1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
//------------------------------------------------------------------------------
// gb_assign: assign entries into a GraphBLAS matrix
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
// With do_subassign false, gb_assign is an interface to GrB_Matrix_assign and
// GrB_Matrix_assign_[TYPE], computing the GraphBLAS expression:
// C<#M,replace>(I,J) = accum (C(I,J), A) or accum(C(I,J), A')
// With do_subassign true, gb_assign is an interface to GxB_Matrix_subassign
// and GxB_Matrix_subassign_[TYPE], computing the GraphBLAS expression:
// C(I,J)<#M,replace> = accum (C(I,J), A) or accum(C(I,J), A')
// A can be a matrix or a scalar. If it is a scalar with nnz (A) == 0,
// then it is first expanded to an empty matrix of size length(I)-by-length(J),
// and G*B_Matrix_*assign is used (not GraphBLAS scalar assignment).
// Usage:
// C = gbassign (Cin, M, accum, A, I, J, desc)
// C = gbsubassign (Cin, M, accum, A, I, J, desc)
// Cin and A are required. See GrB.m for more details.
#include "gb_interface.h"
#include "GB_ij.h"
void gb_assign // gbassign or gbsubassign mexFunctions
(
int nargout, // # output arguments for mexFunction
mxArray *pargout [ ], // output arguments for mexFunction
int nargin, // # input arguments for mexFunction
const mxArray *pargin [ ], // input arguments for mexFunction
bool do_subassign, // true: do subassign, false: do assign
const char *usage // usage string to print if error
)
{
//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------
gb_usage (nargin >= 2 && nargin <= 7 && nargout <= 2, usage) ;
//--------------------------------------------------------------------------
// find the arguments
//--------------------------------------------------------------------------
mxArray *Matrix [4], *String [2], *Cell [2] ;
base_enum_t base ;
kind_enum_t kind ;
GxB_Format_Value fmt ;
int nmatrices, nstrings, ncells, sparsity ;
GrB_Descriptor desc ;
gb_get_mxargs (nargin, pargin, usage, Matrix, &nmatrices, String, &nstrings,
Cell, &ncells, &desc, &base, &kind, &fmt, &sparsity) ;
CHECK_ERROR (nmatrices < 2 || nmatrices > 3 || nstrings > 1, usage) ;
//--------------------------------------------------------------------------
// get the matrices
//--------------------------------------------------------------------------
GrB_Type atype, ctype ;
GrB_Matrix C, M = NULL, A ;
if (nmatrices == 2)
{
C = gb_get_deep (Matrix [0]) ;
A = gb_get_shallow (Matrix [1]) ;
}
else // if (nmatrices == 3)
{
C = gb_get_deep (Matrix [0]) ;
M = gb_get_shallow (Matrix [1]) ;
A = gb_get_shallow (Matrix [2]) ;
}
OK (GxB_Matrix_type (&atype, A)) ;
OK (GxB_Matrix_type (&ctype, C)) ;
//--------------------------------------------------------------------------
// get the operator
//--------------------------------------------------------------------------
GrB_BinaryOp accum = NULL ;
if (nstrings == 1)
{
accum = gb_mxstring_to_binop (String [0], ctype, ctype) ;
}
//--------------------------------------------------------------------------
// get the size of Cin
//--------------------------------------------------------------------------
GrB_Index cnrows, cncols ;
OK (GrB_Matrix_nrows (&cnrows, C)) ;
OK (GrB_Matrix_ncols (&cncols, C)) ;
//--------------------------------------------------------------------------
// get I and J
//--------------------------------------------------------------------------
GrB_Index *I = (GrB_Index *) GrB_ALL ;
GrB_Index *J = (GrB_Index *) GrB_ALL ;
GrB_Index ni = cnrows, nj = cncols ;
bool I_allocated = false, J_allocated = false ;
int64_t I_max = -1, J_max = -1 ;
if (cnrows > 1 && cncols > 1 && ncells == 1)
{
ERROR ("Linear indexing not supported") ;
}
if (cnrows == 1 && ncells == 1)
{
// only J is present
J = gb_mxcell_to_index (Cell [0], base, cncols, &J_allocated, &nj,
&J_max) ;
}
else if (ncells == 1)
{
// only I is present
I = gb_mxcell_to_index (Cell [0], base, cnrows, &I_allocated, &ni,
&I_max) ;
}
else if (ncells == 2)
{
// both I and J are present
I = gb_mxcell_to_index (Cell [0], base, cnrows, &I_allocated, &ni,
&I_max) ;
J = gb_mxcell_to_index (Cell [1], base, cncols, &J_allocated, &nj,
&J_max) ;
}
//--------------------------------------------------------------------------
// expand C if needed
//--------------------------------------------------------------------------
GrB_Index cnrows_required = I_max + 1 ;
GrB_Index cncols_required = J_max + 1 ;
if (cnrows_required > cnrows || cncols_required > cncols)
{
GrB_Index cnrows_new = GB_IMAX (cnrows, cnrows_required) ;
GrB_Index cncols_new = GB_IMAX (cncols, cncols_required) ;
OK (GrB_Matrix_resize (C, cnrows_new, cncols_new)) ;
}
//--------------------------------------------------------------------------
// determine if A is a scalar (ignore the transpose descriptor)
//--------------------------------------------------------------------------
GrB_Index anrows, ancols ;
OK (GrB_Matrix_nrows (&anrows, A)) ;
OK (GrB_Matrix_ncols (&ancols, A)) ;
bool scalar_assignment = (anrows == 1) && (ancols == 1) ;
//--------------------------------------------------------------------------
// compute C(I,J)<M> += A or C<M>(I,J) += A
//--------------------------------------------------------------------------
if (scalar_assignment)
{
if (do_subassign)
{
// C(I,J)<M> += scalar
OK1 (C, GxB_Matrix_subassign_Scalar (C, M, accum, (GrB_Scalar) A,
I, ni, J, nj, desc)) ;
}
else
{
// C<M>(I,J) += scalar
OK1 (C, GrB_Matrix_assign_Scalar (C, M, accum, (GrB_Scalar) A,
I, ni, J, nj, desc)) ;
}
}
else
{
if (do_subassign)
{
// C(I,J)<M> += A
OK1 (C, GxB_Matrix_subassign (C, M, accum, A, I, ni, J, nj, desc)) ;
}
else
{
// C<M>(I,J) += A
OK1 (C, GrB_Matrix_assign (C, M, accum, A, I, ni, J, nj, desc)) ;
}
}
//--------------------------------------------------------------------------
// free shallow copies
//--------------------------------------------------------------------------
OK (GrB_Matrix_free (&M)) ;
OK (GrB_Matrix_free (&A)) ;
OK (GrB_Descriptor_free (&desc)) ;
if (I_allocated) gb_mxfree ((void **) (&I)) ;
if (J_allocated) gb_mxfree ((void **) (&J)) ;
//--------------------------------------------------------------------------
// export the output matrix C
//--------------------------------------------------------------------------
pargout [0] = gb_export (&C, kind) ;
pargout [1] = mxCreateDoubleScalar (kind) ;
GB_WRAPUP ;
}
|