1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
//******************************************************************************
// Sparse dot version of Matrix-Matrix multiply with mask
// Each thread in this kernel is responsible for m vector-pairs(x,y),
// finding intersections and producting the final dot product for each
// using a serial merge algorithm on the sparse vectors.
// m = 256/sz, where sz is in {4, 16, 64, 256}
// For a vector-pair, sz = xnz + ynz
// Template on <T_C, T_M, T_A, T_B>
// Parameters:
// int64_t start <- start of vector pairs for this kernel
// int64_t end <- end of vector pairs for this kernel
// int64_t *Bucket <- array of pair indices for all kernels
// matrix<T_C> *C <- result matrix
// matrix<T_M> *M <- mask matrix
// matrix<T_A> *A <- input matrix A
// matrix<T_B> *B <- input matrix B
// int sz <- nnz of very sparse vectors
// Blocksize is 1024, uses warp and block reductions to count zombies produced.
//******************************************************************************
#pragma once
#define GB_CUDA_KERNEL
#include <limits>
#include <cstdint>
#include <cmath>
#include <stdio.h>
#include <cooperative_groups.h>
#include "GB_cuda_kernel.h"
#include "GB_hash.h"
#include "GB_hyper_hash_lookup.h"
using namespace cooperative_groups;
// FIXME: move this out into its own *.cuh
template< typename T, int tile_sz>
__inline__ __device__
T GB_warp_ReduceSumPlus( thread_block_tile<tile_sz> g, T val)
{
// Each iteration halves the number of active threads
// Each thread adds its partial sum[i] to sum[lane+i]
/*
#pragma unroll
for (int i = tile_sz >> 1; i > 0; i >>= 1) {
val += g.shfl_down( val, i);
}
*/
val += g.shfl_down( val, 16);
val += g.shfl_down( val, 8);
val += g.shfl_down( val, 4);
val += g.shfl_down( val, 2);
val += g.shfl_down( val, 1);
return val; // note: only thread 0 will return full sum
}
template<typename T, int warpSize>
__inline__ __device__
T GB_block_ReduceSum(thread_block g, T val)
{
static __shared__ T shared[warpSize]; // Shared mem for 32 partial sums
int lane = threadIdx.x & 31 ; // % warpSize;
int wid = threadIdx.x >> 5 ; // / warpSize;
thread_block_tile<warpSize> tile = tiled_partition<warpSize>( g );
// Each warp performs partial reduction
val = GB_warp_ReduceSumPlus<T, warpSize>( tile, val);
// Wait for all partial reductions
if (lane==0) shared[wid]=val; // Write reduced value to shared memory
g.sync(); // Wait for all partial reductions
//if (wid > 0 ) return val;
//read from shared memory only if that warp existed
val = (threadIdx.x < (blockDim.x / warpSize ) ) ? shared[lane] : 0;
if (wid==0) val = GB_warp_ReduceSumPlus<T, warpSize>( tile, val); //Final reduce within first warp
return val;
}
//------------------------------------------------------------------------------
template<
typename T_C, typename T_A, typename T_B,
typename T_Z, typename T_X, typename T_Y, uint64_t srcode>
__global__ void AxB_dot3_phase3_vsvs
(
int64_t start,
int64_t end,
int64_t *Bucket, // do the work in Bucket [start:end-1]
GrB_Matrix C,
GrB_Matrix M,
GrB_Matrix A,
GrB_Matrix B,
int sz // unused
)
{
// TODO: Figure out how to use graphblas-specific INFINITY macro
#ifndef INFINITY
#define INFINITY std::numeric_limits<T_C>::max()
#endif
