1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
//------------------------------------------------------------------------------
// GB_jit_AxB_dot3_dense_phase1: phase1 for dot3, A and B are bitmap/full
//------------------------------------------------------------------------------
// dense phase1: symbolic load balancing and data partition
// to assign work to different 'buckets' for later compute
// This kernel scans the non-zero pattern in A and B, takes into account the
// mask and computes total work required to form C. Then it classifies each
// dot product into a set of buckets for efficient compute.
#pragma once
#define GB_CUDA_KERNEL
#include <limits>
#include "GB_cuda_kernel.h"
#include "GB_cuda_buckets.h"
#include <cub/block/block_scan.cuh>
#include <cooperative_groups.h>
using namespace cooperative_groups;
//------------------------------------------------------------------------------
// GB_jit_AxB_dot3_dense_phase1: lookup i,j pairs and store in Mi, Ci
//------------------------------------------------------------------------------
// GB_AxB_dense_phase1 is a CUDA kernel that scans all entries in M and
// assigns i,j coordinates for each entries and stores in Mi and Ci.
template<typename T_M, uint64_t srcode, int chunk_size = 128>
__global__ void GB_jit_AxB_dot3_dense_phase1
(
// input/output:
GrB_Matrix C, // final output matrix
const GrB_Matrix M // mask matrix
)
{
//--------------------------------------------------------------------------
// get C, M, A, and B
//--------------------------------------------------------------------------
const int64_t *__restrict__ Mp = M->p ;
const int64_t *__restrict__ Mi = M->i ;
#if !GB_MASK_STRUCT
const T_M *__restrict__ Mx = (T_M*) M->x ; // not accessed if M structural
#endif
const int64_t mnvec = M->nvec ;
const int64_t mvlen = M->vlen ;
const int64_t mnz = GB_nnz(M) ;
int64_t *__restrict__ Ci = C->i ; // for zombies, or bucket assignment
// Ci [p] for an entry C(i,j) contains either GB_FLIP(i) if C(i,j) is a
// zombie, or (k << 4) + bucket otherwise, where C(:,j) is the kth vector
// of C (j = Ch [k] if hypersparse or j = k if standard sparse), and
// where bucket is the bucket assignment for C(i,j).
// bucket can be recovered from Ci by bucket = Ci & 0xF
// ASSERT (mnz > 0) ;
// ASSERT (gridDim.x <= mnz) ;
// shared cache used for coordinate search
__shared__ int64_t ks [chunk_size] ;
//--------------------------------------------------------------------------
// assign all entries of C to the buckets
//--------------------------------------------------------------------------
// all threads in this block will compute the same values for these:
int64_t pfirst, plast, kfirst, klast ;
int64_t chunk_max = GB_ICEIL (mnz, chunk_size) ;
// (mnz + chunk_size -1)/chunk_size;
for ( int64_t chunk = blockIdx.x;
chunk < chunk_max;
chunk += gridDim.x )
{
//----------------------------------------------------------------------
// determine the work done by this iteration, "chunk"
//----------------------------------------------------------------------
// The slice for each task contains entries pfirst:plast-1 of M and C.
// This iteration "chunk" computes Ci and Cx [pfirst...plast-1], using
// Mi and Mx [pfirst:plast-1]. All threads in the thread block are
// used for this "chunk".
pfirst = chunk_size * chunk ;
plast = pfirst + chunk_size ;
// plast = GB_IMIN (plast, mnz) ;
if (plast > mnz) plast = mnz ;
int64_t my_chunk_size = plast - pfirst ;
// find the first vector of the slice for this chunk: the
// vector that owns the entry Mi [pfirst] and Mx [pfirst].
kfirst = GB_search_for_vector_device (pfirst, Mp, 0, mnvec, mvlen) ;
// find the last vector of the slice for task blockIdx.x: the
// vector that owns the entry Mi [plast-1] and Mx [plast-1].
klast = GB_search_for_vector_device (plast-1, Mp, kfirst, mnvec, mvlen);
// number of vectors in C and M for this "chunk" iteration, where
// Mp [kfirst:klast] will be operated on.
int64_t nk = klast - kfirst + 1 ;
//----------------------------------------------------------------------
// fill ks to find all indices
//----------------------------------------------------------------------
// search for k values for each entry pfirst:plast-1
float slope = ((float) nk) / ((float) my_chunk_size) ;
int64_t mnvec1 = mnvec - 1 ;
for (int64_t kk = threadIdx.x ; kk < my_chunk_size ; kk += blockDim.x)
{
// get a rough estimate of k for the kkth entry in ks
int64_t k = kfirst + (int64_t) (slope * ((float) kk)) ;
// k cannot be smaller than kfirst, but might be bigger than
// mnvec-1, so ensure it is in the valid range, kfirst to mnvec-1
// k = GB_IMIN (k, mnvec-1) ;
if (k > mnvec1) k = mnvec1 ;
// look for p in Mp, where p is in range pfirst:plast-1
// where pfirst >= 0 and plast < mnz
int64_t p = kk + pfirst ;
// linear-time search for the k value of the pth entry
while ( Mp [ k + 1 ] <= p ) k++ ;
while ( Mp [ k ] > p ) k-- ;
ks [kk] = k ;
}
this_thread_block().sync();
//----------------------------------------------------------------------
// assign entries in C(i,j) to the buckets
//----------------------------------------------------------------------
for ( int64_t pM = pfirst + threadIdx.x;
pM < pfirst + my_chunk_size;
pM += blockDim.x )
{
int64_t k = ks [pM - pfirst] ; // get the k value of Mi,Mx [pM].
// j = k or j = Mh [k] if C and M are hypersparse, but j is not
// needed here.
#if GB_MASK_STRUCT
{
// no need to check the value of M(i,j); no prezombies
Ci[pM] = (k << 4) ;
}
#else
{
bool mij = (bool) MX (pM) ;
int64_t i = Mi [ pM ] ;
// FIXME: no need for k<<4, just place k or GB_FLIP(i) in Ci
Ci[pM] = (!mij) * ( GB_FLIP(i) << 4)
+ mij * ((k<<4) ) ;
}
#endif
}
}
}
|