1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
//------------------------------------------------------------------------------
// gblogextract: logical extraction: C = A(M)
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// gblogextract computes the built-in logical indexing expression C = A(M). The
// matrices A and M must be the same size. M is normally logical but it can be
// of any type in this mexFunction. M should not have any explicit zeros. C
// has the same type as A, and is a sparse vector of size nnz(M)-by-1.
// Usage:
// C = gblogextract (A, M)
// This function is the C equivalent of the following m-function:
/*
function C = gblogextract (A, M_input)
% Computing the built-in logical indexing expression C = A(M) in GraphBLAS.
% C is a sparse vector of size nnz(M)-by-1. M is normally a sparse logical
% matrix, either GraphBLAS or built-in, but it can be of any type.
% A and M have the same size.
[m n] = size (A) ;
% make sure all input, internal, and output matrices are all stored by
% column
save = GrB.format ;
GrB.format ('by col') ;
M = GrB (m, n, 'logical') ;
M = GrB.select (M, '2nd', 'nonzero', M_input) ;
if (isequal (GrB.format (A), 'by row'))
A = GrB (A) ;
end
mnz = nnz (M) ; % C will be mnz-by-1
% G<M> = A
% G has the same type and size as A, but G is always stored by column
G = GrB (m, n, GrB.type (A)) ;
G = GrB.subassign (G, M, A) ;
% extract gx = the entries of G
[~, ~, gx] = GrB.extracttuples (G) ;
% convert G to logical
G = spones (G, 'logical') ;
% K = symbolic structure of M, where the kth entry in K(:) is equal to k.
desc.base = 'zero-based' ;
[mi, mj] = GrB.extracttuples (M, desc) ;
K = GrB.build (mi, mj, int64 (0:mnz-1), m, n, desc) ;
% T<G> = K
T = GrB (m, n, 'uint64') ;
T = GrB.subassign (T, G, K) ;
% extract the values from T
[~, ~, tx] = GrB.extracttuples (T) ;
% construct the result C (always a column vector)
C = GrB.build (tx, zeros(length(gx),1,'uint64'), gx, mnz, 1) ;
% restore the format to its original state
GrB.format (save) ;
*/
// This C mexFunction is faster than the above m-function, since it avoids the
// use of GrB.extracttuples and GrB.build. Instead, it accesses the internal
// structure of the GrB_Matrix objects, and creates shallow copies. The
// m-file above is useful for understanding that this C mexFunction does.
// C is always returned as a GrB matrix.
#include "gb_interface.h"
#include "GB_transpose.h"
#define USAGE "usage: C = gblogextract (A, M)"
void mexFunction
(
int nargout,
mxArray *pargout [ ],
int nargin,
const mxArray *pargin [ ]
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
gb_usage (nargin == 2 && nargout <= 1, USAGE) ;
GB_CONTEXT ("gblogextract") ;
//--------------------------------------------------------------------------
// get A
//--------------------------------------------------------------------------
// make sure A is stored by column
GrB_Matrix A_input = gb_get_shallow (pargin [0]) ;
GrB_Matrix A, A_copy ;
A = gb_by_col (&A_copy, A_input) ;
GrB_Index nrows, ncols ;
OK (GrB_Matrix_nrows (&nrows, A)) ;
OK (GrB_Matrix_ncols (&ncols, A)) ;
//--------------------------------------------------------------------------
// get M
//--------------------------------------------------------------------------
// M can be hypersparse, sparse, or full, but not bitmap
int not_bitmap = GxB_HYPERSPARSE + GxB_SPARSE + GxB_FULL ;
// make M boolean, stored by column, and drop explicit zeros
GrB_Matrix M_input = gb_get_shallow (pargin [1]) ;
GrB_Matrix M = gb_new (GrB_BOOL, nrows, ncols, GxB_BY_COL, not_bitmap) ;
OK1 (M, GxB_Matrix_select (M, NULL, NULL, GxB_NONZERO, M_input,
NULL, NULL)) ;
OK (GrB_Matrix_free (&M_input)) ;
GrB_Index mnz ;
OK (GrB_Matrix_nvals (&mnz, M)) ;
int sparsity ;
OK (GxB_Matrix_Option_get (M, GxB_SPARSITY_STATUS, &sparsity)) ;
CHECK_ERROR (sparsity == GxB_BITMAP, "internal error 5") ;
CHECK_ERROR (!M->iso, "internal error 42") ;
//--------------------------------------------------------------------------
// G<M> = A
//--------------------------------------------------------------------------
// G has the same type and size as A, but it is always stored by column.
// Also ensure the G is not bitmap.
