1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
|
function s = normdiff (A,B,kind)
%NORMDIFF norm (A-B,kind)
% If A-B is a matrix:
%
% norm (A-B,1) is the maximum sum of the columns of abs (A-B).
% norm (A-B,inf) is the maximum sum of the rows of abs (A-B).
% norm (A-B,'fro') is the Frobenius norm of A-B: the sqrt of the sum of
% the squares of the entries in A-B.
% The 2-norm is not available for either built-in or GraphBLAS sparse
% matrices.
%
% If A-B is a row or column vector:
%
% norm (A-B,1) is the sum of abs (A-B)
% norm (A-B,2) is the sqrt of the sum of (A-B).^2
% norm (A-B,inf) is the maximum of abs (A-B)
% norm (A-B,-inf) is the minimum of abs (A-B)
%
% See also GrB.reduce, GrB/norm.
% SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
% SPDX-License-Identifier: Apache-2.0
if (nargin < 3)
kind = 2 ;
end
if (isobject (A))
A = A.opaque ;
end
if (isobject (B))
B = B.opaque ;
end
s = gbnormdiff (A, B, kind) ;
|