1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
//******************************************************************************
// Sparse dot products in batch form, sparse - dense case.
// Each thread in this kernel is responsible for m vector-pairs(x,y),
// m = 256/sz, where sz is in {4, 16, 64, 256}
// We know each non-zero on the sparse side will hit a dense value.
// Template on <T_C, T_A, T_B, T_X, T_Y, T_Z >
// Parameters:
// matrix<T_C> *C <- C result matrix
// matrix<T_C> *M <- Mask matrix
// matrix<T_A> *A <- A matrix to multiply, sparse
// matrix<T_B> *B <- B matrix to multiply, dense in sparse format?
//******************************************************************************
#pragma once
#include <limits>
#include <cstdint>
#include <stdio.h>
#include "GB_cuda_kernel.h"
#include "GB_hash.h"
#include "GB_hyper_hash_lookup.h"
#include <cooperative_groups.h>
#define tile_sz 32
//#include "local_cub/block/block_reduce.cuh"
using namespace cooperative_groups;
// TODO: Put this in a shared location
template< typename T, int warpSize >
__device__ T reduce_sum(thread_block_tile<warpSize> g, T val)
{
// Each iteration halves the number of active threads
// Each thread adds its partial sum[i] to sum[lane+i]
for (int i = g.size() / 2; i > 0; i /= 2)
{
val += g.shfl_down(val,i) ;
}
return val; // note: only thread 0 will return full sum
}
template<
typename T_C, typename T_A, typename T_B,
typename T_Z, typename T_X, typename T_Y,
uint64_t srcode>
__global__ void AxB_dot3_phase3_vsdn
(
int64_t start,
int64_t end,
int64_t *Bucket, // do the work in Bucket [start:end-1]
GrB_Matrix C,
GrB_Matrix M,
GrB_Matrix A,
GrB_Matrix B,
int sz // unused (FIXME: remove this)
)
{
// TODO: Figure out how to use graphblas-specific INFINITY macro
#ifndef INFINITY
#define INFINITY std::numeric_limits<T_C>::max()
#endif
const T_A *__restrict__ Ax = (T_A *)A->x ;
const T_B *__restrict__ Bx = (T_B *)B->x ;
T_C *__restrict__ Cx = (T_C *)C->x ;
int64_t *__restrict__ Ci = C->i ;
const int64_t *__restrict__ Mi = M->i ;
#if GB_M_IS_HYPER
const int64_t *__restrict__ Mh = M->h ;
#endif
#if GB_A_IS_HYPER || GB_A_IS_SPARSE
const int64_t *__restrict__ Ai = A->i ;
const int64_t *__restrict__ Ap = A->p ;
#endif
#if GB_A_IS_BITMAP
const int8_t *__restrict__ Ab = A->b ;
#endif
#if GB_B_IS_HYPER || GB_B_IS_SPARSE
const int64_t *__restrict__ Bi = B->i ;
const int64_t *__restrict__ Bp = B->p ;
#endif
#if GB_B_IS_BITMAP
const int8_t *__restrict__ Bb = B->b ;
#endif
#if GB_A_IS_HYPER
const int64_t *__restrict__ A_Yp = A->Y->p ;
const int64_t *__restrict__ A_Yi = A->Y->i ;
const int64_t *__restrict__ A_Yx = (int64_t *) A->Y->x ;
const int64_t A_hash_bits = A->Y->vdim - 1 ;
#endif
#if GB_B_IS_HYPER
const int64_t *__restrict__ B_Yp = B->Y->p ;
const int64_t *__restrict__ B_Yi = B->Y->i ;
const int64_t *__restrict__ B_Yx = (int64_t *) B->Y->x ;
const int64_t B_hash_bits = B->Y->vdim - 1 ;
#endif
// typedef cub::BlockReduce<int, 32> BlockReduce;
// __shared__ typename BlockReduce::TempStorage temp_storage;
// if( threadIdx.x ==0)
// printf("thd:%d %d dots/thrd, nvec = %d blockDim=%d\n",threadIdx.x, sz, nvec, blockDim.x);
// __syncthreads();
int64_t pair_id;
int64_t zc = 0 ;
// if (threadIdx.x ==0)
// printf("thd%u pi=%lld\n",tid, start+threadIdx.x);
// __syncthreads();
int all_in_one = ( (end - start) == (M->p)[(M->nvec)] ) ;
for (int64_t kk = start +threadIdx.x +blockIdx.x*blockDim.x;
kk < end ;
kk += gridDim.x*blockDim.x )
{
int64_t pair_id = all_in_one ? kk : Bucket[ kk ];
int64_t i = Mi[pair_id]; // cols from mask
