStream_t stream,
bool debug_synchronous,
int ptx_version)
:
d_temp_storage(d_temp_storage),
temp_storage_bytes(temp_storage_bytes),
d_keys(d_keys),
d_values(d_values),
num_items(num_items),
num_segments(num_segments),
d_begin_offsets(d_begin_offsets),
d_end_offsets(d_end_offsets),
begin_bit(begin_bit),
end_bit(end_bit),
is_overwrite_okay(is_overwrite_okay),
stream(stream),
debug_synchronous(debug_synchronous),
ptx_version(ptx_version)
{}
//------------------------------------------------------------------------------
// Multi-segment invocation
//------------------------------------------------------------------------------
/// Invoke a three-kernel sorting pass at the current bit.
template <typename PassConfigT>
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t InvokePass(
const KeyT *d_keys_in,
KeyT *d_keys_out,
const ValueT *d_values_in,
ValueT *d_values_out,
int ¤t_bit,
PassConfigT &pass_config)
{
cudaError error = cudaSuccess;
do
{
int pass_bits = CUB_MIN(pass_config.radix_bits, (end_bit - current_bit));
// Log kernel configuration
if (debug_synchronous)
_CubLog("Invoking segmented_kernels<<<%d, %d, 0, %lld>>>(), %d items per thread, %d SM occupancy, current bit %d, bit_grain %d\n",
num_segments, pass_config.segmented_config.block_threads, (long long) stream,
pass_config.segmented_config.items_per_thread, pass_config.segmented_config.sm_occupancy, current_bit, pass_bits);
pass_config.segmented_kernel<<<num_segments, pass_config.segmented_config.block_threads, 0, stream>>>(
d_keys_in, d_keys_out,
d_values_in, d_values_out,
d_begin_offsets, d_end_offsets, num_segments,
current_bit, pass_bits);
// Check for failure to launch
if (CubDebug(error = cudaPeekAtLastError())) break;
// Sync the stream if specified to flush runtime errors
if (debug_synchronous && (CubDebug(error = SyncStream(stream)))) break;
// Update current bit
current_bit += pass_bits;
}
while (0);
return error;
}
/// PassConfig data structure
template <typename SegmentedKernelT>
struct PassConfig
{
SegmentedKernelT segmented_kernel;
KernelConfig segmented_config;
int radix_bits;
int radix_digits;
/// Initialize pass configuration
template <typename SegmentedPolicyT>
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t InitPassConfig(SegmentedKernelT segmented_kernel)
{
this->segmented_kernel = segmented_kernel;
this->radix_bits = SegmentedPolicyT::RADIX_BITS;
this->radix_digits = 1 << radix_bits;
return CubDebug(segmented_config.Init<SegmentedPolicyT>(segmented_kernel));
}
};
/// Invocation (run multiple digit passes)
template <
typename ActivePolicyT, ///< Umbrella policy active for the target device
typename SegmentedKernelT> ///< Function type of cub::DeviceSegmentedRadixSortKernel
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t InvokePasses(
SegmentedKernelT segmented_kernel, ///< [in] Kernel function pointer to parameterization of cub::DeviceSegmentedRadixSortKernel
SegmentedKernelT alt_segmented_kernel) ///< [in] Alternate kernel function pointer to parameterization of cub::DeviceSegmentedRadixSortKernel
{
#ifndef CUB_RUNTIME_ENABLED
(void)segmented_kernel;
(void)alt_segmented_kernel;
// Kernel launch not supported from this device
return CubDebug(cudaErrorNotSupported );
#else
cudaError error = cudaSuccess;
do
{
// Init regular and alternate kernel configurations
PassConfig<SegmentedKernelT> pass_config, alt_pass_config;
if ((error = pass_config.template InitPassConfig<typename ActivePolicyT::SegmentedPolicy>(segmented_kernel))) break;
if ((error = alt_pass_config.template InitPassConfig<typename ActivePolicyT::AltSegmentedPolicy>(alt_segmented_kernel))) break;
// Temporary storage allocation requirements
void* allocations[2];
size_t allocation_sizes[2] =
{
(is_overwrite_okay) ? 0 : num_items * sizeof(KeyT), // bytes needed for 3rd keys buffer
(is_overwrite_okay || (KEYS_ONLY)) ? 0 : num_items * sizeof(ValueT), // bytes needed for 3rd values buffer
};
// Alias the temporary allocations from the single storage blob (or compute the necessary size of the blob)
if (CubDebug(error = AliasTemporaries(d_temp_storage, temp_storage_bytes, allocations, allocation_sizes))) break;
// Return if the caller is simply requesting the size of the storage allocation
if (d_temp_storage == NULL)
{
if (temp_storage_bytes == 0)
temp_storage_bytes = 1;
return cudaSuccess;
}
// Pass planning. Run passes of the alternate digit-size configuration until we have an even multiple of our preferred digit size
int radix_bits = ActivePolicyT::SegmentedPolicy::RADIX_BITS;
int alt_radix_bits = ActivePolicyT::AltSegmentedPolicy::RADIX_BITS;
int num_bits = end_bit - begin_bit;
int num_passes = (num_bits + radix_bits - 1) / radix_bits;
bool is_num_passes_odd = num_passes & 1;
int max_alt_passes = (num_passes * radix_bits) - num_bits;
int alt_end_bit = CUB_MIN(end_bit, begin_bit + (max_alt_passes * alt_radix_bits));
DoubleBuffer<KeyT> d_keys_remaining_passes(
(is_overwrite_okay || is_num_passes_odd) ? d_keys.Alternate() : static_cast<KeyT*>(allocations[0]),
