1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
|
//------------------------------------------------------------------------------
// GB_AxB_saxpy3_coarseGus_noM_phase5: numeric coarse Gustavson, no mask
//------------------------------------------------------------------------------
// SuiteSparse:GraphBLAS, Timothy A. Davis, (c) 2017-2022, All Rights Reserved.
// SPDX-License-Identifier: Apache-2.0
//------------------------------------------------------------------------------
{
for (int64_t kk = kfirst ; kk <= klast ; kk++)
{
//----------------------------------------------------------------------
// get C(:,j) and B(:,j)
//----------------------------------------------------------------------
int64_t pC = Cp [kk] ;
int64_t cjnz = Cp [kk+1] - pC ;
if (cjnz == 0) continue ; // no work to do if C(:,j) empty
GB_GET_B_j ;
//----------------------------------------------------------------------
// special case when C (:,j) is dense
//----------------------------------------------------------------------
#ifndef GB_GENERIC
if (cjnz == cvlen) // C(:,j) is dense
{
// This is not used for the generic saxpy3.
GB_COMPUTE_DENSE_C_j ; // C(:,j) = A*B(:,j)
continue ;
}
#endif
//----------------------------------------------------------------------
// C(:,j) = A*B(:,j)
//----------------------------------------------------------------------
mark++ ;
if (bjnz == 1 && (A_is_sparse || A_is_hyper))
{
//------------------------------------------------------------------
// C(:,j) = A(:,k)*B(k,j) where B(:,j) has a single entry
//------------------------------------------------------------------
GB_COMPUTE_C_j_WHEN_NNZ_B_j_IS_ONE ;
}
else if (16 * cjnz > cvlen)
{
//------------------------------------------------------------------
// C(:,j) is not very sparse
//------------------------------------------------------------------
for ( ; pB < pB_end ; pB++) // scan B(:,j)
{
GB_GET_B_kj_INDEX ; // get index k of entry B(k,j)
GB_GET_A_k ; // get A(:,k)
if (aknz == 0) continue ; // skip if A(:,k) is empty
GB_GET_B_kj ; // bkj = B(k,j)
// scan A(:,k)
for (int64_t pA = pA_start ; pA < pA_end ; pA++)
{
GB_GET_A_ik_INDEX ; // get index i of entry A(i,k)
GB_MULT_A_ik_B_kj ; // t = A(i,k)*B(k,j)
if (Hf [i] != mark)
{
// C(i,j) = A(i,k) * B(k,j)
Hf [i] = mark ;
GB_HX_WRITE (i, t) ; // Hx [i] = t
}
else
{
// C(i,j) += A(i,k) * B(k,j)
GB_HX_UPDATE (i, t) ; // Hx [i] += t
}
}
}
GB_GATHER_ALL_C_j (mark) ; // gather into C(:,j)
}
else
{
//------------------------------------------------------------------
// C(:,j) is very sparse
//------------------------------------------------------------------
for ( ; pB < pB_end ; pB++) // scan B(:,j)
{
GB_GET_B_kj_INDEX ; // get index k of entry B(k,j)
GB_GET_A_k ; // get A(:,k)
if (aknz == 0) continue ; // skip if A(:,k) is empty
GB_GET_B_kj ; // bkj = B(k,j)
// scan A(:,k)
for (int64_t pA = pA_start ; pA < pA_end ; pA++)
{
GB_GET_A_ik_INDEX ; // get index i of entry A(i,k)
GB_MULT_A_ik_B_kj ; // t = A(i,k)*B(k,j)
if (Hf [i] != mark)
{
// C(i,j) = A(i,k) * B(k,j)
Hf [i] = mark ;
GB_HX_WRITE (i, t) ; // Hx [i] = t
Ci [pC++] = i ;
}
else
{
// C(i,j) += A(i,k) * B(k,j)
GB_HX_UPDATE (i, t) ; // Hx [i] += t
}
}
}
GB_SORT_AND_GATHER_C_j ; // gather into C(:,j)
}
}
}
|