1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
|
function C = eunion (arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9)
%GRB.EUNION sparse matrix union.
%
% C = GrB.eunion (op, A, a, B, b)
% C = GrB.eunion (op, A, a, B, b, desc)
% C = GrB.eunion (Cin, accum, op, A, a, B, b, desc)
% C = GrB.eunion (Cin, M, op, A, a, B, b, desc)
% C = GrB.eunion (Cin, M, accum, op, A, a, B, b, desc)
%
% GrB.euion computes the element-wise 'addition' T=A+B. The result T has
% the pattern of the union of A and B. The operator is used for all entries
% in C(i,j), where a and b are scalars:
%
% if (A(i,j) and B(i,j) is present)
% T(i,j) = op (A(i,j), B(i,j))
% elseif (A(i,j) is present but B(i,j) is not)
% T(i,j) = op (A(i,j), b)
% elseif (B(i,j) is present but A(i,j) is not)
% T(i,j) = op (a, B(i,j))
%
% T is then accumulated into C via C<#M,replace> = accum (C,T).
%
% Cin, M, accum, and the descriptor desc are the same as all other
% GrB.methods; see GrB.mxm and GrB.descriptorinfo for more details. For
% the binary operator, see GrB.binopinfo.
%
% See also GrB.emult.
% SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
% SPDX-License-Identifier: Apache-2.0
if (isobject (arg1))
arg1 = arg1.opaque ;
end
if (isobject (arg2))
arg2 = arg2.opaque ;
end
if (isobject (arg3))
arg3 = arg3.opaque ;
end
if (isobject (arg4))
arg4 = arg4.opaque ;
end
if (isobject (arg5))
arg5 = arg5.opaque ;
end
if (nargin > 5 && isobject (arg6))
arg6 = arg6.opaque ;
end
if (nargin > 6 && isobject (arg7))
arg7 = arg7.opaque ;
end
if (nargin > 7 && isobject (arg8))
arg8 = arg8.opaque ;
end
switch (nargin)
case 5
[C, k] = gbeunion (arg1, arg2, arg3, arg4, arg5) ;
case 6
[C, k] = gbeunion (arg1, arg2, arg3, arg4, arg5, arg6) ;
case 7
[C, k] = gbeunion (arg1, arg2, arg3, arg4, arg5, arg6, arg7) ;
case 8
[C, k] = gbeunion (arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8) ;
case 9
[C, k] = gbeunion (arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9) ;
end
if (k == 0)
C = GrB (C) ;
end
|