// FIXME: use another variable, not "k" here:
int64_t k = Ci[pair_id] >> 4; // vector of C encoded in phase1
// j = k or j = Mh [k] if C and M are hypersparse
#if GB_M_IS_HYPER
int64_t j = Mh [k] ;
#else
int64_t j = k ;
#endif
// Prep row offsets for both A and B
// find A(:,i)
int64_t pA, pA_end ;
#if GB_A_IS_HYPER
GB_hyper_hash_lookup (Ap, A_Yp, A_Yi, A_Yx, A_hash_bits,
i, &pA, &pA_end) ;
#elif GB_A_IS_SPARSE
pA = Ap[i] ;
pA_end = Ap[i+1] ;
#else
// A is bitmap or full
pA = (A->vlen)*i;
pA_end = pA +(A->vlen);
#endif
// find B(:,j)
int64_t pB, pB_end ;
#if GB_B_IS_HYPER
GB_hyper_hash_lookup (Bp, B_Yp, B_Yi, B_Yx, B_hash_bits,
j, &pB, &pB_end) ;
#elif GB_B_IS_SPARSE
pB = Bp[j]; // col of C
pB_end = Bp[j+1];
#else
// B is bitmap or full
pB = (B->vlen)*j;
pB_end = pB +(B->vlen);
#endif
GB_DECLAREA (aki) ;
GB_DECLAREB (bkj) ;
#if !GB_C_ISO
// T_Z cij = GB_IDENTITY ;
GB_DECLARE_MONOID_IDENTITY (cij) ;
#endif
bool cij_exists = false ;
int64_t my_nzombies = 0;
#if ( GB_A_IS_FULL )
{
int64_t nnzB = pB_end - pB ;
if (nnzB > 0)
{
//--------------------------------------------------------------
// A is full and B is sparse/hyper
//--------------------------------------------------------------
cij_exists = true ;
for (int64_t p = pB ; p < pB_end ; ++p)
{
int64_t k = Bi [p] ; // next row index of B(:,j)
// cij += A(k,i) * B(k,j)
GB_GETA ( aki, Ax, pA+k ) ; // aki = A(k,i)
GB_GETB ( bkj, Bx, p ) ; // bkj = B(k,j)
GB_MULTADD ( cij, aki, bkj, i, k, j) ; // cij += aki * bkj
GB_DOT_TERMINAL (cij) ; // break if cij == terminal
}
}
}
#elif ( GB_A_IS_BITMAP )
{
//------------------------------------------------------------------
// A is bitmap and B is sparse/hyper
//------------------------------------------------------------------
for (int64_t p = pB ; p < pB_end ; ++p)
{
int64_t k = Bi [p] ; // next row index of B(:,j)
if (Ab [pA+k]) // check if A(k,i) exists
{
// cij += A(k,i) * B(k,j)
GB_DOT_MERGE (pA+k, p) ;
GB_DOT_TERMINAL (cij) ; // break if cij == terminal
}
}
}
#elif ( GB_B_IS_FULL )
{
int64_t nnzA = pA_end - pA ;
if (nnzA > 0)
{
//--------------------------------------------------------------
// A is sparse/hyper and B is full
//--------------------------------------------------------------
cij_exists = true ;
for (int64_t p = pA ; p < pA_end ; ++p)
{
int64_t k = Ai [p] ; // next row index of A(:,i)
// cij += A(k,i) * B(k,j)
GB_GETA ( aki, Ax, p ) ; // aki = A(i,k)
GB_GETB ( bkj, Bx, pB+k) ; // bkj = B(j,k)
GB_MULTADD ( cij, aki, bkj, i, k, j) ; // cij += aik * bjk
GB_DOT_TERMINAL (cij) ; // break if cij == terminal
}
}
}
#elif ( GB_B_IS_BITMAP )
{
//------------------------------------------------------------------
// A is sparse/hyper and B is bitmap
//------------------------------------------------------------------
for (int64_t p = pA ; p < pA_end ; ++p)
{
int64_t k = Ai [p] ; // next row index of A(:,i)
if (Bb [pB+k]) // check if B(k,j) exists
{
// cij += A(k,i) * B(k,j)
GB_DOT_MERGE (p, pB+k) ;
GB_DOT_TERMINAL (cij) ; // break if cij == terminal
}
}
}
#endif
GB_CIJ_EXIST_POSTCHECK
if (cij_exists)
{
Ci [pair_id] = i ;
GB_PUTC ( Cx [pair_id] = (T_C) cij ) ;
}
else
{
my_nzombies++ ;
Ci [pair_id] = GB_FLIP (i) ;
}
// FIXME: use the same method as vsvs for counting zombies
// sum up the zombie count:
thread_block_tile<tile_sz> tile = tiled_partition<tile_sz>( this_thread_block());
zc += reduce_sum<int,tile_sz>(tile, my_nzombies);
}
if(threadIdx.x == 0 && zc > 0)
{
// this threadblock accumulates its zombie count into the global
// zombie count
atomicAdd(&(C->nzombies), zc);
}
}
|