int64_t dots = end - start;
// sz = expected non-zeros per dot
// /*
// int m = (gridDim.x*blockDim.x)*256/sz;
// int dpt = (nvecs+ gridDim.x*blockDim.x -1)/(gridDim.x*blockDim.x);
// m = dpt < m ? dpt : m;
//
// int dots = (nvecs +m -1)/m;
// */
const T_A *__restrict__ Ax = (T_A *)A->x ;
const T_B *__restrict__ Bx = (T_B *)B->x ;
T_C *__restrict__ Cx = (T_C *)C->x ;
int64_t *__restrict__ Ci = C->i ;
const int64_t *__restrict__ Mi = M->i ;
#if GB_M_IS_HYPER
const int64_t *__restrict__ Mh = M->h ;
#endif
#if GB_A_IS_HYPER || GB_A_IS_SPARSE
const int64_t *__restrict__ Ai = A->i ;
const int64_t *__restrict__ Ap = A->p ;
#endif
#if GB_B_IS_HYPER || GB_B_IS_SPARSE
const int64_t *__restrict__ Bi = B->i ;
const int64_t *__restrict__ Bp = B->p ;
#endif
#if GB_A_IS_HYPER
const int64_t *__restrict__ A_Yp = A->Y->p ;
const int64_t *__restrict__ A_Yi = A->Y->i ;
const int64_t *__restrict__ A_Yx = (int64_t *) A->Y->x ;
const int64_t A_hash_bits = A->Y->vdim - 1 ;
#endif
#if GB_B_IS_HYPER
const int64_t *__restrict__ B_Yp = B->Y->p ;
const int64_t *__restrict__ B_Yi = B->Y->i ;
const int64_t *__restrict__ B_Yx = (int64_t *) B->Y->x ;
const int64_t B_hash_bits = B->Y->vdim - 1 ;
#endif
//int64_t pfirst, plast;
//GB_PARTITION (pfirst, plast, dots, blockIdx.x, gridDim.x ) ;
int64_t my_nzombies = 0 ;
int all_in_one = ( (end - start) == (M->p)[(M->nvec)] ) ;
//for ( int64_t kk = pfirst+ threadIdx.x ;
// kk < plast;
// kk += blockDim.x )
for ( int64_t kk = start+ threadIdx.x +blockDim.x*blockIdx.x ;
kk < end;
kk += blockDim.x*gridDim.x )
{
int64_t pair_id = all_in_one ? kk : Bucket[ kk ];
int64_t i = Mi [pair_id] ;
int64_t k = Ci [pair_id]>>4 ;
// j = k or j = Mh [k] if C and M are hypersparse
#if GB_M_IS_HYPER
int64_t j = Mh [k] ;
#else
int64_t j = k ;
#endif
// find A(:,i): A is always sparse or hypersparse
int64_t pA, pA_end ;
#if GB_A_IS_HYPER
GB_hyper_hash_lookup (Ap, A_Yp, A_Yi, A_Yx, A_hash_bits,
i, &pA, &pA_end) ;
#else
pA = Ap[i] ;
pA_end = Ap[i+1] ;
#endif
// find B(:,j): B is always sparse or hypersparse
int64_t pB, pB_end ;
#if GB_B_IS_HYPER
GB_hyper_hash_lookup (Bp, B_Yp, B_Yi, B_Yx, B_hash_bits,
j, &pB, &pB_end) ;
#else
pB = Bp[j] ;
pB_end = Bp[j+1] ;
#endif
GB_DECLAREA (aki) ;
GB_DECLAREB (bkj) ;
#if !GB_C_ISO
// T_Z cij = GB_IDENTITY ;
GB_DECLARE_MONOID_IDENTITY (cij) ;
#endif
bool cij_exists = false;
while (pA < pA_end && pB < pB_end )
{
int64_t ia = Ai [pA] ;
int64_t ib = Bi [pB] ;
#if GB_IS_PLUS_PAIR_REAL_SEMIRING && GB_ZTYPE_IGNORE_OVERFLOW
cij += (ia == ib) ;
#else
if (ia == ib)
{
// A(k,i) and B(k,j) are the next entries to merge
GB_DOT_MERGE (pA, pB) ;
GB_DOT_TERMINAL (cij) ; // break if cij == terminal
}
#endif
pA += ( ia <= ib); // incr pA if A(ia,i) at or before B(ib,j)
pB += ( ib <= ia); // incr pB if B(ib,j) at or before A(ia,i)
}
GB_CIJ_EXIST_POSTCHECK ;
if (cij_exists)
{
Ci[pair_id] = i ;
GB_PUTC ( Cx[pair_id] = (T_C)cij ) ;
}
else
{
my_nzombies++;
Ci[pair_id] = GB_FLIP( i ) ;
}
}
// FIXME: use this in spdn and vsdn:
this_thread_block().sync();
my_nzombies = GB_block_ReduceSum<int64_t , 32>( this_thread_block(), my_nzombies);
this_thread_block().sync();
if( threadIdx.x == 0 && my_nzombies > 0)
{
atomicAdd( (unsigned long long int*)&(C->nzombies), (unsigned long long int)my_nzombies);
}
}
|