GrB_Type type ;
OK (GxB_Matrix_type (&type, A)) ;
GrB_Matrix G = gb_new (type, nrows, ncols, GxB_BY_COL, not_bitmap) ;
OK1 (G, GxB_Matrix_subassign (G, M, NULL,
A, GrB_ALL, nrows, GrB_ALL, ncols, NULL)) ;
OK (GrB_Matrix_free (&A_copy)) ;
OK (GrB_Matrix_free (&A_input)) ;
//--------------------------------------------------------------------------
// extract Gx, the values of G
//--------------------------------------------------------------------------
GrB_Index gnvals ;
OK1 (G, GrB_Matrix_wait (G, GrB_MATERIALIZE)) ;
OK (GrB_Matrix_nvals (&gnvals, G)) ;
OK (GxB_Matrix_Option_get (G, GxB_SPARSITY_STATUS, &sparsity)) ;
CHECK_ERROR (sparsity == GxB_BITMAP, "internal error 0") ;
// Remove G->x from G
void *Gx = G->x ;
size_t Gx_size = G->x_size ;
#ifdef GB_MEMDUMP
printf ("remove G->x from memtable: %p\n", G->x) ;
#endif
GB_Global_memtable_remove (G->x) ;
G->x = NULL ; G->x_size = 0 ;
bool G_iso = G->iso ;
//--------------------------------------------------------------------------
// change G to boolean (all true and iso)
//--------------------------------------------------------------------------
// Tim: use G as structural instead
bool Gbool = true ;
G->type = GrB_BOOL ;
G->x = &Gbool ;
G->iso = true ;
G->x_shallow = true ;
G->x_size = sizeof (bool) ;
//--------------------------------------------------------------------------
// K = structure of M, where the kth entry in K is equal to k
//--------------------------------------------------------------------------
// K is a shallow copy of M, except for its numerical values
struct GB_Matrix_opaque K_header ;
GrB_Matrix K = GB_clear_static_header (&K_header) ;
OK (GB_shallow_copy (K, GxB_BY_COL, M, Context)) ;
OK (GxB_Matrix_Option_get (K, GxB_SPARSITY_STATUS, &sparsity)) ;
CHECK_ERROR (sparsity == GxB_BITMAP, "internal error 10") ;
// Kx = uint64 (0:mnz-1)
size_t Kx_size = (MAX (mnz, 1) * sizeof (uint64_t)) ;
uint64_t *Kx = mxMalloc (Kx_size) ;
GB_helper7 (Kx, mnz) ;
// add a new K->x to K
K->x = Kx ;
K->x_shallow = false ;
K->type = GrB_UINT64 ;
K->x_size = Kx_size ;
#ifdef GB_MEMDUMP
printf ("add K->x to memtable: %p\n", K->x) ;
#endif
GB_Global_memtable_add (K->x, K->x_size) ;
K->iso = false ;
//--------------------------------------------------------------------------
// T<G> = K
//--------------------------------------------------------------------------
GrB_Matrix T = gb_new (GrB_UINT64, nrows, ncols, GxB_BY_COL, not_bitmap) ;
OK1 (T, GxB_Matrix_subassign (T, G, NULL,
K, GrB_ALL, nrows, GrB_ALL, ncols, NULL)) ;
//--------------------------------------------------------------------------
// extract Tx, the values of T
//--------------------------------------------------------------------------
GrB_Index tnvals ;
OK1 (T, GrB_Matrix_wait (T, GrB_MATERIALIZE)) ;
OK (GrB_Matrix_nvals (&tnvals, T)) ;
uint64_t *Tx = T->x ;
size_t Tx_size = T->x_size ;
#ifdef GB_MEMDUMP
printf ("remove T->x from memtable: %p\n", T->x) ;
#endif
GB_Global_memtable_remove (T->x) ;
T->x = NULL ; T->x_size = 0 ;
// gnvals and tnvals are identical, by construction
CHECK_ERROR (gnvals != tnvals, "internal error 1") ;
//--------------------------------------------------------------------------
// construct the result C
//--------------------------------------------------------------------------
// Vectors are always stored by column, and are never hypersparse. This
// step takes constant time, using a transplant of the row indices Tx from
// T and the values Gx from G. V is sparse (not full, not hypersparse).
GrB_Vector V ;
OK (GrB_Vector_new (&V, type, mnz)) ;
OK (GxB_Vector_Option_set (V, GxB_SPARSITY_CONTROL, GxB_SPARSE)) ;
#ifdef GB_MEMDUMP
printf ("remove V->i from memtable: %p\n", V->i) ;
printf ("remove V->x from memtable: %p\n", V->x) ;
#endif
GB_Global_memtable_remove (V->i) ;
gb_mxfree ((void **) (&V->i)) ;
GB_Global_memtable_remove (V->x) ;
gb_mxfree ((void **) (&V->x)) ;
// transplant values of T as the row indices of V
V->i = (int64_t *) Tx ;
V->i_size = Tx_size ;
V->i_shallow = false ;
#ifdef GB_MEMDUMP
printf ("add V->i to memtable: %p\n", V->i) ;
#endif
GB_Global_memtable_add (V->i, V->i_size) ; // this was the old T->x
// transplant the values of G as the values of V
V->x = Gx ;
V->x_size = Gx_size ;
V->x_shallow = false ;
V->iso = G_iso ;
#ifdef GB_MEMDUMP
printf ("add V->x to memtable: %p\n", V->x) ;
#endif
GB_Global_memtable_add (V->x, V->x_size) ; // this was the old G->x
int64_t *Vp = V->p ;
Vp [0] = 0 ;
Vp [1] = tnvals ;
V->nvals = tnvals ;
V->magic = GB_MAGIC ;
V->nvec_nonempty = (tnvals > 0) ? 1 : 0 ;
// typecast V to a matrix C, for export
GrB_Matrix C = (GrB_Matrix) V ;
V = NULL ;
//--------------------------------------------------------------------------
// free shallow copies and temporary matrices
//--------------------------------------------------------------------------
OK (GrB_Matrix_free (&G)) ;
OK (GrB_Matrix_free (&K)) ;
OK (GrB_Matrix_free (&T)) ;
OK (GrB_Matrix_free (&M)) ;
//--------------------------------------------------------------------------
// export the output matrix C as a GraphBLAS matrix
//--------------------------------------------------------------------------
pargout [0] = gb_export (&C, KIND_GRB) ;
GB_WRAPUP ;
}
|