(is_overwrite_okay) ? d_keys.Current() : (is_num_passes_odd) ? static_cast<KeyT*>(allocations[0]) : d_keys.Alternate());
DoubleBuffer<ValueT> d_values_remaining_passes(
(is_overwrite_okay || is_num_passes_odd) ? d_values.Alternate() : static_cast<ValueT*>(allocations[1]),
(is_overwrite_okay) ? d_values.Current() : (is_num_passes_odd) ? static_cast<ValueT*>(allocations[1]) : d_values.Alternate());
// Run first pass, consuming from the input's current buffers
int current_bit = begin_bit;
if (CubDebug(error = InvokePass(
d_keys.Current(), d_keys_remaining_passes.Current(),
d_values.Current(), d_values_remaining_passes.Current(),
current_bit,
(current_bit < alt_end_bit) ? alt_pass_config : pass_config))) break;
// Run remaining passes
while (current_bit < end_bit)
{
if (CubDebug(error = InvokePass(
d_keys_remaining_passes.d_buffers[d_keys_remaining_passes.selector], d_keys_remaining_passes.d_buffers[d_keys_remaining_passes.selector ^ 1],
d_values_remaining_passes.d_buffers[d_keys_remaining_passes.selector], d_values_remaining_passes.d_buffers[d_keys_remaining_passes.selector ^ 1],
current_bit,
(current_bit < alt_end_bit) ? alt_pass_config : pass_config))) break;
// Invert selectors and update current bit
d_keys_remaining_passes.selector ^= 1;
d_values_remaining_passes.selector ^= 1;
}
// Update selector
if (!is_overwrite_okay) {
num_passes = 1; // Sorted data always ends up in the other vector
}
d_keys.selector = (d_keys.selector + num_passes) & 1;
d_values.selector = (d_values.selector + num_passes) & 1;
}
while (0);
return error;
#endif // CUB_RUNTIME_ENABLED
}
//------------------------------------------------------------------------------
// Chained policy invocation
//------------------------------------------------------------------------------
/// Invocation
template <typename ActivePolicyT>
CUB_RUNTIME_FUNCTION __forceinline__
cudaError_t Invoke()
{
typedef typename DispatchSegmentedRadixSort::MaxPolicy MaxPolicyT;
// Force kernel code-generation in all compiler passes
return InvokePasses<ActivePolicyT>(
DeviceSegmentedRadixSortKernel<MaxPolicyT, false, IS_DESCENDING, KeyT, ValueT, OffsetIteratorT, OffsetT>,
DeviceSegmentedRadixSortKernel<MaxPolicyT, true, IS_DESCENDING, KeyT, ValueT, OffsetIteratorT, OffsetT>);
}
//------------------------------------------------------------------------------
// Dispatch entrypoints
//------------------------------------------------------------------------------
/// Internal dispatch routine
CUB_RUNTIME_FUNCTION __forceinline__
static cudaError_t Dispatch(
void* d_temp_storage, ///< [in] %Device-accessible allocation of temporary storage. When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done.
size_t &temp_storage_bytes, ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation
DoubleBuffer<KeyT> &d_keys, ///< [in,out] Double-buffer whose current buffer contains the unsorted input keys and, upon return, is updated to point to the sorted output keys
DoubleBuffer<ValueT> &d_values, ///< [in,out] Double-buffer whose current buffer contains the unsorted input values and, upon return, is updated to point to the sorted output values
int num_items, ///< [in] Number of items to sort
int num_segments, ///< [in] The number of segments that comprise the sorting data
OffsetIteratorT d_begin_offsets, ///< [in] Pointer to the sequence of beginning offsets of length \p num_segments, such that <tt>d_begin_offsets[i]</tt> is the first element of the <em>i</em><sup>th</sup> data segment in <tt>d_keys_*</tt> and <tt>d_values_*</tt>
OffsetIteratorT d_end_offsets, ///< [in] Pointer to the sequence of ending offsets of length \p num_segments, such that <tt>d_end_offsets[i]-1</tt> is the last element of the <em>i</em><sup>th</sup> data segment in <tt>d_keys_*</tt> and <tt>d_values_*</tt>. If <tt>d_end_offsets[i]-1</tt> <= <tt>d_begin_offsets[i]</tt>, the <em>i</em><sup>th</sup> is considered empty.
int begin_bit, ///< [in] The beginning (least-significant) bit index needed for key comparison
int end_bit, ///< [in] The past-the-end (most-significant) bit index needed for key comparison
bool is_overwrite_okay, ///< [in] Whether is okay to overwrite source buffers
cudaStream_t stream, ///< [in] CUDA stream to launch kernels within. Default is stream<sub>0</sub>.
bool debug_synchronous) ///< [in] Whether or not to synchronize the stream after every kernel launch to check for errors. Also causes launch configurations to be printed to the console. Default is \p false.
{
typedef typename DispatchSegmentedRadixSort::MaxPolicy MaxPolicyT;
cudaError_t error;
do {
// Get PTX version
int ptx_version;
if (CubDebug(error = PtxVersion(ptx_version))) break;
// Create dispatch functor
DispatchSegmentedRadixSort dispatch(
d_temp_storage, temp_storage_bytes,
d_keys, d_values,
num_items, num_segments, d_begin_offsets, d_end_offsets,
begin_bit, end_bit, is_overwrite_okay,
stream, debug_synchronous, ptx_version);
// Dispatch to chained policy
if (CubDebug(error = MaxPolicyT::Invoke(ptx_version, dispatch))) break;
} while (0);
return error;
}
};
} // CUB namespace
CUB_NS_POSTFIX // Optional outer namespace(s)
|