File: ne.m

package info (click to toggle)
suitesparse-graphblas 7.4.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 67,112 kB
  • sloc: ansic: 1,072,243; cpp: 8,081; sh: 512; makefile: 503; asm: 369; python: 125; awk: 10
file content (71 lines) | stat: -rw-r--r-- 2,584 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
function C = ne (A, B)
%A ~= B not equal.
% C = (A ~= B) compares A and B element-by-element.  One or
% both may be scalars.  Otherwise, A and B must have the same size.
%
% See also GrB/lt, GrB/le, GrB/gt, GrB/ge, GrB/eq.

% The pattern of C depends on the type of inputs:
% A scalar, B scalar:  C is scalar.
% A scalar, B matrix:  C is full if A~=0, otherwise C is a subset of B.
% B scalar, A matrix:  C is full if B~=0, otherwise C is a subset of A.
% A matrix, B matrix:  C is sparse, with the pattern of A+B.
% Zeroes are then dropped from C after it is computed.

% SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
% SPDX-License-Identifier: Apache-2.0

if (isobject (A))
    A = A.opaque ;
end

if (isobject (B))
    B = B.opaque ;
end

[am, an, atype] = gbsize (A) ;
[bm, bn, btype] = gbsize (B) ;
a_is_scalar = (am == 1) && (an == 1) ;
b_is_scalar = (bm == 1) && (bn == 1) ;
ctype = gboptype (atype, btype) ;

if (a_is_scalar)
    if (b_is_scalar)
        % both A and B are scalars.  C is sparse.
        C = GrB (gbeunion (A, 0, '~=', B, 0)) ;
    else
        % A is a scalar, B is a matrix
        if (gb_scalar (A) ~= 0)
            % since a ~= 0, entries not present in B result in a true
            % value, so the result is full.  Expand A to a full matrix.
            A = gb_scalar_to_full (bm, bn, ctype, gb_fmt (B), A) ;
            C = GrB (gbemult (A, '~=', gbfull (B, ctype))) ;
        else
            % since a == 0, entries not present in B result in a false
            % value, so the result is a sparse subset of B.  select all
            % entries in B ~= 0, then convert to true.
            C = GrB (gbnew (B, 'logical')) ;
        end
    end
else
    if (b_is_scalar)
        % A is a matrix, B is a scalar
        if (gb_scalar (B) ~= 0)
            % since b ~= 0, entries not present in A result in a true
            % value, so the result is full.  Expand B to a full matrix.
            B = gb_scalar_to_full (am, an, ctype, gb_fmt (A), B) ;
            C = GrB (gbemult (gbfull (A, ctype), '~=', B)) ;
        else
            % since b == 0, entries not present in A result in a false
            % value, so the result is a sparse subset of A.  Simply
            % typecast A to logical.  Explicit zeroes in A become explicit
            % false entries.  Any other explicit entries not equal to zero
            % become true.
            C = GrB (gbnew (A, 'logical')) ;
        end
    else
        % both A and B are matrices.  C is sparse.
        C = GrB (gbeunion (A, 0, '~=', B, 0)) ;
    end
end